|
|
/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
i64pcibus.c
Abstract:
Get/Set bus data routines for the PCI bus
Author:
Ken Reneris (kenr) 14-June-1994 Chris Hyser (chrish@fc.hp.com) 1-Feb-98
Environment:
Kernel mode
Revision History:
--*/
#include "halp.h"
#include "pci.h"
#include "pcip.h"
#include "i64fw.h"
extern WCHAR rgzMultiFunctionAdapter[]; extern WCHAR rgzConfigurationData[]; extern WCHAR rgzIdentifier[]; extern WCHAR rgzPCIIdentifier[]; extern WCHAR rgzPCICardList[];
//
// Prototypes
//
ULONG HalpGetPCIData( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER SlotNumber, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length );
ULONG HalpSetPCIData( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER SlotNumber, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length );
NTSTATUS HalpAssignPCISlotResources( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PUNICODE_STRING RegistryPath, IN PUNICODE_STRING DriverClassName OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDEVICE_OBJECT DeviceObject OPTIONAL, IN ULONG SlotNumber, IN OUT PCM_RESOURCE_LIST *AllocatedResources );
VOID HalpInitializePciBus( VOID );
BOOLEAN HalpIsValidPCIDevice( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot );
BOOLEAN HalpValidPCISlot( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot );
//
// Globals
//
KSPIN_LOCK HalpPCIConfigLock; BOOLEAN HalpDoingCrashDump = FALSE;
//
// Used to prevent attempts at synchronizing on locks which might have been held
// before the crash.
//
extern BOOLEAN HalpDoingCrashDump;
//
// PCI Configuration Space Accessor types
//
typedef enum { PCI_READ, PCI_WRITE } PCI_ACCESS_TYPE;
VOID HalpPCIConfig( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length, IN PCI_ACCESS_TYPE Acctype );
#if DBG
#if !defined(NO_LEGACY_DRIVERS)
VOID HalpTestPci( ULONG ); #endif
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,HalpInitializePciBus)
#pragma alloc_text(INIT,HalpAllocateAndInitPciBusHandler)
#pragma alloc_text(INIT,HalpIsValidPCIDevice)
#pragma alloc_text(PAGE,HalpAssignPCISlotResources)
#endif
ULONG HalpGetPCIData( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length ) /*++
Routine Description:
The function returns the PCI bus data for a specified PCI "slot". This function is called on behalf of
Arguments:
BusHandler - An encapsulation of data and manipulation functions specific to this bus.
RootHandler - ???
Slot - A PCI "slot" description (ie bus number, device number and function number.)
Buffer - A pointer to the space to store the data.
Offset - The byte offset into the configuration space for this PCI "slot".
Length - Supplies a count in bytes of the maximum amount to return. (ie equal or less than the size of the Buffer.)
Return Value:
Returns the amount of data stored into the buffer.
If this PCI slot has never been set, then the configuration information returned is zeroed.
--*/ { PPCI_COMMON_CONFIG PciData; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; PPCIPBUSDATA BusData; ULONG Len; ULONG i, bit;
if (Length > sizeof(PCI_COMMON_CONFIG)) Length = sizeof(PCI_COMMON_CONFIG);
Len = 0; PciData = (PPCI_COMMON_CONFIG)iBuffer;
//
// If the requested offset does not lie in the PCI onfiguration space common
// header, we will read the vendor ID from the common header to ensure this
// is a valid device. Note: The common header is from 0 to
// PCI_COMMON_HEADER_LENGTH inclusive. We know Offset is > 0 because it is
// unsigned.
//
if (Offset >= PCI_COMMON_HDR_LENGTH) { //
// No data was requested from the common header. Verify the PCI device
// exists, then continue in the device specific area.
//
HalpReadPCIConfig(BusHandler, Slot, PciData, 0, sizeof(ULONG));
if (PciData->VendorID == PCI_INVALID_VENDORID) return(0);
} else {
//
// Caller requested at least some data within the common header. Read
// the whole header, effect the fields we need to and then copy the
// user's requested bytes from the header
//
BusData = (PPCIPBUSDATA)BusHandler->BusData;
//
// Read this PCI devices slot data
//
Len = PCI_COMMON_HDR_LENGTH; HalpReadPCIConfig(BusHandler, Slot, PciData, 0, Len);
if (PciData->VendorID == PCI_INVALID_VENDORID) { PciData->VendorID = PCI_INVALID_VENDORID; Len = 2; // only return invalid id
} else { BusData->CommonData.Pin2Line(BusHandler, RootHandler, Slot, PciData); }
//
// Copy whatever data overlaps into the callers buffer
//
if (Len < Offset) return(0);
Len -= Offset; if (Len > Length) Len = Length;
RtlMoveMemory(Buffer, iBuffer + Offset, Len);
Offset += Len; Buffer += Len; Length -= Len; }
if (Length) { if (Offset >= PCI_COMMON_HDR_LENGTH) { //
// The remaining Buffer comes from the Device Specific
// area - put on the kitten gloves and read from it.
//
// Specific read/writes to the PCI device specific area
// are guarenteed:
//
// Not to read/write any byte outside the area specified
// by the caller. (this may cause WORD or BYTE references
// to the area in order to read the non-dword aligned
// ends of the request)
//
// To use a WORD access if the requested length is exactly
// a WORD long.
