|
|
/******************************Module*Header*******************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: Brush.c * * Handles all brush/pattern initialization and realization. * * Copyright (c) 1992-1998 Microsoft Corporation * \**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern * * Generates an 8x8 dither pattern, in our internal realization format, for * the colour ulRGBToDither. Note that the high byte of ulRGBToDither does * not need to be set to zero, because EngDitherColor ignores it. \**************************************************************************/
VOID vRealizeDitherPattern( HDEV hdev, RBRUSH* prb, ULONG ulRGBToDither) { // Do the actual dithering:
EngDitherColor(hdev, DM_DEFAULT, ulRGBToDither, &prb->aulPattern[0]);
// Initialize the fields we need:
prb->ptlBrushOrg.x = LONG_MIN; prb->fl = 0; prb->pbe = NULL; }
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush * * This function allows us to convert GDI brushes into an internal form * we can use. It may be called directly by GDI at SelectObject time, or * it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush * to create a realized brush in a function like DrvBitBlt. * * Note that we have no way of determining what the current Rop or brush * alignment are at this point. * \**************************************************************************/
BOOL DrvRealizeBrush( BRUSHOBJ* pbo, SURFOBJ* psoDst, SURFOBJ* psoPattern, SURFOBJ* psoMask, XLATEOBJ* pxlo, ULONG iHatch) { PDEV* ppdev; ULONG iPatternFormat; BYTE* pjSrc; BYTE* pjDst; LONG lSrcDelta; LONG cj; LONG i; LONG j; RBRUSH* prb; ULONG* pulXlate; SURFOBJ* psoPunt; RECTL rclDst; BOOL b;
ppdev = (PDEV*) psoDst->dhpdev;
// We only handle brushes if we have an off-screen brush cache
// available. If there isn't one, we can simply fail the realization,
// and eventually GDI will do the drawing for us (although a lot
// slower than we could have done it):
if (!(ppdev->flStatus & STAT_BRUSH_CACHE)) goto ReturnFalse;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR) { // Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev)); if (prb == NULL) goto ReturnFalse;
vRealizeDitherPattern(psoDst->hdev, prb, iHatch); goto ReturnTrue; }
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) || (psoPattern->sizlBitmap.cy != 8)) goto ReturnFalse;
iPatternFormat = psoPattern->iBitmapFormat;
prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev)); if (prb == NULL) goto ReturnFalse;
// Initialize the fields we need:
prb->ptlBrushOrg.x = LONG_MIN; prb->fl = 0; prb->pbe = NULL;
lSrcDelta = psoPattern->lDelta; pjSrc = (BYTE*) psoPattern->pvScan0; pjDst = (BYTE*) &prb->aulPattern[0];
if ((ppdev->iBitmapFormat == iPatternFormat) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { DISPDBG((1, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = CONVERT_TO_BYTES(8, ppdev); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--) { RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta; pjDst += cj; } } // Don't do monochrome expansion on 24 bpp due to s3 968 feature.
else if ((iPatternFormat == BMF_1BPP) && (ppdev->iBitmapFormat != BMF_24BPP)) { DISPDBG((1, "Realizing 1bpp brush"));
// We word align the monochrome bitmap so that every row starts
// on a new word (so that we can do word writes later to transfer
// the bitmap):
for (i = 8; i != 0; i--) { *pjDst = *pjSrc; pjDst += sizeof(WORD); pjSrc += lSrcDelta; }
pulXlate = pxlo->pulXlate; prb->fl |= RBRUSH_2COLOR; prb->ulForeColor = pulXlate[1]; prb->ulBackColor = pulXlate[0]; } else if ((iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP)) { DISPDBG((1, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) && (iPatternFormat == BMF_4BPP), "Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--) { // Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--) { *pjDst++ = (BYTE) pulXlate[*pjSrc >> 4]; *pjDst++ = (BYTE) pulXlate[*pjSrc & 15]; pjSrc++; }
pjSrc += lSrcDelta - 4; } } else { // We've got a brush whose format we haven't special cased. No
// problem, we can have GDI convert it to our device's format.
