|
|
/*++
Copyright (c) 1989-1992 Microsoft Corporation
Module Name:
miscc.c
Abstract:
This module implements machine independent miscellaneous kernel functions.
Author:
David N. Cutler (davec) 13-May-1989
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#pragma alloc_text(PAGE, KeAddSystemServiceTable)
#pragma alloc_text(PAGE, KeRemoveSystemServiceTable)
#pragma alloc_text(PAGE, KeSetTimeUpdateNotifyRoutine)
#pragma alloc_text(PAGE, KeQueryActiveProcessors)
#pragma alloc_text(PAGELK, KiCalibrateTimeAdjustment)
#undef KeEnterCriticalRegion
VOID KeEnterCriticalRegion ( VOID )
/*++
Routine Description:
This function disables kernel APC's.
N.B. The following code does not require any interlocks. There are two cases of interest: 1) On an MP system, the thread cannot be running on two processors as once, and 2) if the thread is is interrupted to deliver a kernel mode APC which also calls this routine, the values read and stored will stack and unstack properly.
Arguments:
None.
Return Value:
None.
--*/
{ //
// Simply directly disable kernel APCs.
//
KeGetCurrentThread()->KernelApcDisable -= 1; return; }
#undef KeLeaveCriticalRegion
VOID KeLeaveCriticalRegion ( VOID )
/*++
Routine Description:
This function enables kernel APC's and requests an APC interrupt if appropriate.
Arguments:
None.
Return Value:
None.
--*/
{
//
// Increment the kernel APC disable count. If the resultant count is
// zero and the thread's kernel APC List is not empty, then request an
// APC interrupt.
//
// For multiprocessor performance, the following code utilizes the fact
// that queuing an APC is done by first queuing the APC, then checking
// the AST disable count. The following code increments the disable
// count first, checks to determine if it is zero, and then checks the
// kernel AST queue.
//
// See also KiInsertQueueApc().
//
KiLeaveCriticalRegion(); return; }
ULONGLONG KeQueryInterruptTime ( VOID )
/*++
Routine Description:
This function returns the current interrupt time by determining when the time is stable and then returning its value.
Arguments:
CurrentTime - Supplies a pointer to a variable that will receive the current system time.
Return Value:
None.
--*/
{
LARGE_INTEGER CurrentTime;
KiQueryInterruptTime(&CurrentTime); return CurrentTime.QuadPart; }
VOID KeQuerySystemTime ( OUT PLARGE_INTEGER CurrentTime )
/*++
Routine Description:
This function returns the current system time by determining when the time is stable and then returning its value.
Arguments:
CurrentTime - Supplies a pointer to a variable that will receive the current system time.
Return Value:
None.
--*/
{
KiQuerySystemTime(CurrentTime); return; }
VOID KeQueryTickCount ( OUT PLARGE_INTEGER CurrentCount )
/*++
Routine Description:
This function returns the current tick count by determining when the count is stable and then returning its value.
Arguments:
CurrentCount - Supplies a pointer to a variable that will receive the current tick count.
Return Value:
None.
--*/
{
KiQueryTickCount(CurrentCount); return; }
ULONG KeQueryTimeIncrement ( VOID )
/*++
Routine Description:
This function returns the time increment value in 100ns units. This is the value that is added to the system time at each interval clock interrupt.
Arguments:
None.
Return Value:
The time increment value is returned as the function value.
--*/
{
return KeMaximumIncrement; }
VOID KeEnableInterrupts ( IN BOOLEAN Enable )
/*++
Routine Description:
This function enables interrupts based on the specified enable state.
Arguments:
Enable - Supplies a boolean value that determines whether interrupts are to be enabled.
Return Value:
None.
--*/
{
if (Enable != FALSE) { _enable(); }
return; }
VOID KeSetDmaIoCoherency ( IN ULONG Attributes )
/*++
Routine Description:
This function sets (enables/disables) DMA I/O coherency with data caches.
Arguments:
Attributes - Supplies the set of DMA I/O coherency attributes for the host system.
Return Value:
None.
--*/
{
KiDmaIoCoherency = Attributes; }
#if defined(_AMD64_) || defined(_X86_)
#pragma alloc_text(INIT, KeSetProfileIrql)
VOID KeSetProfileIrql ( IN KIRQL ProfileIrql )
/*++
Routine Description:
This function sets the profile IRQL.
N.B. There are only two valid values for the profile IRQL which are PROFILE_LEVEL and HIGH_LEVEL.
Arguments:
Irql - Supplies the synchronization IRQL value.
Return Value:
None.