//
// To use a BYTE access if the requested length is exactly
// a BYTE long.
//
HalpReadPCIConfig(BusHandler, Slot, Buffer, Offset, Length); Len += Length; } }
return(Len); }
ULONG HalpSetPCIData( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length ) /*++
Routine Description:
The function sets the PCI bus data for a specified PCI "slot".
Arguments:
BusHandler - An encapsulation of data and manipulation functions specific to this bus.
RootHandler - ???
Slot - A PCI "slot" description (ie bus number, device number and function number.)
Buffer - Supplies the space to store the data.
Length - Supplies a count in bytes of the maximum amount to return.
Return Value:
Returns the amount of data stored into the buffer. ???
--*/ { PPCI_COMMON_CONFIG PciData, PciData2; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; UCHAR iBuffer2[PCI_COMMON_HDR_LENGTH]; PPCIPBUSDATA BusData; ULONG Len, cnt;
if (Length > sizeof(PCI_COMMON_CONFIG)) Length = sizeof(PCI_COMMON_CONFIG);
Len = 0; PciData = (PPCI_COMMON_CONFIG)iBuffer; PciData2 = (PPCI_COMMON_CONFIG)iBuffer2;
if (Offset >= PCI_COMMON_HDR_LENGTH) { //
// The user did not request any data from the common
// header. Verify the PCI device exists, then continue in
// the device specific area.
//
HalpReadPCIConfig(BusHandler, Slot, PciData, 0, sizeof(ULONG));
if (PciData->VendorID == PCI_INVALID_VENDORID) return(0);
} else {
//
// Caller requested to set at least some data within the
// common header.
//
Len = PCI_COMMON_HDR_LENGTH; HalpReadPCIConfig(BusHandler, Slot, PciData, 0, Len);
//
// return error if no device or header type unknown
//
if (PciData->VendorID == PCI_INVALID_VENDORID || PCI_CONFIG_TYPE(PciData) != PCI_DEVICE_TYPE) return(0);
//
// Set this device as configured
//
BusData = (PPCIPBUSDATA)BusHandler->BusData; #if DBG1
cnt = PciBitIndex(Slot.u.bits.DeviceNumber, Slot.u.bits.FunctionNumber); RtlSetBits(&BusData->DeviceConfigured, cnt, 1); #endif
//
// Copy COMMON_HDR values to buffer2, then overlay callers changes.
//
RtlMoveMemory(iBuffer2, iBuffer, Len); BusData->CommonData.Pin2Line(BusHandler, RootHandler, Slot, PciData2);
Len -= Offset; if (Len > Length) Len = Length;
RtlMoveMemory(iBuffer2+Offset, Buffer, Len);
//
// in case interrupt line or pin was edited
//
BusData->CommonData.Line2Pin(BusHandler, RootHandler, Slot, PciData2, PciData);
#if DBG1
//
// Verify R/O fields haven't changed
//
if (PciData2->VendorID != PciData->VendorID || PciData2->DeviceID != PciData->DeviceID || PciData2->RevisionID != PciData->RevisionID || PciData2->ProgIf != PciData->ProgIf || PciData2->SubClass != PciData->SubClass || PciData2->BaseClass != PciData->BaseClass || PciData2->HeaderType != PciData->HeaderType || PciData2->BaseClass != PciData->BaseClass || PciData2->u.type0.MinimumGrant != PciData->u.type0.MinimumGrant || PciData2->u.type0.MaximumLatency != PciData->u.type0.MaximumLatency) { HalDebugPrint(( HAL_INFO, "HAL: PCI SetBusData - Read-Only configuration value changed\n" )); } #endif
//
// Set new PCI configuration
//
HalpWritePCIConfig(BusHandler, Slot, iBuffer2+Offset, Offset, Len);
Offset += Len; Buffer += Len; Length -= Len; }
if (Length) { if (Offset >= PCI_COMMON_HDR_LENGTH) { //
// The remaining Buffer comes from the Device Specific
// area - put on the kitten gloves and write it
//
// Specific read/writes to the PCI device specific area
// are guarenteed:
//
// Not to read/write any byte outside the area specified
// by the caller. (this may cause WORD or BYTE references
// to the area in order to read the non-dword aligned
// ends of the request)
//
// To use a WORD access if the requested length is exactly
// a WORD long.
//
// To use a BYTE access if the requested length is exactly
// a BYTE long.
//
HalpWritePCIConfig(BusHandler, Slot, Buffer, Offset, Length); Len += Length; } }
return(Len); }
NTSTATUS HalpAssignPCISlotResources( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PUNICODE_STRING RegistryPath, IN PUNICODE_STRING DriverClassName OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDEVICE_OBJECT DeviceObject OPTIONAL, IN ULONG Slot, IN OUT PCM_RESOURCE_LIST *pAllocatedResources ) /*++
Routine Description:
Reads the targeted device to determine it's required resources. Calls IoAssignResources to allocate them. Sets the targeted device with it's assigned resoruces and returns the assignments to the caller.
Note: This function assumes all of a PCI "slots" resources as indicated by it's configuration space are REQUIRED.
