|
|
/******************************Module*Header*******************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1998 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
// Useful for visualizing the off-screen heap when set to '1':
#define DEBUG_HEAP 0
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulPanningHorzRes
0, // ulPanningVertRes
0, // ulBltAlignment
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_ALTERNATEFILL | GCAPS_WINDINGFILL | GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER | GCAPS_DIRECTDRAW | GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvLineTo, (PFN) DrvLineTo }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, { INDEX_DrvFillPath, (PFN) DrvFillPath }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvDestroyFont, (PFN) DrvDestroyFont }, { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, { INDEX_DrvSynchronize, (PFN) DrvSynchronize }, { INDEX_DrvTransparentBlt, (PFN) DrvTransparentBlt }, { INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface }, { INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DrvIcmSetDeviceGammaRamp }, };
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/
BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE); }
/******************************Public*Routine******************************\
* VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/
VOID DrvDisableDriver(VOID) { return; }
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * * (This function mostly returns back information; DrvEnableSurface is used * for initializing the hardware and driver components.) * \**************************************************************************/
DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{ PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; }
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem")); goto ReturnFailure0; }
ppdev->hDriver = hDriver;
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields")); goto ReturnFailure1; }
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; }
return((DHPDEV) ppdev);
ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV"));
return(0); }
/******************************Public*Routine******************************\
* DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/
VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev); EngFreeMem(ppdev); }
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/
VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; }
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface * * Creates the drawing surface, initializes the hardware, and initializes * driver components. This function is called after DrvEnablePDEV, and * performs the final device initialization. * \**************************************************************************/
HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer; BYTE* pjScreen; LONG lDelta; FLONG flHooks;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev)) goto ReturnFailure;
if (!bEnableBanking(ppdev)) goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure;
if (!bEnablePointer(ppdev)) goto ReturnFailure;
if (!bEnableText(ppdev)) goto ReturnFailure;
if (!bEnableBrushCache(ppdev)) goto ReturnFailure;
if (!bEnablePalette(ppdev)) goto ReturnFailure;
if (!bEnableDirectDraw(ppdev)) goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = &ppdev->dsurfScreen;
pdsurf->dt = 0; pdsurf->x = 0; pdsurf->y = 0; pdsurf->fpVidMem = 0; pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual surface SURFOBJ structure.
sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen;
// Create the primary surface. This defaults to a 'device-managed'
// surface, but EngModifySurface can change that.
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; }
if ((ppdev->flCaps & CAPS_NEW_MMIO) && !(ppdev->flCaps & CAPS_NO_DIRECT_ACCESS)) { // On all cards where we linearly map the frame buffer, create our
// drawing surface as a GDI-managed surface, meaning that we give
// GDI a pointer to the framebuffer and GDI can draw on the bits
// directly. This will allow us good performance with drawing such
// as GradientFills, even though our hardware can't accelerate the
// drawing and so we don't hook DrvGradientFill. This way GDI can
// do write-combined writes directly to the framebuffer and still be
// very fast.
//
// Note that this requires that we hook DrvSynchronize and
// set HOOK_SYNCHRONIZE.
pjScreen = ppdev->pjScreen; lDelta = ppdev->lDelta; flHooks = ppdev->flHooks | HOOK_SYNCHRONIZE; } else { // Ugh, we're running on an ancient S3 card where we can't completely
// map the entire frame buffer into memory. We have to create the
// primary surface as a 'GDI-opaque' device-managed surface, and GDI
// will be forced to go through only Drv calls that we've hooked.
// (In this case, drawing such as GradientFills will be pathetically
// slow.)
pjScreen = NULL; lDelta = 0; flHooks = ppdev->flHooks; }
// Note that this call is new to NT5, and takes the place of
// EngAssociateSurface.
if (!EngModifySurface(hsurf, ppdev->hdevEng, flHooks, MS_NOTSYSTEMMEMORY, // It's in video memory
(DHSURF) pdsurf, pjScreen, lDelta, NULL)) { DISPDBG((0, "DrvEnableSurface - Failed EngModifySurface")); goto ReturnFailure; }
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG); if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc")); goto ReturnFailure; }
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure: DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0); }
/******************************Public*Routine******************************\
* VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/
VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableDirectDraw(ppdev); vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableBanking(ppdev); vDisableHardware(ppdev);
EngFreeMem(ppdev->pvTmpBuffer); EngDeleteSurface(ppdev->hsurfScreen); }
/******************************Public*Routine******************************\
* BOOL DrvGetDirectDrawInfo * * Will be called after DrvEnablesurface. Will be called twice before * DrvEnableDirectDraw is called. * \**************************************************************************/
BOOL DrvGetDirectDrawInfo( DHPDEV dhpdev, DD_HALINFO* pHalInfo, DWORD* pdwNumHeaps, VIDEOMEMORY* pvmList, // Will be NULL on first call
DWORD* pdwNumFourCC, DWORD* pdwFourCC) // Will be NULL on first call
{ PDEV* ppdev; LONGLONG li; DWORD cProcessors; DWORD cHeaps;
ppdev = (PDEV*) dhpdev;
*pdwNumFourCC = 0; *pdwNumHeaps = 0;
// We may not support DirectDraw on this card.
//
// The 765 (Trio64V+) has a bug such that writing to the frame
// buffer during an accelerator operation may cause a hang if
// you do the write soon enough after starting the blt. (There is
// a small window of opportunity.) On UP machines, the context
// switch time seems to be enough to avoid the problem. However,
// on MP machines, we'll have to disable direct draw.
//
// NOTE: We can identify the 765 since it is the only chip with
// the CAPS_STREAMS_CAPABLE flag.