// We simply use a temporary surface object that was created with
// the same format as the display, and point it to our brush
// realization:
DISPDBG((5, "Realizing funky brush"));
psoPunt = ppdev->psoBank; psoPunt->pvScan0 = pjDst; psoPunt->lDelta = CONVERT_TO_BYTES(8, ppdev);
rclDst.left = 0; rclDst.top = 0; rclDst.right = 8; rclDst.bottom = 8;
b = EngCopyBits(psoPunt, psoPattern, NULL, pxlo, &rclDst, (POINTL*) &rclDst);
if (!b) { goto ReturnFalse; } }
ReturnTrue:
if (!(ppdev->flCaps & CAPS_HW_PATTERNS)) { // The last time I checked, GDI took some 500 odd instructions to
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
// We can at least use this time to get some overlap between the
// CPU and the display hardware: we'll initialize the 72x72 off-
// screen cache entry now, which will keep the accelerator busy for
// a while.
//
// We don't do this if we have hardware patterns because:
//
// a) S3 hardware patterns require that the off-screen cached
// brush be correctly aligned, and at this point we don't have
// access to the 'pptlBrush' brush origin (although we could
// have copied it into the PDEV before calling
// BRUSHOBJ_pvGetRbrush).
//
// b) S3 hardware patterns require only an 8x8 copy of the
// pattern; it is not expanded to 72x72, so there isn't even
// any opportunity for CPU/accelerator processing overlap.
vIoSlowPatRealize(ppdev, prb, FALSE); }
return(TRUE);
ReturnFalse:
if (psoPattern != NULL) { DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li", psoPattern->iType, psoPattern->iBitmapFormat, psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy)); }
return(FALSE); }
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache * * Allocates off-screen memory for storing the brush cache. \**************************************************************************/
BOOL bEnableBrushCache( PDEV* ppdev) { DSURF* pdsurf; BRUSHENTRY* pbe; // Pointer to the brush-cache entry
LONG i; LONG j; LONG x; LONG y;
// Since the DirectDraw heap isn't enabled yet, we allocate memory
// simply by chopping a row off the bottom of memory.
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
// cache entry
if (ppdev->flCaps & CAPS_HW_PATTERNS) { if (ppdev->cyScreen > ppdev->cyHeap - FAST_BRUSH_ALLOCATION) goto ReturnTrue; ppdev->cyHeap -= FAST_BRUSH_ALLOCATION;
x = 0; y = ppdev->cyHeap;
ppdev->cBrushCache = FAST_BRUSH_COUNT;
// Hardware brushes require that the x-coordinate start on an 8
// pixel boundary. The heap manager doesn't guarantee us any such
// alignment, so we allocate a bit of extra room so that we can
// do the alignment ourselves:
for (i = FAST_BRUSH_COUNT; i != 0; i--) { // If we hadn't allocated 'ppdev' so that it was zero initialized,
// we would have to initialize pbe->prbVerify too...
pbe->x = x; pbe->y = y;
x += FAST_BRUSH_ALLOCATION; pbe++; }
// Remember the location of our 1x8 work area, which will be at
// the right end of our brush array:
ppdev->ptlReRealize.x = x; ppdev->ptlReRealize.y = y; } else { ppdev->pfnFillPat = vIoFillPatSlow; // Override FillPatFast
if (ppdev->cyScreen > ppdev->cyHeap - SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION) goto ReturnTrue;
ppdev->cyHeap -= SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION;
x = 0; y = ppdev->cyHeap;
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++) { for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++) { pbe->x = x + (i * SLOW_BRUSH_ALLOCATION); pbe->y = y + (j * SLOW_BRUSH_ALLOCATION); pbe++; } } }
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE); }
/******************************Public*Routine******************************\
* VOID vDisableBrushCache * * Cleans up anything done in bEnableBrushCache. \**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev) { }
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache * * Resets the brush cache when we exit out of full-screen. \**************************************************************************/
VOID vAssertModeBrushCache( PDEV* ppdev, BOOL bEnable) { BRUSHENTRY* pbe; LONG i;
if (bEnable) { // Invalidate the brush cache:
pbe = &ppdev->abe[0];
for (i = ppdev->cBrushCache; i != 0; i--) { pbe->prbVerify = NULL; pbe++; } } }
|