--*/
{
ASSERT((ProfileIrql == PROFILE_LEVEL) || (ProfileIrql == HIGH_LEVEL));
KiProfileIrql = ProfileIrql; }
#endif
VOID KeSetSystemTime ( IN PLARGE_INTEGER NewTime, OUT PLARGE_INTEGER OldTime, IN BOOLEAN AdjustInterruptTime, IN PLARGE_INTEGER HalTimeToSet OPTIONAL )
/*++
Routine Description:
This function sets the system time to the specified value and updates timer queue entries to reflect the difference between the old system time and the new system time.
Arguments:
NewTime - Supplies a pointer to a variable that specifies the new system time.
OldTime - Supplies a pointer to a variable that will receive the previous system time.
AdjustInterruptTime - If TRUE the amount of time being adjusted is also applied to InterruptTime and TickCount.
HalTimeToSet - Supplies an optional time that if specified is to be used to set the time in the realtime clock.
Return Value:
None.
--*/
{
LIST_ENTRY AbsoluteListHead; LIST_ENTRY ExpiredListHead; ULONG Index; PLIST_ENTRY ListHead; PLIST_ENTRY NextEntry; KIRQL OldIrql1; KIRQL OldIrql2; LARGE_INTEGER TimeDelta; TIME_FIELDS TimeFields; PKTIMER Timer;
ASSERT((NewTime->HighPart & 0xf0000000) == 0);
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
//
// If a realtime clock value is specified, then convert the time value
// to time fields.
//
if (ARGUMENT_PRESENT(HalTimeToSet)) { RtlTimeToTimeFields(HalTimeToSet, &TimeFields); }
//
// Set affinity to the processor that keeps the system time, raise IRQL
// to dispatcher level and lock the dispatcher database, then raise IRQL
// to HIGH_LEVEL to synchronize with the clock interrupt routine.
//
KeSetSystemAffinityThread((KAFFINITY)1); KiLockDispatcherDatabase(&OldIrql1); KeRaiseIrql(HIGH_LEVEL, &OldIrql2);
//
// Save the previous system time, set the new system time, and set
// the realtime clock, if a time value is specified.
//
KiQuerySystemTime(OldTime); SharedUserData->SystemTime.High2Time = NewTime->HighPart; SharedUserData->SystemTime.LowPart = NewTime->LowPart; SharedUserData->SystemTime.High1Time = NewTime->HighPart;
if (ARGUMENT_PRESENT(HalTimeToSet)) { ExCmosClockIsSane = HalSetRealTimeClock(&TimeFields); }
//
// Compute the difference between the previous system time and the new
// system time.
//
TimeDelta.QuadPart = NewTime->QuadPart - OldTime->QuadPart;
//
// Update the boot time to reflect the delta. This keeps time based
// on boot time constant
//
KeBootTime.QuadPart = KeBootTime.QuadPart + TimeDelta.QuadPart;
//
// Track the overall bias applied to the boot time.
//
KeBootTimeBias = KeBootTimeBias + TimeDelta.QuadPart;
//
// Lower IRQL to dispatch level and if needed adjust the physical
// system interrupt time.
//
KeLowerIrql(OldIrql2); if (AdjustInterruptTime) {
//
// Adjust the physical time of the system
//
AdjustInterruptTime = KiAdjustInterruptTime (TimeDelta.QuadPart); }
//
// If the physical interrupt time of the system was not adjusted,
// recompute any absolute timers in the system for the new
// system time.
//
if (!AdjustInterruptTime) {
//
// Remove all absolute timers from the timer queue so their due time
// can be recomputed.
//
InitializeListHead(&AbsoluteListHead); for (Index = 0; Index < TIMER_TABLE_SIZE; Index += 1) { ListHead = &KiTimerTableListHead[Index]; NextEntry = ListHead->Flink; while (NextEntry != ListHead) { Timer = CONTAINING_RECORD(NextEntry, KTIMER, TimerListEntry); NextEntry = NextEntry->Flink; if (Timer->Header.Absolute != FALSE) { RemoveEntryList(&Timer->TimerListEntry); InsertTailList(&AbsoluteListHead, &Timer->TimerListEntry); } } }
//
// Recompute the due time and reinsert all absolute timers in the timer
// tree. If a timer has already expired, then insert the timer in the
// expired timer list.
//
InitializeListHead(&ExpiredListHead); while (AbsoluteListHead.Flink != &AbsoluteListHead) { Timer = CONTAINING_RECORD(AbsoluteListHead.Flink, KTIMER, TimerListEntry); KiRemoveTreeTimer(Timer); Timer->DueTime.QuadPart -= TimeDelta.QuadPart; if (KiReinsertTreeTimer(Timer, Timer->DueTime) == FALSE) { Timer->Header.Inserted = TRUE; InsertTailList(&ExpiredListHead, &Timer->TimerListEntry); } }
//
// If any of the attempts to reinsert a timer failed, then timers have
// already expired and must be processed.
