|
|
.file "fmodf.s" // Copyright (c) 2000, Intel Corporation // All rights reserved. // // Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska, // Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational // Software Lab, Intel Corporation. // // WARRANTY DISCLAIMER // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // // History //==================================================================== // 2/02/00 Initial version // 3/02/00 New Algorithm // 4/04/00 Unwind support added // 8/15/00 Bundle added after call to __libm_error_support to properly // set [the previously overwritten] GR_Parameter_RESULT. // // API //==================================================================== // float fmodf(float,float);
// // Overview of operation //==================================================================== // fmod(a,b)=a-i*b, // where i is an integer such that, if b!=0, // |i|<|a/b| and |a/b-i|<1
// Algorithm //==================================================================== // a). if |a|<|b|, return a // b). get quotient and reciprocal overestimates accurate to // 33 bits (q2,y2) // c). if the exponent difference (exponent(a)-exponent(b)) // is less than 32, truncate quotient to integer and // finish in one iteration // d). if exponent(a)-exponent(b)>=32 (q2>=2^32) // round quotient estimate to single precision (k=RN(q2)), // calculate partial remainder (a'=a-k*b), // get quotient estimate (a'*y2), and repeat from c).
// Special cases //==================================================================== // b=+/-0: return NaN, call libm_error_support // a=+/-Inf, a=NaN or b=NaN: return NaN
// Registers used //==================================================================== // Predicate registers: p6-p11 // General registers: r2,r29,r32 (ar.pfs), r33-r39 // Floating point registers: f6-f15
.section .text
GR_SAVE_B0 = r33 GR_SAVE_PFS = r34 GR_SAVE_GP = r35 GR_SAVE_SP = r36
GR_Parameter_X = r37 GR_Parameter_Y = r38 GR_Parameter_RESULT = r39 GR_Parameter_TAG = r40
FR_X = f10 FR_Y = f9 FR_RESULT = f8
.proc fmodf#
.align 32 .global fmodf#
.align 32
fmodf: // inputs in f8, f9 // result in f8
{ .mfi alloc r32=ar.pfs,1,4,4,0 // f6=|a| fmerge.s f6=f0,f8 mov r2 = 0x0ffdd } {.mfi nop.m 0 // f7=|b| fmerge.s f7=f0,f9 nop.i 0;;
}
{ .mfi setf.exp f11 = r2 // (1) y0 frcpa.s1 f10,p6=f6,f7 nop.i 0 }
// eliminate special cases // Y +-NAN, +-inf, +-0? p7 { .mfi nop.m 999 (p0) fclass.m.unc p7,p0 = f9, 0xe7 nop.i 999;;
}
// qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 0 11 // e 3 // X +-NAN, +-inf, ? p9
{ .mfi nop.m 999 (p0) fclass.m.unc p9,p0 = f8, 0xe3 nop.i 999 }
// |x| < |y|? Return x p8 { .mfi nop.m 999 (p0) fcmp.lt.unc.s1 p8,p0 = f6,f7 nop.i 999 ;;
}
{ .mfi nop.m 0 // normalize y (if |x|<|y|) (p8) fma.s0 f9=f9,f1,f0 nop.i 0;;
}
{ .mfi mov r2=0x1001f // (2) q0=a*y0 (p6) fma.s1 f13=f6,f10,f0 nop.i 0 } { .mfi nop.m 0 // (3) e0 = 1 - b * y0 (p6) fnma.s1 f12=f7,f10,f1 nop.i 0;;
}
{.mfi nop.m 0 // normalize x (if |x|<|y|) (p8) fma.s.s0 f8=f8,f1,f0 nop.i 0 } {.bbb (p9) br.cond.spnt FMOD_X_NAN_INF (p7) br.cond.spnt FMOD_Y_NAN_INF_ZERO // if |x|<|y|, return (p8) br.ret.spnt b0;;
}
{.mfi nop.m 0 // normalize x fma.s0 f6=f6,f1,f0 nop.i 0 } {.mfi nop.m 0 // normalize y fma.s0 f7=f7,f1,f0 nop.i 0;;
}
{.mfi // f15=2^32 setf.exp f15=r2 // (4) q1=q0+e0*q0 (p6) fma.s1 f13=f12,f13,f13 nop.i 0 } { .mfi nop.m 0 // (5) e1 = e0 * e0 + 2^-34 (p6) fma.s1 f14=f12,f12,f11 nop.i 0;;
} {.mlx nop.m 0 movl r2=0x33a00000;;
} { .mfi nop.m 0 // (6) y1 = y0 + e0 * y0 (p6) fma.s1 f10=f12,f10,f10 nop.i 0;;
} {.mfi // set f12=1.25*2^{-24} setf.s f12=r2 // (7) q2=q1+e1*q1 (p6) fma.s1 f13=f13,f14,f13 nop.i 0;;
} {.mfi nop.m 0 fmerge.s f9=f8,f9 nop.i 0 } { .mfi nop.m 0 // (8) y2 = y1 + e1 * y1 (p6) fma.s1 f10=f14,f10,f10 // set p6=0, p10=0 cmp.ne.and p6,p10=r0,r0;;
}
.align 32 loop24: {.mfi nop.m 0 // compare q2, 2^32 fcmp.lt.unc.s1 p8,p7=f13,f15 nop.i 0 } {.mfi nop.m 0 // will truncate quotient to integer, if exponent<32 (in advance) fcvt.fx.trunc.s1 f11=f13 nop.i 0;;
