|
|
/***
*sincosh.c - hyperbolic sine and cosine * * Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved. * *Purpose: * *Revision History: * 8-15-91 GDP written * 12-20-91 GDP support IEEE exceptions * 02-03-92 GDP use _exphlp for computing e^x * 06-23-92 GDP sinh(denormal) now raises underflow exception (NCEG) * 07-16-93 SRW ALPHA Merge * 11-18-93 GJF Merged in NT SDK version. * 02-06-95 JWM Mac merge * 05-17-99 PML Remove all Macintosh support. * *******************************************************************************/
#include <math.h>
#include <trans.h>
extern double _exphlp(double, int *);
static double const EPS = 5.16987882845642297e-26; /* 2^(-53) / 2 */ /* exp(YBAR) should be close to but less than XMAX
* and 1/exp(YBAR) should not underflow */ static double const YBAR = 7.00e2;
/* WMAX=ln(OVFX)+0.69 (Cody & Waite),ommited LNV, used OVFX instead of BIGX */
static double const WMAX = 1.77514678223345998953e+003;
/* constants for the rational approximation */ static double const p0 = -0.35181283430177117881e+6; static double const p1 = -0.11563521196851768270e+5; static double const p2 = -0.16375798202630751372e+3; static double const p3 = -0.78966127417357099479e+0; static double const q0 = -0.21108770058106271242e+7; static double const q1 = 0.36162723109421836460e+5; static double const q2 = -0.27773523119650701667e+3; /* q3 = 1 is not used (avoid myltiplication by 1) */
#define P(f) (((p3 * (f) + p2) * (f) + p1) * (f) + p0)
#define Q(f) ((((f) + q2) * (f) + q1) * (f) + q0)
#if !defined(_M_PPC) && !defined(_M_AMD64)
#pragma function(sinh, cosh)
#endif
/***
*double sinh(double x) - hyperbolic sine * *Purpose: * Compute the hyperbolic sine of a number. * The algorithm (reduction / rational approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * I P * no exception if x is denormal: return x *******************************************************************************/
double sinh(double x) { uintptr_t savedcw; double result; double y,f,z,r; int newexp; int sgn;
/* save user fp control word */ savedcw = _maskfp();
if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: RETURN(savedcw,x); case T_QNAN: return _handle_qnan1(OP_SINH, x, savedcw); default: //T_SNAN
return _except1(FP_I,OP_SINH,x,_s2qnan(x),savedcw); } }
if (x == 0.0) { RETURN(savedcw,x); // no precision ecxeption
}
y = ABS(x); sgn = x<0 ? -1 : +1;
if (y > 1.0) { if (y > YBAR) { if (y > WMAX) { // result too large, even after scaling
return _except1(FP_O | FP_P,OP_SINH,x,x*D_INF,savedcw); }
//
// result = exp(y)/2
//
result = _exphlp(y, &newexp); newexp --; //divide by 2
if (newexp > MAXEXP) { result = _set_exp(result, newexp-IEEE_ADJUST); return _except1(FP_O|FP_P,OP_SINH,x,result,savedcw); } else { result = _set_exp(result, newexp); }
} else { z = _exphlp(y, &newexp); z = _set_exp(z, newexp); result = (z - 1/z) / 2; }
if (sgn < 0) { result = -result; } } else { if (y < EPS) { result = x; if (IS_D_DENORM(result)) { return _except1(FP_U | FP_P,OP_SINH,x,_add_exp(result, IEEE_ADJUST),savedcw); } } else { f = x * x; r = f * (P(f) / Q(f)); result = x + x * r; } }
RETURN_INEXACT1(OP_SINH,x,result,savedcw); }
/***
*double cosh(double x) - hyperbolic cosine * *Purpose: * Compute the hyperbolic cosine of a number. * The algorithm (reduction / rational approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * I P * no exception if x is denormal: return 1 *******************************************************************************/ double cosh(double x) { uintptr_t savedcw; double y,z,result; int newexp;
/* save user fp control word */ savedcw = _maskfp();
if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: RETURN(savedcw,D_INF); case T_QNAN: return _handle_qnan1(OP_COSH, x, savedcw); default: //T_SNAN
return _except1(FP_I,OP_COSH,x,_s2qnan(x),savedcw); } }
if (x == 0.0) { RETURN(savedcw,1.0); }
y = ABS(x); if (y > YBAR) { if (y > WMAX) { return _except1(FP_O | FP_P,OP_COSH,x,D_INF,savedcw); }
//
// result = exp(y)/2
//
result = _exphlp(y, &newexp); newexp --; //divide by 2
if (newexp > MAXEXP) { result = _set_exp(result, newexp-IEEE_ADJUST); return _except1(FP_O|FP_P,OP_COSH,x,result,savedcw); } else { result = _set_exp(result, newexp); } } else { z = _exphlp(y, &newexp); z = _set_exp(z, newexp); result = (z + 1/z) / 2; }
RETURN_INEXACT1(OP_COSH,x,result,savedcw); }
|