|
|
#include "stdinc.h"
#include "debmacro.h"
#include "fusionsha1.h"
/*
SHA-1 in C By Steve Reid <steve@edmweb.com> 100% Public Domain
Test Vectors (from FIPS PUB 180-1) "abc" A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 A million repetitions of "a" 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */
#define LITTLE_ENDIAN
#define SHA1HANDSOFF
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #ifdef LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF)) #else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
BOOL CSha1Context::Transform(const unsigned char *buffer) { FN_PROLOG_WIN32
DWORD a, b, c, d, e; typedef union { unsigned char c[64]; DWORD l[16]; } CHAR64LONG16;
CHAR64LONG16* block = reinterpret_cast<CHAR64LONG16*>(m_workspace); memcpy(block, buffer, 64);
/* Copy context->state[] to working vars */ a = this->state[0]; b = this->state[1]; c = this->state[2]; d = this->state[3]; e = this->state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ this->state[0] += a; this->state[1] += b; this->state[2] += c; this->state[3] += d; this->state[4] += e; /* Wipe variables */ a = b = c = d = e = 0;
FN_EPILOG }
/* A_SHAInit - Initialize new context */
BOOL CSha1Context::Initialize() { FN_PROLOG_WIN32 /* A_SHA initialization constants */ this->state[0] = 0x67452301; this->state[1] = 0xEFCDAB89; this->state[2] = 0x98BADCFE; this->state[3] = 0x10325476; this->state[4] = 0xC3D2E1F0; this->count[0] = this->count[1] = 0; FN_EPILOG }
/* Run your data through this. */
BOOL CSha1Context::Update(const unsigned char* data, SIZE_T len) { FN_PROLOG_WIN32 SIZE_T i, j;
j = (this->count[0] >> 3) & 63; if ((this->count[0] += len << 3) < (len << 3)) this->count[1]++; this->count[1] += (len >> 29); if ((j + len) > 63) { memcpy(&this->buffer[j], data, (i = 64-j)); this->Transform(this->buffer); for ( ; i + 63 < len; i += 64) { this->Transform(&data[i]); } j = 0; } else i = 0; memcpy(&this->buffer[j], &data[i], len - i); FN_EPILOG }
/* Add padding and return the message digest. */
BOOL CSha1Context::GetDigest( unsigned char *digest, SIZE_T *len ) { FN_PROLOG_WIN32
SIZE_T i, j; unsigned char finalcount[8];
if ( !digest || (len && (*len < A_SHA_DIGEST_LEN)) || !len) { if (len != NULL) *len = A_SHA_DIGEST_LEN;
// don't originate like normal to reduce noise level
::FusionpSetLastWin32Error(ERROR_INSUFFICIENT_BUFFER); goto Exit; }
*len = A_SHA_DIGEST_LEN;
for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((this->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } this->Update((unsigned char *)"\200", 1); while ((this->count[0] & 504) != 448) { this->Update((unsigned char *)"\0", 1); } this->Update(finalcount, 8); /* Should cause a A_SHATransform() */ for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((this->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } /* Wipe variables */ i = j = 0; memset(this->buffer, 0, sizeof(this->buffer)); memset(this->state, 0, sizeof(this->state)); memset(this->count, 0, sizeof(this->count)); memset(&finalcount, 0, sizeof(finalcount)); #ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
this->Transform(this->buffer); #endif
FN_EPILOG }
BOOL CFusionHash::GetIsValid() { //
// Not initialized at all
//
if (!m_fInitialized) return FALSE;
//
// Validity is known if the alg is SHA1 and the crypt handle is NULL, or if the
// alg is not SHA1 and the crypt handle is non-null.
