|
|
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
ieeemisc.c
Abstract: IEEE miscellaneous recommended functions Author:
Revision History:
29-sept-1999 ATM Shafiqul Khalid [askhalid] copied from rtl library. --*/
#include <trans.h>
#include <math.h>
#include <float.h>
/***
* _copysign - copy sign * *Purpose: * copysign(x,y) returns x with the sign of y. Hence, abs(x) := copysign * even if x is NaN [IEEE std 854-1987 Appendix] * * *Entry: * *Exit: * *Exceptions: * No exceptions, even if one of the arguments is NaN. * * (Currently the i386 compiler returns doubles on the fp stack * so the fld instruction at the end will cause an invalid operation * if x is NaN. However this compiler calling convention will change * soon) * *******************************************************************************/
double _copysign (double x, double y) { double retval; *D_LO(retval) = *D_LO(x); *D_HI(retval) = *D_HI(x) & ~(1<<31) | *D_HI(y) & (1<<31) ;
return retval; }
/***
* _chgsign - change sign * *Purpose: * x is copied with its sign reversed, not 0-x; the distinction is germane * when x is +0, -0, or NaN * *Entry: * *Exit: * *Exceptions: * No exceptions, even if x is NaN. * * (Currently the i386 compiler returns doubles on the fp stack * so the fld instruction at the end will cause an invalid operation * if x is NaN. However this compiler calling convention will change * soon) * *******************************************************************************/
double _chgsign (double x) { double retval;
*D_LO(retval) = *D_LO(x); *D_HI(retval) = *D_HI(x) & ~(1 << 31) | ~*D_HI(x) & (1<<31);
return retval; }
/***
* _scalb - scale by power of 2 * *Purpose: * _scalb(x,n) returns x * 2^n for integral values of n without * computing 2^n * Special case: * If x is infinity or zero, _scaleb returns x * * *Entry: * double x * int n * *Exit: * *Exceptions: * Invalid operation, Overflow, Underflow * *******************************************************************************/
double _scalb(double x, long n) { //
// It turns out that our implementation of ldexp matces the IEEE
// description of _scalb. The only problem with calling ldexp
// is that if an exception occurs, the operation code reported
// to the handler will be the one that corresponds to ldexp
// (i.e., we do not define a new operation code for _scalb
//
return ldexp(x,n); }
/***
* _logb - extract exponent * *Purpose: * _logb(x) returns the unbiased exponent of x, a signed integer in the * format of x, except that logb(NaN) is a NaN, logb(+INF) is +INF,and * logb(0) is is -INF and signals the division by zero exception. * For x positive and finite, 1<= abs(scalb(x, -logb(x))) < 2 * * *Entry: * double x * int n * *Exit: * *Exceptions: * Invalid operation, Division by zero * *******************************************************************************/ double _logb(double x) { unsigned int savedcw; int exp; double retval;
/* save user fp control word */ savedcw = _maskfp();
/* check for infinity or NAN */ if (IS_D_SPECIAL(x)){ switch (_sptype(x)) { case T_PINF: case T_NINF: RETURN(savedcw, x); case T_QNAN: return _handle_qnan1(OP_LOGB, x, savedcw); default: //T_SNAN
return _except1(FP_I, OP_LOGB, x, _s2qnan(x), savedcw); } }
if (x == 0) { return _except1(FP_Z, OP_LOGB, x, -D_INF, savedcw); }
(void) _decomp(x, &exp);
//
// x == man * 2^exp, where .5 <= man < 1. According to the spec
// of this function, we should compute the exponent so that
// 1<=man<2, i.e., we should decrement the computed exp by one
//
retval = (double) (exp - 1);
RETURN(savedcw, retval);
}
/***
* _nextafter - next representable neighbor * *Purpose: * _nextafter(x,y) returns the next representable neighbor of x in * the direction toward y. The following special cases arise: if * x=y, then the result is x without any exception being signaled; * otherwise, if either x or y is a quiet NaN, then the result is * one or the other of the input NaNs. Overflow is sibnaled when x * is finite but nextafter(x,y) is infinite; underflow is signaled * when nextafter(x,y) lies strictly between -2^Emin, 2^Emin; in * both cases, inexact is signaled. * * *Entry: * *Exit: * *Exceptions: * O, U, I, P * *******************************************************************************/