Arguments:
Return Value:
STATUS_SUCCESS or error
--*/ { NTSTATUS status; PUCHAR WorkingPool; PPCI_COMMON_CONFIG PciData, PciOrigData, PciData2; PCI_SLOT_NUMBER PciSlot; PPCIPBUSDATA BusData; PIO_RESOURCE_REQUIREMENTS_LIST CompleteList; PIO_RESOURCE_DESCRIPTOR Descriptor; PCM_PARTIAL_RESOURCE_DESCRIPTOR CmDescriptor; ULONG BusNumber; ULONG i, j, m, length, memtype; ULONG NoBaseAddress, RomIndex, Option; PULONG BaseAddress[PCI_TYPE0_ADDRESSES + 1]; PULONG OrigAddress[PCI_TYPE0_ADDRESSES + 1]; BOOLEAN Match, EnableRomBase, RequestedInterrupt;
*pAllocatedResources = NULL; PciSlot = *((PPCI_SLOT_NUMBER) &Slot); BusNumber = BusHandler->BusNumber; BusData = (PPCIPBUSDATA) BusHandler->BusData;
//
// Allocate some pool for working space
//
i = sizeof(IO_RESOURCE_REQUIREMENTS_LIST) + sizeof(IO_RESOURCE_DESCRIPTOR) * (PCI_TYPE0_ADDRESSES + 2) * 2 + PCI_COMMON_HDR_LENGTH * 3;
WorkingPool = (PUCHAR)ExAllocatePool(PagedPool, i); if (!WorkingPool) return(STATUS_INSUFFICIENT_RESOURCES);
//
// Zero initialize pool, and get pointers into memory
//
RtlZeroMemory(WorkingPool, i); CompleteList = (PIO_RESOURCE_REQUIREMENTS_LIST)WorkingPool; PciData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 3); PciData2 = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 2); PciOrigData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 1);
//
// Read the PCI device's configuration
//
HalpReadPCIConfig(BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); if (PciData->VendorID == PCI_INVALID_VENDORID) { ExFreePool(WorkingPool); return(STATUS_NO_SUCH_DEVICE); }
//
// For now since there's not PnP support in the OS, if the BIOS hasn't
// enable a VGA device don't allow it to get enabled via this interface.
//
if ((PciData->BaseClass == 0 && PciData->SubClass == 1) || (PciData->BaseClass == 3 && PciData->SubClass == 0)) {
if ((PciData->Command & (PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE)) == 0) { ExFreePool (WorkingPool); return(STATUS_DEVICE_NOT_CONNECTED); } }
//
// Make a copy of the device's current settings
//
RtlMoveMemory(PciOrigData, PciData, PCI_COMMON_HDR_LENGTH);
//
// Initialize base addresses base on configuration data type
//
switch (PCI_CONFIG_TYPE(PciData)) { case 0 : NoBaseAddress = PCI_TYPE0_ADDRESSES+1; for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { BaseAddress[j] = &PciData->u.type0.BaseAddresses[j]; OrigAddress[j] = &PciOrigData->u.type0.BaseAddresses[j]; } BaseAddress[j] = &PciData->u.type0.ROMBaseAddress; OrigAddress[j] = &PciOrigData->u.type0.ROMBaseAddress; RomIndex = j; break;
case 1: NoBaseAddress = PCI_TYPE1_ADDRESSES+1; for (j=0; j < PCI_TYPE1_ADDRESSES; j++) { BaseAddress[j] = &PciData->u.type1.BaseAddresses[j]; OrigAddress[j] = &PciOrigData->u.type1.BaseAddresses[j]; } BaseAddress[j] = &PciData->u.type1.ROMBaseAddress; OrigAddress[j] = &PciOrigData->u.type1.ROMBaseAddress; RomIndex = j; break;
default: ExFreePool (WorkingPool); return(STATUS_NO_SUCH_DEVICE); }
//
// If the BIOS doesn't have the device's ROM enabled, then we won't enable
// it either. Remove it from the list.
//
EnableRomBase = TRUE; if (!(*BaseAddress[RomIndex] & PCI_ROMADDRESS_ENABLED)) { ASSERT (RomIndex+1 == NoBaseAddress); EnableRomBase = FALSE; NoBaseAddress -= 1; }
//
// Set resources to all bits on to see what type of resources are required.