//
if (((m_aid == CALG_SHA1) && (this->m_hCryptHash == INVALID_CRYPT_HASH)) || ((m_aid != CALG_SHA1) && (this->m_hCryptHash != INVALID_CRYPT_HASH))) return TRUE; else return FALSE; }
BOOL CFusionHash::Win32Initialize( ALG_ID aid ) { FN_PROLOG_WIN32
if ( aid == CALG_SHA1 ) { IFW32FALSE_EXIT(this->m_Sha1Context.Initialize()); } else { HCRYPTPROV hProvider; IFW32FALSE_EXIT(::SxspAcquireGlobalCryptContext(&hProvider)); IFW32FALSE_ORIGINATE_AND_EXIT(::CryptCreateHash(hProvider, aid, NULL, 0, &this->m_hCryptHash)); }
this->m_aid = aid; this->m_fInitialized = TRUE; FN_EPILOG }
BOOL CFusionHash::Win32HashData( const BYTE *pbBuffer, SIZE_T cbBuffer ) { FN_PROLOG_WIN32
INTERNAL_ERROR_CHECK(this->GetIsValid());
if (m_hCryptHash != INVALID_CRYPT_HANDLE) { while (cbBuffer > MAXDWORD) { IFW32FALSE_ORIGINATE_AND_EXIT(::CryptHashData(this->m_hCryptHash, pbBuffer, MAXDWORD, 0)); cbBuffer -= MAXDWORD; }
IFW32FALSE_ORIGINATE_AND_EXIT(::CryptHashData(this->m_hCryptHash, pbBuffer, static_cast<DWORD>(cbBuffer), 0)); } else { IFW32FALSE_EXIT(this->m_Sha1Context.Update(pbBuffer, cbBuffer)); }
FN_EPILOG }
BOOL CFusionHash::Win32GetValue( OUT CFusionArray<BYTE> &out ) { FN_PROLOG_WIN32
INTERNAL_ERROR_CHECK(this->GetIsValid());
for (;;) { SIZE_T len = out.GetSize(); BOOL fMoreData; PBYTE pbData = out.GetArrayPtr();
if ( m_hCryptHash == INVALID_CRYPT_HANDLE ) { IFW32FALSE_EXIT_UNLESS( this->m_Sha1Context.GetDigest(pbData, &len), FusionpGetLastWin32Error() == ERROR_INSUFFICIENT_BUFFER, fMoreData); } else { DWORD dwNeedSize; DWORD dwValueSize; IFW32FALSE_ORIGINATE_AND_EXIT( ::CryptGetHashParam( this->m_hCryptHash, HP_HASHSIZE, (PBYTE)&dwNeedSize, &(dwValueSize = sizeof(dwNeedSize)), 0));
if ( dwNeedSize > len ) { fMoreData = TRUE; len = dwNeedSize; } else { fMoreData = FALSE; IFW32FALSE_ORIGINATE_AND_EXIT( ::CryptGetHashParam( this->m_hCryptHash, HP_HASHVAL, pbData, &(dwValueSize = out.GetSizeAsDWORD()), 0)); } } if ( fMoreData ) IFW32FALSE_EXIT(out.Win32SetSize(len, CFusionArray<BYTE>::eSetSizeModeExact)); else break; }
FN_EPILOG }
HCRYPTPROV g_hGlobalCryptoProvider = INVALID_CRYPT_HANDLE;
BOOL SxspAcquireGlobalCryptContext( HCRYPTPROV *pContext ) { BOOL fSuccess = FALSE; FN_TRACE_WIN32(fSuccess);
HCRYPTPROV hNewProvider = INVALID_CRYPT_HANDLE;
if (pContext != NULL) *pContext = INVALID_CRYPT_HANDLE;
PARAMETER_CHECK(pContext != NULL);
//
// Pointer reads are atomic.
//
hNewProvider = g_hGlobalCryptoProvider; if (hNewProvider != INVALID_CRYPT_HANDLE) { *pContext = hNewProvider;
FN_SUCCESSFUL_EXIT(); }
//
// Acquire the crypto context that's only for verification purposes.
//
IFW32FALSE_ORIGINATE_AND_EXIT( ::CryptAcquireContextW( &hNewProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_SILENT | CRYPT_VERIFYCONTEXT));
if (::InterlockedCompareExchangePointer( (PVOID*)&g_hGlobalCryptoProvider, (PVOID)hNewProvider, (PVOID)INVALID_CRYPT_HANDLE ) != (PVOID)INVALID_CRYPT_HANDLE) { //
// We lost the race.
//
::CryptReleaseContext(hNewProvider, 0); hNewProvider = g_hGlobalCryptoProvider; }
*pContext = hNewProvider;
FN_EPILOG }
BOOL SxspReleaseGlobalCryptContext() { BOOL fSuccess = FALSE; HCRYPTPROV hProvider; HCRYPTPROV* pghProvider = &g_hGlobalCryptoProvider;
FN_TRACE_WIN32(fSuccess);
//
// Swap out the global context with the invalid value, readying our context to be
// nuked.
//
hProvider = (HCRYPTPROV)(InterlockedExchangePointer((PVOID*)pghProvider, (PVOID)INVALID_CRYPT_HANDLE)); if (hProvider != INVALID_CRYPT_HANDLE) { IFW32FALSE_ORIGINATE_AND_EXIT(::CryptReleaseContext(hProvider, 0)); }
fSuccess = TRUE; Exit: return fSuccess; }
|