|
|
.file "hypot.asm"
// Copyright (c) 2000, Intel Corporation // All rights reserved. // // Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska, // Bob Norin, Shane Story, and Ping Tak Peter Tang of the // Computational Software Lab, Intel Corporation. // // WARRANTY DISCLAIMER // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // //********************************************************************* // // History: // 2/02/00 hand-optimized // 4/04/00 Unwind support added // 6/20/00 new version // 8/15/00 Bundle added after call to __libm_error_support to properly // set [the previously overwritten] GR_Parameter_RESULT. // //********************************************************************* // ___________ // Function: hypot(x,y) = |(x^2 + y^2) = for double precision values // x and y // Also provides cabs functionality. // //********************************************************************* // // Resources Used: // // Floating-Point Registers: f8 (Input and Return Value) // f9 (Input) // f6 -f15, f32-f34 // // General Purpose Registers: // r2,r3,r29 (Scratch) // r32-r36 (Locals) // r37-r40 (Used to pass arguments to error handling routine) // // Predicate Registers: p6 - p10 // //********************************************************************* // // IEEE Special Conditions: // // All faults and exceptions should be raised correctly. // Overflow can occur. // hypot(Infinity and anything) = +Infinity // hypot(QNaN and anything) = QNaN // hypot(SNaN and anything ) = QNaN // //********************************************************************* // // Implementation: // x2 = x * x in double-extended // y2 = y * y in double-extended // temp = x2 + y2 in double-extended // sqrt(temp) rounded to double // //*********************************************************************
GR_SAVE_PFS = r33 GR_SAVE_B0 = r34 GR_SAVE_GP = r35 GR_Parameter_X = r36 GR_Parameter_Y = r37 GR_Parameter_RESULT = r38 GR_Parameter_TAG = r39
FR_X = f32 FR_Y = f33 FR_RESULT = f8
.section .text .proc _cabs#
.global _cabs#
_cabs: .endp _cabs .proc _hypot#
.global _hypot#
.align 64
_hypot: {.mfi alloc r32= ar.pfs,0,4,4,0 // Compute x*x fma.s1 f10=f8,f8,f0 // r2=bias-1 mov r2=0xfffe } {.mfi // 63/8 mov r3=0x40fc //0000 // y*y fma.s1 f11=f9,f9,f0 // r29=429/16 mov r29=0x41d68;; //000
}
{ .mfi nop.m 0 // Check if x is an Inf - if so return Inf even // if y is a NaN (C9X) fclass.m.unc p7, p6 = f8, 0x023 shl r3=r3,16 } {.mfi nop.m 0 // if possible overflow, copy f8 to f32 // set Denormal, if necessary // (p8) fma.d.s0 f32=f8,f1,f0 nop.i 0;;
} { .mfi nop.m 0 // Check if y is an Inf - if so return Inf even // if x is a NaN (C9X) fclass.m.unc p8, p9 = f9, 0x023 shl r29=r29,12 } { .mfb // f7=0.5 setf.exp f7=r2 // For x=inf, multiply y by 1 to raise invalid on y an SNaN // (p7) fma.s0 f9=f9,f1,f0 // copy f9 to f33; set Denormal, if necessary
fma.d.s0 f33=f9,f1,f0 nop.b 0;;
} {.mfb // f13=63/8 setf.s f13=r3 // is y Zero ? (p6) fclass.m p6,p0=f9,0x7 nop.b 0 } {.mlx nop.m 0 movl r2=0x408c0000;;
}
{.mfi // f34=429/16 setf.s f34=r29 // is x Zero ? (p9) fclass.m p9,p0=f8,0x7 // 231/16 mov r3=0x4167;; //0000