//
for (j=0; j < NoBaseAddress; j++) *BaseAddress[j] = 0xFFFFFFFF;
PciData->Command &= ~(PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE); *BaseAddress[RomIndex] &= ~PCI_ROMADDRESS_ENABLED; HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); HalpReadPCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
//
// note type0 & type1 overlay ROMBaseAddress, InterruptPin, and InterruptLine
//
BusData->CommonData.Pin2Line (BusHandler, RootHandler, PciSlot, PciData);
//
// Build an IO_RESOURCE_REQUIREMENTS_LIST for the PCI device
//
CompleteList->InterfaceType = PCIBus; CompleteList->BusNumber = BusNumber; CompleteList->SlotNumber = Slot; CompleteList->AlternativeLists = 1;
CompleteList->List[0].Version = 1; CompleteList->List[0].Revision = 1;
Descriptor = CompleteList->List[0].Descriptors;
//
// If PCI device has an interrupt resource, add it
//
RequestedInterrupt = FALSE; if (PciData->u.type0.InterruptPin && PciData->u.type0.InterruptLine != (0 ^ IRQXOR) && PciData->u.type0.InterruptLine != (0xFF ^ IRQXOR)) {
RequestedInterrupt = TRUE; CompleteList->List[0].Count++;
Descriptor->Option = 0; Descriptor->Type = CmResourceTypeInterrupt; Descriptor->ShareDisposition = CmResourceShareShared; Descriptor->Flags = CM_RESOURCE_INTERRUPT_LEVEL_SENSITIVE;
// Fill in any vector here - we'll pick it back up in
// HalAdjustResourceList and adjust it to it's allowed settings
Descriptor->u.Interrupt.MinimumVector = 0; Descriptor->u.Interrupt.MaximumVector = 0xff; Descriptor++; }
//
// Add a memory/port resoruce for each PCI resource
//
// Clear ROM reserved bits
*BaseAddress[RomIndex] &= ~0x7FF;
for (j=0; j < NoBaseAddress; j++) { if (*BaseAddress[j]) { i = *BaseAddress[j];
//
// scan for first set bit, that's the length & alignment
//
length = 1 << (i & PCI_ADDRESS_IO_SPACE ? 2 : 4); while (!(i & length) && length) length <<= 1;
//
// scan for last set bit, that's the maxaddress + 1
//
for (m = length; i & m; m <<= 1) ; m--;
//
// check for hosed PCI configuration requirements
//
if (length & ~m) { #if DBG
HalDebugPrint(( HAL_INFO, "HAL: PCI - defective device! Bus %d, Slot %d, Function %d\n", BusNumber, PciSlot.u.bits.DeviceNumber, PciSlot.u.bits.FunctionNumber ));
HalDebugPrint(( HAL_INFO, "HAL: PCI - BaseAddress[%d] = %08lx\n", j, i )); #endif
//
// The device is in error - punt. don't allow this
// resource any option - it either gets set to whatever
// bits it was able to return, or it doesn't get set.
//
if (i & PCI_ADDRESS_IO_SPACE) { m = i & ~0x3; Descriptor->u.Port.MinimumAddress.LowPart = m; } else { m = i & ~0xf; Descriptor->u.Memory.MinimumAddress.LowPart = m; }
m += length; // max address is min address + length
}
//
// Add requested resource
//
Descriptor->Option = 0; if (i & PCI_ADDRESS_IO_SPACE) { memtype = 0;
if (!Is64BitBaseAddress(i) && PciOrigData->Command & PCI_ENABLE_IO_SPACE) {
//
// The IO range is/was already enabled at some location, add that
// as it's preferred setting.
//
Descriptor->Type = CmResourceTypePort; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Flags = CM_RESOURCE_PORT_IO; Descriptor->Option = IO_RESOURCE_PREFERRED;
Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0x3; Descriptor->u.Port.MaximumAddress.LowPart = Descriptor->u.Port.MinimumAddress.LowPart + length - 1;
CompleteList->List[0].Count++; Descriptor++;
Descriptor->Option = IO_RESOURCE_ALTERNATIVE; }
//
// Add this IO range
//
Descriptor->Type = CmResourceTypePort; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Flags = CM_RESOURCE_PORT_IO;
Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MaximumAddress.LowPart = m;
} else {
memtype = i & PCI_ADDRESS_MEMORY_TYPE_MASK;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE; if (j == RomIndex) { // this is a ROM address
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_ONLY; }
if (i & PCI_ADDRESS_MEMORY_PREFETCHABLE) { Descriptor->Flags |= CM_RESOURCE_MEMORY_PREFETCHABLE; }
if (!Is64BitBaseAddress(i) && (j == RomIndex || PciOrigData->Command & PCI_ENABLE_MEMORY_SPACE)) {
//
// The memory range is/was already enabled at some location, add that
// as it's preferred setting.
//
Descriptor->Type = CmResourceTypeMemory; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Option = IO_RESOURCE_PREFERRED;
Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0xF; Descriptor->u.Port.MaximumAddress.LowPart = Descriptor->u.Port.MinimumAddress.LowPart + length - 1;
CompleteList->List[0].Count++; Descriptor++;
Descriptor->Flags = Descriptor[-1].Flags; Descriptor->Option = IO_RESOURCE_ALTERNATIVE; }
//
// Add this memory range
//
Descriptor->Type = CmResourceTypeMemory; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive;
Descriptor->u.Memory.Length = length; Descriptor->u.Memory.Alignment = length; Descriptor->u.Memory.MaximumAddress.LowPart = m;
if (memtype == PCI_TYPE_20BIT && m > 0xFFFFF) { // limit to 20 bit address
Descriptor->u.Memory.MaximumAddress.LowPart = 0xFFFFF; } }
CompleteList->List[0].Count++; Descriptor++;
if (Is64BitBaseAddress(i)) { //
// Eventually we may want to do some work here for 64-bit
// configs...
//
// skip upper half of 64 bit address since this processor
// only supports 32 bits of address space
//
j++; } } }
CompleteList->ListSize = (ULONG) ((PUCHAR) Descriptor - (PUCHAR) CompleteList);
//
// Restore the device settings as we found them, enable memory
// and io decode after setting base addresses. This is done in
// case HalAdjustResourceList wants to read the current settings
// in the device.