} {.mfi nop.m 0 // if exponent>32, round quotient to single precision (perform in advance) fma.s.s1 f13=f13,f1,f0 nop.i 0;;
} {.mfi nop.m 0 // set f12=sgn(a) (p8) fmerge.s f12=f8,f1 nop.i 0 } {.mfi nop.m 0 // normalize truncated quotient (p8) fcvt.xf f13=f11 nop.i 0;;
} { .mfi nop.m 0 // calculate remainder (assuming f13=RZ(Q)) (p7) fnma.s1 f14=f13,f7,f6 nop.i 0 } {.mfi nop.m 0 // also if exponent>32, round quotient to single precision // and subtract 1 ulp: q=q-q*(1.25*2^{-24}) (p7) fnma.s.s1 f11=f13,f12,f13 nop.i 0;;
}
{.mfi nop.m 0 // (p8) calculate remainder (82-bit format) (p8) fnma.s1 f11=f13,f7,f6 nop.i 0 } {.mfi nop.m 0 // (p7) calculate remainder (assuming f11=RZ(Q)) (p7) fnma.s1 f6=f11,f7,f6 nop.i 0;;
}
{.mfi nop.m 0 // Final iteration (p8): is f6 the correct remainder (quotient was not overestimated) ? (p8) fcmp.lt.unc.s1 p6,p10=f11,f0 nop.i 0;;
} {.mfi nop.m 0 // get new quotient estimation: a'*y2 (p7) fma.s1 f13=f14,f10,f0 nop.i 0 } {.mfb nop.m 0 // was f14=RZ(Q) ? (then new remainder f14>=0) (p7) fcmp.lt.unc.s1 p7,p9=f14,f0 nop.b 0;;
}
.pred.rel "mutex",p6,p10 {.mfb nop.m 0 // add b to estimated remainder (to cover the case when the quotient was overestimated) // also set correct sign by using f9=|b|*sgn(a), f12=sgn(a) (p6) fma.s.s0 f8=f11,f12,f9 nop.b 0 } {.mfb nop.m 0 // calculate remainder (single precision) // set correct sign of result before returning (p10) fma.s.s0 f8=f11,f12,f0 (p8) br.ret.sptk b0;;
} {.mfi nop.m 0 // if f13!=RZ(Q), get alternative quotient estimation: a''*y2 (p7) fma.s1 f13=f6,f10,f0 nop.i 0 } {.mfb nop.m 0 // if f14 was RZ(Q), set remainder to f14 (p9) mov f6=f14 br.cond.sptk loop24;;
}
{ .mmb nop.m 0 nop.m 0 br.ret.sptk b0;;
}
FMOD_X_NAN_INF:
// Y zero ? {.mfi nop.m 0 fma.s1 f10=f9,f1,f0 nop.i 0;;
} {.mfi nop.m 0 fcmp.eq.unc.s1 p11,p0=f10,f0 nop.i 0;;
} {.mib nop.m 0 nop.i 0 // if Y zero (p11) br.cond.spnt FMOD_Y_ZERO;;
}
// X infinity? Return QNAN indefinite { .mfi nop.m 999 (p0) fclass.m.unc p8,p9 = f8, 0x23 nop.i 999;;
} // Y NaN ? {.mfi nop.m 999 (p8) fclass.m p9,p8=f9,0xc3 nop.i 0;;
} {.mfi nop.m 999 (p8) frcpa.s0 f8,p0 = f8,f8 nop.i 0 } { .mfi nop.m 999 // also set Denormal flag if necessary (p8) fma.s0 f9=f9,f1,f0 nop.i 999 ;;
}
{ .mfb nop.m 999 (p8) fma.s f8=f8,f1,f0 nop.b 999 ;;
}
{ .mfb nop.m 999 (p9) frcpa.s0 f8,p7=f8,f9 br.ret.sptk b0 ;;
}
FMOD_Y_NAN_INF_ZERO:
// Y INF { .mfi nop.m 999 (p0) fclass.m.unc p7,p0 = f9, 0x23 nop.i 999 ;;
}
{ .mfb nop.m 999 (p7) fma.s f8=f8,f1,f0 (p7) br.ret.spnt b0 ;;
}
// Y NAN? { .mfi nop.m 999 (p0) fclass.m.unc p9,p0 = f9, 0xc3 nop.i 999 ;;
}
{ .mfb nop.m 999 (p9) fma.s f8=f9,f1,f0 (p9) br.ret.spnt b0 ;;
}
FMOD_Y_ZERO: // Y zero? Must be zero at this point // because it is the only choice left. // Return QNAN indefinite
{.mfi nop.m 0 // set Invalid frcpa f12,p0=f0,f0 nop.i 999 } // X NAN? { .mfi nop.m 999 (p0) fclass.m.unc p9,p10 = f8, 0xc3 nop.i 999 ;;
} { .mfi nop.m 999 (p10) fclass.nm p9,p10 = f8, 0xff nop.i 999 ;;
}
{.mfi nop.m 999 (p9) frcpa f11,p7=f8,f0 nop.i 0;;
}
{ .mfi nop.m 999 (p10) frcpa f11,p7 = f0,f0 nop.i 999;;
}
{ .mfi nop.m 999 (p0) fmerge.s f10 = f8, f8 nop.i 999 }
{ .mfi nop.m 999 (p0) fma.s f8=f11,f1,f0 nop.i 999;;
}
EXP_ERROR_RETURN:
{ .mib nop.m 0 (p0) mov GR_Parameter_TAG=122 (p0) br.sptk __libm_error_region;;
}
.endp fmodf
.proc __libm_error_region __libm_error_region: .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };;
{ .mmi stfs [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };;
.body { .mib stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 // Parameter 3 address } { .mib stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support#;; // Call error handling function
} { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };;
{ .mmi ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack .restore add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };;
{ .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };;
.endp __libm_error_region
.type __libm_error_support#,@function
.global __libm_error_support#
|