//
// N.B. The following function returns with the dispatcher database
// unlocked.
//
KiTimerListExpire(&ExpiredListHead, OldIrql1);
} else {
KiUnlockDispatcherDatabase(OldIrql1);
}
//
// Set affinity back to its original value.
//
KeRevertToUserAffinityThread();
return; }
BOOLEAN KiAdjustInterruptTime ( IN LONGLONG TimeDelta )
/*++
Routine Description:
This function moves the physical interrupt time of the system foreward by the specified time delta after a system wake has occurred.
Arguments:
TimeDelta - Supplies the time delta to be added to the interrupt time, tick count and the perforamnce counter in 100ns units.
Return Value:
None.
--*/
{
ADJUST_INTERRUPT_TIME_CONTEXT Adjust;
//
// Time can only be moved forward.
//
if (TimeDelta < 0) { return FALSE;
} else { Adjust.KiNumber = KeNumberProcessors; Adjust.HalNumber = KeNumberProcessors; Adjust.Adjustment = (ULONGLONG) TimeDelta; Adjust.Barrier = 1; KiIpiGenericCall((PKIPI_BROADCAST_WORKER)KiCalibrateTimeAdjustment, (ULONG_PTR)(&Adjust));
return TRUE; } }
VOID KiCalibrateTimeAdjustment ( PADJUST_INTERRUPT_TIME_CONTEXT Adjust )
/*++
Routine Description:
Worker function to calibrate the adjustment of time on all processors.
Arguments:
Adjust - Supplies the operation context.
Return Value:
None.
--*/
{
BOOLEAN Enable; LARGE_INTEGER InterruptTime; LARGE_INTEGER SetTime; LARGE_INTEGER PerfFreq; ULARGE_INTEGER li; LARGE_INTEGER NewTickCount; ULONG NewTickOffset; ULONG cl, divisor; LARGE_INTEGER PerfCount;
//
// As each processor arrives, subtract one off the remaining processor
// count. If this is the last processor to arrive compute the time
// change, and signal all processor when to apply the performance
// counter change.
//
if (InterlockedDecrement((PLONG)&Adjust->KiNumber)) { Enable = KeDisableInterrupts();
//
// It is possible to deadlock here if one or more of the
// other processors gets and processes a freeze request
// while this processor has interrupts disabled. Poll
// for IPI_FREEZE requests until all processors are known
// to be in this code and hence wont be requesting a
// freeze.
//
do { KiPollFreezeExecution(); } while (Adjust->KiNumber != (ULONG)-1);
//
// Wait to perform the time set
//
while (Adjust->Barrier) ;
} else {
//
// Set timer expiration dpc to scan the timer queues once for any
// expired timers.
//
KeRemoveQueueDpc (&KiTimerExpireDpc); KeInsertQueueDpc (&KiTimerExpireDpc, (PVOID) TIMER_TABLE_SIZE, NULL);
//
// Disable interrupts and indicate that this processor is now
// in final portion of this code.
//
Enable = KeDisableInterrupts(); InterlockedDecrement((PLONG) &Adjust->KiNumber);
//
// Adjust Interrupt Time.
//
InterruptTime.QuadPart = KeQueryInterruptTime() + Adjust->Adjustment; SetTime.QuadPart = Adjust->Adjustment; //
// Get the current times
//
PerfCount = KeQueryPerformanceCounter (&PerfFreq);
//
// Compute performance counter for current SetTime
//
//
// Multiply SetTime * PerfCount and obtain 96bit result
// in cl, li.LowPart, li.HighPart. Then divide the 96bit
// result by 10,000,000 to get new performance counter value.