//
HalpWritePCIConfig ( BusHandler, PciSlot, &PciOrigData->Status, FIELD_OFFSET (PCI_COMMON_CONFIG, Status), PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status) );
HalpWritePCIConfig ( BusHandler, PciSlot, PciOrigData, 0, FIELD_OFFSET (PCI_COMMON_CONFIG, Status) );
//
// Have the IO system allocate resource assignments
//
status = IoAssignResources ( RegistryPath, DriverClassName, DriverObject, DeviceObject, CompleteList, pAllocatedResources );
if (!NT_SUCCESS(status)) { goto CleanUp; }
//
// Slurp the assigments back into the PciData structure and perform them
//
CmDescriptor = (*pAllocatedResources)->List[0].PartialResourceList.PartialDescriptors;
//
// If PCI device has an interrupt resource then that was passed in as the
// first requested resource
//
if (RequestedInterrupt) { PciData->u.type0.InterruptLine = (UCHAR) CmDescriptor->u.Interrupt.Vector; BusData->CommonData.Line2Pin (BusHandler, RootHandler, PciSlot, PciData, PciOrigData); CmDescriptor++; }
//
// Pull out resources in the order they were passed to IoAssignResources
//
for (j=0; j < NoBaseAddress; j++) { i = *BaseAddress[j]; if (i) { if (i & PCI_ADDRESS_IO_SPACE) { *BaseAddress[j] = CmDescriptor->u.Port.Start.LowPart; } else { *BaseAddress[j] = CmDescriptor->u.Memory.Start.LowPart; } CmDescriptor++; }
if (Is64BitBaseAddress(i)) { // skip upper 32 bits
j++; } }
//
// Turn off decodes, then set new addresses
//
HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
//
// Read configuration back and verify address settings took
//
HalpReadPCIConfig(BusHandler, PciSlot, PciData2, 0, PCI_COMMON_HDR_LENGTH);
Match = TRUE; if (PciData->u.type0.InterruptLine != PciData2->u.type0.InterruptLine || PciData->u.type0.InterruptPin != PciData2->u.type0.InterruptPin || PciData->u.type0.ROMBaseAddress != PciData2->u.type0.ROMBaseAddress) { Match = FALSE; }
for (j=0; j < NoBaseAddress; j++) { if (*BaseAddress[j]) { if (*BaseAddress[j] & PCI_ADDRESS_IO_SPACE) { i = (ULONG) ~0x3; } else { i = (ULONG) ~0xF; }
if (( (*BaseAddress[j]) & i) != (*((PULONG) ((PUCHAR) BaseAddress[j] - (PUCHAR) PciData + (PUCHAR) PciData2)) & i)) {
Match = FALSE; }
if (Is64BitBaseAddress(*BaseAddress[j])) { //
// Eventually we may want to do something with the upper
// 32 bits
//
j++; } } }
if (!Match) { HalDebugPrint(( HAL_INFO, "HAL: PCI - defective device! Bus %d, Slot %d, Function %d\n", BusNumber, PciSlot.u.bits.DeviceNumber, PciSlot.u.bits.FunctionNumber )); status = STATUS_DEVICE_PROTOCOL_ERROR; goto CleanUp; }
//
// Settings took - turn on the appropiate decodes
//
if (EnableRomBase && *BaseAddress[RomIndex]) {
//
// A rom address was allocated and should be enabled
//
*BaseAddress[RomIndex] |= PCI_ROMADDRESS_ENABLED; HalpWritePCIConfig( BusHandler, PciSlot, BaseAddress[RomIndex], (ULONG) ((PUCHAR) BaseAddress[RomIndex] - (PUCHAR) PciData), sizeof (ULONG) ); }
//
// Enable IO, Memory, and BUS_MASTER decodes
// (use HalSetBusData since valid settings now set)
//
PciData->Command |= PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE | PCI_ENABLE_BUS_MASTER;
HalSetBusDataByOffset( PCIConfiguration, BusHandler->BusNumber, PciSlot.u.AsULONG, &PciData->Command, FIELD_OFFSET (PCI_COMMON_CONFIG, Command), sizeof (PciData->Command) );
CleanUp: if (!NT_SUCCESS(status)) {
//
// Failure, if there are any allocated resources free them
//
if (*pAllocatedResources) { IoAssignResources( RegistryPath, DriverClassName, DriverObject, DeviceObject, NULL, NULL );
ExFreePool(*pAllocatedResources); *pAllocatedResources = NULL; }
//
// Restore the device settings as we found them, enable memory
// and io decode after setting base addresses
//
HalpWritePCIConfig( BusHandler, PciSlot, &PciOrigData->Status, FIELD_OFFSET(PCI_COMMON_CONFIG, Status), PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status) );
HalpWritePCIConfig( BusHandler, PciSlot, PciOrigData, 0, FIELD_OFFSET(PCI_COMMON_CONFIG, Status) ); }
ExFreePool(WorkingPool); return(status); }
BOOLEAN HalpValidPCISlot( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ) /*++
Routine Description:
The function validates the information specifying a PCI "slot".
Arguments:
BusHandler - An encapsulation of data and manipulation functions specific to this bus.
Slot - A PCI "slot" description (ie bus number, device number and function number.)
Return Value:
Returns TRUE if "slot" valid, otherwise FALSE.