} {.mfi nop.m 0 // a=x2+y2 fma.s1 f12=f10,f1,f11 nop.i 0;;
} {.mfi nop.m 0 // y not NaN ? (p9) fclass.m p8,p0=f9,0x3f shl r3=r3,16 } {.mfi nop.m 0 // f6=2 fma.s1 f6=f1,f1,f1 nop.i 0;;
}
{.mfi nop.m 0 // x not NaN ? (p6) fclass.m p7,p0=f8,0x3f nop.i 0;;
} {.mfi // f9=35/8 setf.s f9=r2 nop.f 0 // 2*emax-2 mov r2=0x107fb;;
}
{.mfb nop.m 0 // if f8=Infinity or f9=Zero, return |f8| (p7) fmerge.s f8=f0,f32 (p7) br.ret.spnt b0 } {.mfb nop.m 0 // if f9=Infinity or f8=Zero, return |f9| (p8) fmerge.s f8=f0,f33 (p8) br.ret.spnt b0;;
}
{.mfi // f10 =231/16 setf.s f10=r3 // z0=frsqrta(a) frsqrta.s1 f8,p6=f12 nop.i 0;;
}
{ .mfi nop.m 0 // Identify Natvals, Infs, NaNs, and Zeros // and return result fclass.m.unc p7, p0 = f12, 0x1E7 nop.i 0;;
} {.mfb // get exponent of x^2+y^2 getf.exp r3=f12 // if special case, set f8 (p7) mov f8=f12 (p7) br.ret.spnt b0;;
}
{.mfi nop.m 0 // S0=a*z0 (p6) fma.s1 f14=f12,f8,f0 nop.i 0 } {.mfi nop.m 0 // H0=0.5*z0 (p6) fma.s1 f15=f8,f7,f0 nop.i 0;;
}
{.mfi nop.m 0 // f6=5/2 fma.s1 f6=f7,f1,f6 nop.i 0 } {.mfi nop.m 0 // f11=3/2 fma.s1 f11=f7,f1,f1 nop.i 0;;
}
{.mfi nop.m 0 // d=0.5-S0*H0 (p6) fnma.s1 f7=f14,f15,f7 nop.i 0;;
}
{.mfi nop.m 0 // P67=231/16+429/16*d (p6) fma.s1 f10=f34,f7,f10 nop.i 0 } {.mfi nop.m 0 // P45=63/8*d+35/8 (p6) fma.s1 f9=f13,f7,f9 nop.i 0;;
} {.mfi nop.m 0 // P23=5/2*d+3/2 (p6) fma.s1 f11=f6,f7,f11 nop.i 0 } {.mfi nop.m 0 // d2=d*d (p6) fma.s1 f13=f7,f7,f0 nop.i 0;;
}
{.mfi nop.m 0 // P47=d2*P67+P45 (p6) fma.s1 f10=f10,f13,f9 nop.i 0 } {.mfi nop.m 0 // P13=d*P23+1 (p6) fma.s1 f11=f11,f7,f1 nop.i 0;;
} {.mfi nop.m 0 // d3=d2*d (p6) fma.s1 f13=f13,f7,f0 nop.i 0;;
}
{.mfi nop.m 0 // T0=d*S0 (p6) fma.s1 f15=f7,f14,f0 nop.i 0 } {.mfi // Is x^2 + y^2 well less than the overflow // threshold? (p6) cmp.lt.unc p7, p8 = r3,r2 // P=P13+d3*P47 (p6) fma.s1 f10=f13,f10,f11 nop.i 0;;
}
{.mfb nop.m 0 // S=P*T0+S0 fma.d.s0 f8=f10,f15,f14 // No overflow in this case (p7) br.ret.sptk b0;;
}
{ .mfi nop.m 0 (p8) fsetc.s2 0x7F,0x42 // Possible overflow path, must detect by // Setting widest range exponent with prevailing // rounding mode. nop.i 0 ;;
}
{ .mfi // bias+0x400 (bias+EMAX+1) (p8) mov r2=0x103ff // S=P*T0+S0 (p8) fma.d.s2 f12=f10,f15,f14 nop.i 0 ;;
} { .mfi (p8) setf.exp f11 = r2 (p8) fsetc.s2 0x7F,0x40 // Restore Original Mode in S2 nop.i 0 ;;
} { .mfi nop.m 0 (p8) fcmp.lt.unc.s1 p9, p10 = f12, f11 nop.i 0 ;;
} { .mib nop.m 0 mov GR_Parameter_TAG = 46 // No overflow (p9) br.ret.sptk b0;;
} .endp
.proc __libm_error_region __libm_error_region: .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };;
{ .mmi stfd [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };;
.body { .mib stfd [GR_Parameter_X] = FR_X // Store Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 // Parameter 3 address } { .mib stfd [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };;
{ .mmi ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack .restore add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };;
{ .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };;
.endp .type __libm_error_support#,@function
.global __libm_error_support#
|