//
li.QuadPart = RtlEnlargedUnsignedMultiply ( (ULONG) SetTime.LowPart, (ULONG) PerfFreq.LowPart ).QuadPart;
cl = li.LowPart; li.QuadPart = li.HighPart + RtlEnlargedUnsignedMultiply ( (ULONG) SetTime.LowPart, (ULONG) PerfFreq.HighPart ).QuadPart;
li.QuadPart = li.QuadPart + RtlEnlargedUnsignedMultiply ( (ULONG) SetTime.HighPart, (ULONG) PerfFreq.LowPart ).QuadPart;
li.HighPart = li.HighPart + SetTime.HighPart * PerfFreq.HighPart;
divisor = 10000000; Adjust->NewCount.HighPart = RtlEnlargedUnsignedDivide ( li, divisor, &li.HighPart );
li.LowPart = cl; Adjust->NewCount.LowPart = RtlEnlargedUnsignedDivide ( li, divisor, NULL );
Adjust->NewCount.QuadPart += PerfCount.QuadPart;
//
// Compute tick count and tick offset for current InterruptTime
//
NewTickCount = RtlExtendedLargeIntegerDivide( InterruptTime, KeMaximumIncrement, &NewTickOffset );
//
// Apply changes to InterruptTime, TickCount, TickOffset, and the
// performance counter
//
KiTickOffset = KeMaximumIncrement - NewTickOffset; KeInterruptTimeBias += Adjust->Adjustment; SharedUserData->TickCountLow = NewTickCount.LowPart;
#if defined(_AMD64_) || defined(_IA64_)
KeTickCount = NewTickCount;
#else
KeTickCount.High2Time = NewTickCount.HighPart; KeTickCount.LowPart = NewTickCount.LowPart; KeTickCount.High1Time = NewTickCount.HighPart;
#endif
SharedUserData->InterruptTime.High2Time = InterruptTime.HighPart; SharedUserData->InterruptTime.LowPart = InterruptTime.LowPart; SharedUserData->InterruptTime.High1Time = InterruptTime.HighPart;
//
// Apply the performance counter change
//
Adjust->Barrier = 0; }
HalCalibratePerformanceCounter ( (LONG volatile *) &Adjust->HalNumber, (ULONGLONG) Adjust->NewCount.QuadPart );
KeEnableInterrupts(Enable); }
VOID KeSetTimeIncrement ( IN ULONG MaximumIncrement, IN ULONG MinimumIncrement )
/*++
Routine Description:
This function sets the time increment value in 100ns units. This value is added to the system time at each interval clock interrupt.
Arguments:
MaximumIncrement - Supplies the maximum time between clock interrupts in 100ns units supported by the host HAL.
MinimumIncrement - Supplies the minimum time between clock interrupts in 100ns units supported by the host HAL.
Return Value:
None.
--*/
{
KeMaximumIncrement = MaximumIncrement; KeMinimumIncrement = max(MinimumIncrement, 10 * 1000); KeTimeAdjustment = MaximumIncrement; KeTimeIncrement = MaximumIncrement; KiTickOffset = MaximumIncrement; }
BOOLEAN KeAddSystemServiceTable( IN PULONG_PTR Base, IN PULONG Count OPTIONAL, IN ULONG Limit, IN PUCHAR Number, IN ULONG Index )
/*++
Routine Description:
This function allows the caller to add a system service table to the system
Arguments:
Base - Supplies the address of the system service table dispatch table.
Count - Supplies an optional pointer to a table of per system service counters.
Limit - Supplies the limit of the service table. Services greater than or equal to this limit will fail.
Arguments - Supplies the address of the argument count table.
Index - Supplies index of the service table.
Return Value:
TRUE - The operation was successful.
FALSE - the operation failed. A service table is already bound to the specified location, or the specified index is larger than the maximum allowed index.
--*/
{
PAGED_CODE();
//
// If a system service table is already defined for the specified
// index, then return FALSE. Otherwise, establish the new system
// service table.
//
if ((Index > NUMBER_SERVICE_TABLES - 1) || (KeServiceDescriptorTable[Index].Base != NULL) || (KeServiceDescriptorTableShadow[Index].Base != NULL)) { return FALSE;
} else {
//
// If the service table index is equal to the Win32 table, then
// only update the shadow system service table. Otherwise, both
// the shadow and static system service tables are updated.
//
KeServiceDescriptorTableShadow[Index].Base = Base; KeServiceDescriptorTableShadow[Index].Count = Count; KeServiceDescriptorTableShadow[Index].Limit = Limit;
//
// The global pointer associated with the table base is
// placed just before the service table.
//
#if defined(_IA64_)
KeServiceDescriptorTableShadow[Index].TableBaseGpOffset = (LONG)(*(Base-1) - (ULONG_PTR)Base);
#endif
KeServiceDescriptorTableShadow[Index].Number = Number; if (Index != 1) { KeServiceDescriptorTable[Index].Base = Base; KeServiceDescriptorTable[Index].Count = Count; KeServiceDescriptorTable[Index].Limit = Limit;
#if defined(_IA64_)
KeServiceDescriptorTable[Index].TableBaseGpOffset = (LONG)(*(Base-1) - (ULONG_PTR)Base);
#endif
KeServiceDescriptorTable[Index].Number = Number; }
return TRUE; } }
BOOLEAN KeRemoveSystemServiceTable( IN ULONG Index )
/*++
Routine Description:
This function allows the caller to remove a system service table from the system. This can only be called at system shutdown.