--*/
{ PCI_SLOT_NUMBER Slot2; PPCIPBUSDATA BusData; UCHAR HeaderType; ULONG i;
BusData = (PPCIPBUSDATA)BusHandler->BusData;
if (Slot.u.bits.Reserved != 0) return(FALSE);
if (Slot.u.bits.DeviceNumber >= BusData->MaxDevice) return(FALSE);
if (Slot.u.bits.FunctionNumber == 0) return(TRUE);
//
// Read DeviceNumber, Function zero, to determine if the
// PCI supports multifunction devices
//
Slot.u.bits.FunctionNumber = 0;
HalpPCIConfig( BusHandler, Slot, &HeaderType, FIELD_OFFSET(PCI_COMMON_CONFIG, HeaderType), sizeof(UCHAR), PCI_READ );
//
// FALSE if this device doesn't exist or doesn't support MULTIFUNCTION types
//
if (!(HeaderType & PCI_MULTIFUNCTION) || HeaderType == 0xFF) return(FALSE);
return(TRUE); }
//
// This table is used to determine correct access size to PCI configuration
// space given (offset % 4) and (length % 4).
//
// usage: PCIDeref[offset%4][length%4];
//
// Key:
// 4 - implies a ULONG access and is the number of bytes returned
// 1 - implies a UCHAR access and is the number of bytes returned
// 2 - implies a USHORT access and is the number of bytes returned
//
UCHAR PCIDeref[4][4] = {{4,1,2,2}, {1,1,1,1}, {2,1,2,2}, {1,1,1,1}}; #define SIZEOF_PARTIAL_INFO_HEADER FIELD_OFFSET(KEY_VALUE_PARTIAL_INFORMATION, Data)
VOID HalpPCIConfig( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN OUT PUCHAR Buffer, IN ULONG Offset, IN ULONG Length, IN PCI_ACCESS_TYPE AccType ) { KIRQL Irql; ULONG Size; ULONG SALFunc; ULONG CfgAddr; ULONG WriteVal; SAL_PAL_RETURN_VALUES RetVals; SAL_STATUS Stat;
//
// Generate a PCI configuration address
//
CfgAddr = (BusHandler->BusNumber << 16) | (Slot.u.bits.DeviceNumber << 11) | (Slot.u.bits.FunctionNumber << 8);
//
// As an optimization we could have a separate spinlock for each
// host adapter
// SAL should do whatever locking required.
//
if (!HalpDoingCrashDump) { Irql = KeAcquireSpinLockRaiseToSynch(&HalpPCIConfigLock); }
while (Length) { Size = PCIDeref[Offset % sizeof(ULONG)][Length % sizeof(ULONG)];
//
// Set up input parameters
//
if (AccType == PCI_READ) { SALFunc = SAL_PCI_CONFIG_READ; WriteVal = 0; } else { switch (Size) { case 4: WriteVal = *((PULONG)Buffer); break; case 2: WriteVal = *((PUSHORT)Buffer); break; case 1: WriteVal = *Buffer; break; } SALFunc = SAL_PCI_CONFIG_WRITE; }
//
// Make SAL call
//
Stat = HalpSalCall(SALFunc, CfgAddr | Offset, Size, WriteVal, 0, 0, 0, 0, &RetVals);
//
// Retrieve SAL return data
//
if (AccType == PCI_READ) { switch (Size) { case 4: *((PULONG)Buffer) = (ULONG)RetVals.ReturnValues[1]; break; case 2: *((PUSHORT)Buffer) = (USHORT)RetVals.ReturnValues[1]; break; case 1: *Buffer = (UCHAR)RetVals.ReturnValues[1]; break; } }
Offset += Size; Buffer += Size; Length -= Size; }
//
// Release spinlock
//
if (!HalpDoingCrashDump) { KeReleaseSpinLock(&HalpPCIConfigLock, Irql); } }
VOID HalpReadPCIConfig( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, OUT PVOID Buffer, IN ULONG Offset, IN ULONG Length ) { //
// If request for an invalid slot, fill return buffer with -1
//
if (!HalpValidPCISlot(BusHandler, Slot)) { RtlFillMemory(Buffer, Length, (UCHAR)-1); return; }
HalpPCIConfig(BusHandler, Slot, Buffer, Offset, Length, PCI_READ); }
VOID HalpWritePCIConfig( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ) { //
// If request for an invalid slot, do nothing
//
if (!HalpValidPCISlot(BusHandler, Slot)) return;
HalpPCIConfig(BusHandler, Slot, Buffer, Offset, Length, PCI_WRITE); }
BOOLEAN HalpIsValidPCIDevice( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ) /*++
Routine Description:
Reads the device configuration data for the given slot and returns TRUE if the configuration data appears to be valid for a PCI device; otherwise returns FALSE.
Arguments:
BusHandler - Bus to check Slot - Slot to check
--*/
{ PPCI_COMMON_CONFIG PciData; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; ULONG i, j;
PciData = (PPCI_COMMON_CONFIG)iBuffer;
//
// Read device common header.
//
HalpReadPCIConfig(BusHandler, Slot, PciData, 0, PCI_COMMON_HDR_LENGTH);
//
// Valid device header?
//
if (PciData->VendorID == PCI_INVALID_VENDORID || PCI_CONFIG_TYPE(PciData) != PCI_DEVICE_TYPE) { return(FALSE); }
//
// Check fields for reasonable values.
