|
|
/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
apcuser.c
Abstract:
This module implements the machine dependent code necessary to initialize a user mode APC.
Author:
David N. Cutler (davec) 23-Apr-1990
Environment:
Kernel mode only, IRQL APC_LEVEL.
Revision History:
--*/
#include "ki.h"
VOID KiInitializeUserApc ( IN PKEXCEPTION_FRAME ExceptionFrame, IN PKTRAP_FRAME TrapFrame, IN PKNORMAL_ROUTINE NormalRoutine, IN PVOID NormalContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2 )
/*++
Routine Description:
This function is called to initialize the context for a user mode APC.
Arguments:
ExceptionFrame - Supplies a pointer to an exception frame.
TrapFrame - Supplies a pointer to a trap frame.
NormalRoutine - Supplies a pointer to the user mode APC routine.
NormalContext - Supplies a pointer to the user context for the APC routine.
SystemArgument1 - Supplies the first system supplied value.
SystemArgument2 - Supplies the second system supplied value.
Return Value:
None.
--*/
{
EXCEPTION_RECORD ExceptionRecord; CONTEXT ContextFrame; LONG Length; ULONG UserStack;
//
// APCs are not defined for V86 mode; however, it is possible a
// thread is trying to set it's context to V86 mode - this isn't
// going to work, but we don't want to crash the system so we
// check for the possibility before hand.
//
if (TrapFrame->EFlags & EFLAGS_V86_MASK) { return ; }
//
// Move machine state from trap and exception frames to the context frame.
//
ContextFrame.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS; KeContextFromKframes(TrapFrame, ExceptionFrame, &ContextFrame);
//
// Transfer the context information to the user stack, initialize the
// APC routine parameters, and modify the trap frame so execution will
// continue in user mode at the user mode APC dispatch routine.
//
try { ASSERT((TrapFrame->SegCs & MODE_MASK) != KernelMode); // Assert usermode frame
//
// Compute length of context record and new aligned user stack pointer.
//
Length = ((sizeof(CONTEXT) + CONTEXT_ROUND) & ~CONTEXT_ROUND) + sizeof(KAPC_RECORD); UserStack = (ContextFrame.Esp & ~CONTEXT_ROUND) - Length;
//
// Probe user stack area for writability and then transfer the
// context record to the user stack.
//
ProbeForWrite((PCHAR)UserStack, Length, CONTEXT_ALIGN); RtlCopyMemory((PULONG)(UserStack + (sizeof(KAPC_RECORD))), &ContextFrame, sizeof(CONTEXT));
//
// Force correct R3 selectors into TrapFrame.
//
TrapFrame->SegCs = SANITIZE_SEG(KGDT_R3_CODE, UserMode); TrapFrame->HardwareSegSs = SANITIZE_SEG(KGDT_R3_DATA, UserMode); TrapFrame->SegDs = SANITIZE_SEG(KGDT_R3_DATA, UserMode); TrapFrame->SegEs = SANITIZE_SEG(KGDT_R3_DATA, UserMode); TrapFrame->SegFs = SANITIZE_SEG(KGDT_R3_TEB, UserMode); TrapFrame->SegGs = 0; TrapFrame->EFlags = SANITIZE_FLAGS( ContextFrame.EFlags, UserMode );
//
// If thread is supposed to have IOPL, then force it on in eflags
//
if (KeGetCurrentThread()->Iopl) { TrapFrame->EFlags |= (EFLAGS_IOPL_MASK & -1); // IOPL = 3
}
//
// Set the address of the user APC routine, the APC parameters, the
// new frame pointer, and the new stack pointer in the current trap
// frame. Set the continuation address so control will be transferred
// to the user APC dispatcher.
//
TrapFrame->HardwareEsp = UserStack; TrapFrame->Eip = (ULONG)KeUserApcDispatcher; TrapFrame->ErrCode = 0; *((PULONG)UserStack)++ = (ULONG)NormalRoutine; *((PULONG)UserStack)++ = (ULONG)NormalContext; *((PULONG)UserStack)++ = (ULONG)SystemArgument1; *((PULONG)UserStack)++ = (ULONG)SystemArgument2; } except (KiCopyInformation(&ExceptionRecord, (GetExceptionInformation())->ExceptionRecord)) {
//
// Set the address of the exception to the current program address
// and raise the exception by calling the exception dispatcher.
//
ExceptionRecord.ExceptionAddress = (PVOID)(TrapFrame->Eip); KiDispatchException(&ExceptionRecord, ExceptionFrame, TrapFrame, UserMode, TRUE); } return; }
|