double _nextafter(double x, double y) { unsigned int savedcw; double result;
/* save user fp control word */ savedcw = _maskfp();
/* check for infinity or NAN */ if (IS_D_SPECIAL(x) || IS_D_SPECIAL(y)){ if (IS_D_SNAN(x) || IS_D_SNAN(y)){ return _except2(FP_I,OP_NEXTAFTER,x,y,_d_snan2(x,y),savedcw); } if (IS_D_QNAN(x) || IS_D_QNAN(y)){ return _handle_qnan2(OP_NEXTAFTER,x,y,savedcw); }
//
// infinite arguments are not treated as special cases
//
}
if (y == x) {
//
// no exceptions are raised in this case
//
RETURN(savedcw, x); }
if (x == 0) {
*D_LO(result) = 1;
if (y > x) { *D_HI(result) = 0; }
else {
//
// result should be negative
//
*D_HI(result) = (unsigned long)(1<<31); }
}
//
// At this point x!=y, and x!=0. x can be treated as a 64bit
// integer in sign/magnitude representation. To get the next
// representable neighbor we add or subtract one from this
// integer. (Note that for boundary cases like x==INF, need to
// add one will never occur --this would mean that y should
// be greater than INF, which is impossible)
//
if (x > 0 && y < x || x < 0 && y > x) {
//
// decrease value by one
//
*D_LO(result) = *D_LO(x) - 1; *D_HI(result) = *D_HI(x);
if (*D_LO(x) == 0) {
//
// a borrow should propagate to the high order dword
//
(*D_HI(result)) --; } }
else if (x > 0 && y > x || x < 0 && y < x) {
//
// increase value by one
//
*D_LO(result) = *D_LO(x) + 1; *D_HI(result) = *D_HI(x);
if (*D_LO(result) == 0) {
//
// a carry should propagate to the high order dword
//
(*D_HI(result)) ++; } }
//
// check if an exception should be raised
//
if ( IS_D_DENORM(result) ) {
//
// should signal underflow and inexact
// and provide a properly scaled value
//
double mant; int exp;
mant = _decomp(result, &exp); result = _set_exp(mant, exp+IEEE_ADJUST);
return _except2(FP_U|FP_P,OP_NEXTAFTER,x,y,result,savedcw); }
if ( IS_D_INF(result) || IS_D_MINF(result) ) {
//
// should signal overflow and inexact
// and provide a properly scaled value
//
double mant; int exp;
mant = _decomp(result, &exp); result = _set_exp(mant, exp-IEEE_ADJUST);
return _except2(FP_O|FP_P,OP_NEXTAFTER,x,y,result,savedcw); }
RETURN(savedcw, result); }
/***
* _finite - * *Purpose: * finite(x) returns the value TRUE if -INF < x < +INF and returns * false otherwise [IEEE std] * *Entry: * *Exit: * *Exceptions: * * This routine is treated as a nonarithmetic operation, therefore * it does not signal any floating point exceptions * *******************************************************************************/
int _finite(double x) { if (IS_D_SPECIAL(x)) {
//
// x is INF or NaN
//
return 0; } return 1; }
/***
* _isnan - * *Purpose: * isnan(x) returns the value TRUE if x is a NaN, and returns FALSE * otherwise. * * *Entry: * *Exit: * *Exceptions: * * This routine is treated as a nonarithmetic operation, therefore * it does not signal any floating point exceptions * *******************************************************************************/
int _isnan(double x) { if (IS_D_SNAN(x) || IS_D_QNAN(x)) { return 1; } return 0; }
/***
*double _fpclass(double x) - floating point class * *Purpose: * Compute the floating point class of a number, according * to the recommendations of the IEEE std. 754 * *Entry: * *Exit: * *Exceptions: * This function is never exceptional, even when the argument is SNAN * *******************************************************************************/
int _fpclass(double x) { int sign;
if (IS_D_SPECIAL(x)){ switch (_sptype(x)) { case T_PINF: return _FPCLASS_PINF; case T_NINF: return _FPCLASS_NINF; case T_QNAN: return _FPCLASS_QNAN; default: //T_SNAN
return _FPCLASS_SNAN; } } sign = (*D_EXP(x)) & 0x8000;
if (IS_D_DENORM(x)) return sign? _FPCLASS_ND : _FPCLASS_PD;
if (x == 0.0) return sign? _FPCLASS_NZ : _FPCLASS_PZ;
return sign? _FPCLASS_NN : _FPCLASS_PN; }
|