//
//
// Do these values make sense for IA64
//
if ((PciData->u.type0.InterruptPin && PciData->u.type0.InterruptPin > 4) || (PciData->u.type0.InterruptLine & 0x70)) { return(FALSE); }
for (i=0; i < PCI_TYPE0_ADDRESSES; i++) { j = PciData->u.type0.BaseAddresses[i];
if (j & PCI_ADDRESS_IO_SPACE) { if (j > 0xffff) { // IO port > 64k?
return(FALSE); } } else { if (j > 0xf && j < 0x80000) { // Mem address < 0x8000h?
return(FALSE); } }
if (Is64BitBaseAddress(j)) i++; }
//
// Guess it's a valid device..
//
return(TRUE); }
#if !defined(NO_LEGACY_DRIVERS)
#if DBG
VOID HalpTestPci (ULONG flag2) { PCI_SLOT_NUMBER SlotNumber; PCI_COMMON_CONFIG PciData, OrigData; ULONG i, f, j, k, bus; BOOLEAN flag;
if (!flag2) { return ; }
DbgBreakPoint (); SlotNumber.u.bits.Reserved = 0;
//
// Read every possible PCI Device/Function and display it's
// default info.
//
// (note this destories it's current settings)
//
flag = TRUE; for (bus = 0; flag; bus++) {
for (i = 0; i < PCI_MAX_DEVICES; i++) { SlotNumber.u.bits.DeviceNumber = i;
for (f = 0; f < PCI_MAX_FUNCTION; f++) { SlotNumber.u.bits.FunctionNumber = f;
//
// Note: This is reading the DeviceSpecific area of
// the device's configuration - normally this should
// only be done on device for which the caller understands.
// I'm doing it here only for debugging.
//
j = HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) );
if (j == 0) { // out of buses
flag = FALSE; break; }
if (j < PCI_COMMON_HDR_LENGTH) { continue; }
HalSetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, 1 );
HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) );
HalDebugPrint(( HAL_INFO, "HAL: PCI Bus %d Slot %2d %2d ID:%04lx-%04lx Rev:%04lx", bus, i, f, PciData.VendorID, PciData.DeviceID, PciData.RevisionID ));
if (PciData.u.type0.InterruptPin) { HalDebugPrint(( HAL_INFO, " IntPin:%x", PciData.u.type0.InterruptPin )); }
if (PciData.u.type0.InterruptLine) { HalDebugPrint(( HAL_INFO, " IntLine:%x", PciData.u.type0.InterruptLine )); }
if (PciData.u.type0.ROMBaseAddress) { HalDebugPrint(( HAL_INFO, " ROM:%08lx", PciData.u.type0.ROMBaseAddress )); }
HalDebugPrint(( HAL_INFO, "\nHAL: Cmd:%04x Status:%04x ProgIf:%04x SubClass:%04x BaseClass:%04lx\n", PciData.Command, PciData.Status, PciData.ProgIf, PciData.SubClass, PciData.BaseClass ));
k = 0; for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { if (PciData.u.type0.BaseAddresses[j]) { HalDebugPrint(( HAL_INFO, " Ad%d:%08lx", j, PciData.u.type0.BaseAddresses[j] )); k = 1; } }
if (k) { HalDebugPrint(( HAL_INFO, "\n" )); }
if (PciData.VendorID == 0x8086) { // dump complete buffer
HalDebugPrint(( HAL_INFO, "HAL: Command %x, Status %x, BIST %x\n", PciData.Command, PciData.Status, PciData.BIST ));
HalDebugPrint(( HAL_INFO, "HAL: CacheLineSz %x, LatencyTimer %x", PciData.CacheLineSize, PciData.LatencyTimer ));
for (j=0; j < 192; j++) { if ((j & 0xf) == 0) { HalDebugPrint(( HAL_INFO, "\n%02x: ", j + 0x40 )); } HalDebugPrint(( HAL_INFO, "%02x ", PciData.DeviceSpecific[j] )); } HalDebugPrint(( HAL_INFO, "\n" )); }
//
// Next
//
if (k) { HalDebugPrint(( HAL_INFO, "\n\n" )); } } } } DbgBreakPoint (); }
#endif
#endif // NO_LEGACY_DRIVERS
//------------------------------------------------------------------------------
PPCI_REGISTRY_INFO_INTERNAL HalpQueryPciRegistryInfo ( VOID ) /*++
Routine Description:
Reads information from the registry concerning PCI, including the number of buses and the hardware access mechanism.
Arguments:
None.
Returns:
Buffer that must be freed by the caller, NULL if insufficient memory exists to complete the request, or the information cannot be located.
--*/ { PPCI_REGISTRY_INFO_INTERNAL PCIRegInfo = NULL; PPCI_REGISTRY_INFO PCIRegInfoHeader = NULL; UNICODE_STRING unicodeString, ConfigName, IdentName; HANDLE hMFunc, hBus, hCardList; OBJECT_ATTRIBUTES objectAttributes; NTSTATUS status; static UCHAR buffer [sizeof(PPCI_REGISTRY_INFO) + 99]; PWSTR p; WCHAR wstr[8]; ULONG i, junk; ULONG cardListIndex, cardCount, cardMax; PKEY_VALUE_FULL_INFORMATION ValueInfo; PCM_FULL_RESOURCE_DESCRIPTOR Desc; PCM_PARTIAL_RESOURCE_DESCRIPTOR PDesc; UCHAR partialInfo[SIZEOF_PARTIAL_INFO_HEADER + sizeof(PCI_CARD_DESCRIPTOR)]; PKEY_VALUE_PARTIAL_INFORMATION partialInfoHeader; KEY_FULL_INFORMATION keyFullInfo;
//
// Search the hardware description looking for any reported
// PCI bus. The first ARC entry for a PCI bus will contain
// the PCI_REGISTRY_INFO.