Arguments:
Index - Supplies index of the service table.
Return Value:
TRUE - The operation was successful.
FALSE - the operation failed. A service table is is not bound or is illegal to remove
--*/
{
PAGED_CODE();
if ((Index > NUMBER_SERVICE_TABLES - 1) || ((KeServiceDescriptorTable[Index].Base == NULL) && (KeServiceDescriptorTableShadow[Index].Base == NULL))) {
return FALSE;
} else { KeServiceDescriptorTableShadow[Index].Base = NULL; KeServiceDescriptorTableShadow[Index].Count = 0; KeServiceDescriptorTableShadow[Index].Limit = 0;
#if defined(_IA64_)
KeServiceDescriptorTableShadow[Index].TableBaseGpOffset = 0;
#endif
KeServiceDescriptorTableShadow[Index].Number = 0; if (Index != 1) { KeServiceDescriptorTable[Index].Base = NULL; KeServiceDescriptorTable[Index].Count = 0; KeServiceDescriptorTable[Index].Limit = 0;
#if defined(_IA64_)
KeServiceDescriptorTable[Index].TableBaseGpOffset = 0;
#endif
KeServiceDescriptorTable[Index].Number = 0; }
return TRUE; } }
VOID FASTCALL KeSetTimeUpdateNotifyRoutine( IN PTIME_UPDATE_NOTIFY_ROUTINE NotifyRoutine )
/*++
Routine Description:
This function sets the address of a callout routine which will be called each time the runtime for a thread is updated.
Arguments:
RoutineNotify - Supplies the address of the time update notify callout routine.
Return Value:
None.
--*/
{
PAGED_CODE();
KiTimeUpdateNotifyRoutine = NotifyRoutine; return; }
KAFFINITY KeQueryActiveProcessors( VOID )
/*++
Routine Description:
This function returns the current set of active processors in the system.
Arguments:
None.
Return Value:
KAFFINITY bitmask representing the set of active processors
--*/
{ PAGED_CODE();
return(KeActiveProcessors); }
#undef KeIsAttachedProcess
BOOLEAN KeIsAttachedProcess( VOID )
/*++
Routine Description:
This function determines if the current thread is attached to a process.
Arguments:
None.
Return Value:
TRUE is returned if the current thread is attached to a process. Otherwise, FALSE is returned.
--*/
{ return KiIsAttachedProcess(); }
#undef KeAreApcsDisabled
BOOLEAN KeAreApcsDisabled( VOID )
/*++
Routine Description:
This function determines if APCs are disabled for the current thread.
Arguments:
None.
Return Value:
TRUE is returned if APCs are disabled for the current thread. Otherwise, FALE is returned.
--*/
{ return KeGetCurrentThread()->KernelApcDisable != 0; }
ULONG KeGetRecommendedSharedDataAlignment ( VOID )
/*++
Routine Description:
This function returns the size of the largest cache line in the system. This value should be used as a recommended alignment / granularity for shared data.
Arguments:
None.
Return Value:
The size of the largest cache line in the system is returned as the function value.
--*/
{ return KeLargestCacheLine; }
PKPRCB KeGetPrcb( ULONG ProcessorNumber )
/*++
Routine Description:
This function returns the address of the Processor Control Block (PRCB) for the specified processor.
Arguments:
ProcessorNumber - Supplies the number of the processor the PRCB is to be returned for.
Return Value:
Returns the address of the requested PRCB or NULL if ProcessorNumber is not valid.
--*/
{
ASSERT(ProcessorNumber < MAXIMUM_PROCESSORS);
if (ProcessorNumber < (ULONG)KeNumberProcessors) { return KiProcessorBlock[ProcessorNumber]; }
return NULL; }
NTSTATUS KeCopySafe( VOID UNALIGNED *Destination, CONST VOID UNALIGNED *Source, SIZE_T Length )
/*++
Routine Description: This function attempts to safely copy a block of memory. If an excpetion occurs the exception status is returned. Arguments:
Destination - Supplies a pointer to the destination memory. Source - Supplies a pointer to the source memory. Length - Supplies the size of memory in bytes to be copied.
Return Value:
Return the status of the copy.
--*/
{ NTSTATUS Status = STATUS_SUCCESS;
try { RtlCopyMemory(Destination, Source, Length); } __except(EXCEPTION_EXECUTE_HANDLER) {
Status = _exception_code(); }
return Status; }
|