RtlInitUnicodeString (&unicodeString, rgzMultiFunctionAdapter); InitializeObjectAttributes ( &objectAttributes, &unicodeString, OBJ_CASE_INSENSITIVE, NULL, // handle
NULL);
status = ZwOpenKey (&hMFunc, KEY_READ, &objectAttributes); if (!NT_SUCCESS(status)) { return NULL; }
unicodeString.Buffer = wstr; unicodeString.MaximumLength = sizeof (wstr);
RtlInitUnicodeString (&ConfigName, rgzConfigurationData); RtlInitUnicodeString (&IdentName, rgzIdentifier);
ValueInfo = (PKEY_VALUE_FULL_INFORMATION) buffer;
for (i=0; TRUE; i++) { RtlIntegerToUnicodeString (i, 10, &unicodeString); InitializeObjectAttributes ( &objectAttributes, &unicodeString, OBJ_CASE_INSENSITIVE, hMFunc, NULL);
status = ZwOpenKey (&hBus, KEY_READ, &objectAttributes); if (!NT_SUCCESS(status)) { //
// Out of Multifunction adapter entries...
//
ZwClose (hMFunc); return NULL; }
//
// Check the Identifier to see if this is a PCI entry
//
status = ZwQueryValueKey ( hBus, &IdentName, KeyValueFullInformation, ValueInfo, sizeof (buffer), &junk );
if (!NT_SUCCESS (status)) { ZwClose (hBus); continue; }
p = (PWSTR) ((PUCHAR) ValueInfo + ValueInfo->DataOffset); if (p[0] != L'P' || p[1] != L'C' || p[2] != L'I' || p[3] != 0) { ZwClose (hBus); continue; }
//
// The first PCI entry has the PCI_REGISTRY_INFO structure
// attached to it.
//
status = ZwQueryValueKey ( hBus, &ConfigName, KeyValueFullInformation, ValueInfo, sizeof (buffer), &junk );
ZwClose (hBus); if (!NT_SUCCESS(status)) { continue ; }
Desc = (PCM_FULL_RESOURCE_DESCRIPTOR) ((PUCHAR) ValueInfo + ValueInfo->DataOffset); PDesc = (PCM_PARTIAL_RESOURCE_DESCRIPTOR) ((PUCHAR) Desc->PartialResourceList.PartialDescriptors);
if (PDesc->Type == CmResourceTypeDeviceSpecific) {
// got it..
PCIRegInfoHeader = (PPCI_REGISTRY_INFO) (PDesc+1); break; } }
if (!PCIRegInfoHeader) {
return NULL; }
//
// Retrieve the list of interesting cards.
//
RtlInitUnicodeString (&unicodeString, rgzPCICardList); InitializeObjectAttributes ( &objectAttributes, &unicodeString, OBJ_CASE_INSENSITIVE, NULL, // handle
NULL );
status = ZwOpenKey (&hCardList, KEY_READ, &objectAttributes); if (NT_SUCCESS(status)) {
status = ZwQueryKey( hCardList, KeyFullInformation, &keyFullInfo, sizeof(keyFullInfo), &junk );
if ( NT_SUCCESS(status) ) {
cardMax = keyFullInfo.Values;
PCIRegInfo = (PPCI_REGISTRY_INFO_INTERNAL) ExAllocatePoolWithTag( NonPagedPool, sizeof(PCI_REGISTRY_INFO_INTERNAL) + cardMax * sizeof(PCI_CARD_DESCRIPTOR), HAL_POOL_TAG );
if (PCIRegInfo) {
//
// Now that we've allocated enough room, enumerate again.
//
partialInfoHeader = (PKEY_VALUE_PARTIAL_INFORMATION) partialInfo;
for(cardListIndex = cardCount = 0; cardListIndex < cardMax; cardListIndex++) {
status = ZwEnumerateValueKey( hCardList, cardListIndex, KeyValuePartialInformation, partialInfo, sizeof(partialInfo), &junk );
//
// Note that STATUS_NO_MORE_ENTRIES is a failure code
//
if (!NT_SUCCESS( status )) { break; }
if (partialInfoHeader->DataLength != sizeof(PCI_CARD_DESCRIPTOR)) {
continue; }
RtlCopyMemory( PCIRegInfo->CardList + cardCount, partialInfoHeader->Data, sizeof(PCI_CARD_DESCRIPTOR) );
cardCount++; } // next cardListIndex
}
} ZwClose (hCardList); }
if (!PCIRegInfo) {
PCIRegInfo = (PPCI_REGISTRY_INFO_INTERNAL) ExAllocatePoolWithTag( NonPagedPool, sizeof(PCI_REGISTRY_INFO_INTERNAL), HAL_POOL_TAG );
if (!PCIRegInfo) {
return NULL; }
cardCount = 0; }
RtlCopyMemory( PCIRegInfo, PCIRegInfoHeader, sizeof(PCI_REGISTRY_INFO) );
PCIRegInfo->ElementCount = cardCount;
return PCIRegInfo; }
|