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { if (!EngQuerySystemAttribute(EngNumberOfProcessors, &cProcessors) || (cProcessors != 1)) { return(FALSE); } }
if (!(ppdev->flCaps & CAPS_NEW_MMIO) || (ppdev->flCaps & CAPS_NO_DIRECT_ACCESS)) { return(FALSE); }
pHalInfo->dwSize = sizeof(*pHalInfo);
// Current primary surface attributes. Since HalInfo is zero-initialized
// by GDI, we only have to fill in the fields which should be non-zero:
pHalInfo->vmiData.pvPrimary = ppdev->pjScreen; pHalInfo->vmiData.dwDisplayWidth = ppdev->cxScreen; pHalInfo->vmiData.dwDisplayHeight = ppdev->cyScreen; pHalInfo->vmiData.lDisplayPitch = ppdev->lDelta;
pHalInfo->vmiData.ddpfDisplay.dwSize = sizeof(DDPIXELFORMAT); pHalInfo->vmiData.ddpfDisplay.dwFlags = DDPF_RGB;
pHalInfo->vmiData.ddpfDisplay.dwRGBBitCount = 8 * ppdev->cjPelSize;
if (ppdev->iBitmapFormat == BMF_8BPP) { pHalInfo->vmiData.ddpfDisplay.dwFlags |= DDPF_PALETTEINDEXED8; }
// These masks will be zero at 8bpp:
pHalInfo->vmiData.ddpfDisplay.dwRBitMask = ppdev->flRed; pHalInfo->vmiData.ddpfDisplay.dwGBitMask = ppdev->flGreen; pHalInfo->vmiData.ddpfDisplay.dwBBitMask = ppdev->flBlue;
// The S3 has to do everything using 'rectangular' memory, because
// the accelerator doesn't know how to set arbitrary strides.
cHeaps = 0;
// Snag a pointer to the video-memory list so that we can use it to
// call back to DirectDraw to allocate video memory:
ppdev->pvmList = pvmList;
// Create one heap to describe the unused portion of video
// memory to the right of the visible screen (if any):
if (ppdev->cxScreen < ppdev->cxHeap) { cHeaps++;
if (pvmList != NULL) { pvmList->dwFlags = VIDMEM_ISRECTANGULAR; pvmList->fpStart = ppdev->cxScreen * ppdev->cjPelSize; pvmList->dwWidth = (ppdev->cxHeap - ppdev->cxScreen) * ppdev->cjPelSize; pvmList->dwHeight = ppdev->cyScreen; pvmList->ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; pvmList++; } }
// Create another heap to describe the unused portion of video
// memory below the visible screen (if any):
if (ppdev->cyScreen < ppdev->cyHeap) { cHeaps++;
if (pvmList != NULL) { pvmList->dwFlags = VIDMEM_ISRECTANGULAR; pvmList->fpStart = ppdev->cyScreen * ppdev->lDelta; pvmList->dwWidth = ppdev->cxHeap * ppdev->cjPelSize; pvmList->dwHeight = ppdev->cyHeap - ppdev->cyScreen; pvmList->ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; pvmList++; } }
// Update the number of heaps:
ppdev->cHeaps = cHeaps; *pdwNumHeaps = cHeaps;
// dword alignment must be guaranteed for off-screen surfaces:
pHalInfo->vmiData.dwOffscreenAlign = 4;
// Capabilities supported:
pHalInfo->ddCaps.dwCaps = DDCAPS_BLT | DDCAPS_BLTCOLORFILL | DDCAPS_COLORKEY;
pHalInfo->ddCaps.dwCKeyCaps = DDCKEYCAPS_SRCBLT;
pHalInfo->ddCaps.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | DDSCAPS_PRIMARYSURFACE | DDSCAPS_FLIP;
// The Trio 64V+ has overlay streams capabilities which are a superset
// of the above:
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { // Overlays need 8-byte alignment. Note that if 24bpp overlays are
// ever supported, this will have to change to compensate:
pHalInfo->vmiData.dwOverlayAlign = 8;
pHalInfo->ddCaps.dwCaps |= DDCAPS_OVERLAY | DDCAPS_OVERLAYSTRETCH | DDCAPS_OVERLAYFOURCC | DDCAPS_OVERLAYCANTCLIP;
pHalInfo->ddCaps.dwFXCaps |= DDFXCAPS_OVERLAYSTRETCHX | DDFXCAPS_OVERLAYSTRETCHY;
// We support only destination colour keying because that's the
// only permutation we've had a chance to test.
pHalInfo->ddCaps.dwCKeyCaps |= DDCKEYCAPS_DESTOVERLAY;
pHalInfo->ddCaps.ddsCaps.dwCaps |= DDSCAPS_OVERLAY;
*pdwNumFourCC = 1; if (pdwFourCC) { pdwFourCC[0] = FOURCC_YUY2; }
pHalInfo->ddCaps.dwMaxVisibleOverlays = 1;
pHalInfo->ddCaps.dwMinOverlayStretch = ppdev->ulMinOverlayStretch; pHalInfo->ddCaps.dwMinLiveVideoStretch = ppdev->ulMinOverlayStretch; pHalInfo->ddCaps.dwMinHwCodecStretch = ppdev->ulMinOverlayStretch;
pHalInfo->ddCaps.dwMaxOverlayStretch = 9999; pHalInfo->ddCaps.dwMaxLiveVideoStretch = 9999; pHalInfo->ddCaps.dwMaxHwCodecStretch = 9999; }
// The 868 and 968 have a pixel formatter which is capable of doing
// colour space conversions and hardware stretching from off-screen
// surfaces:
else if (ppdev->flCaps & CAPS_PIXEL_FORMATTER) { pHalInfo->ddCaps.dwCaps |= DDCAPS_BLTSTRETCH;
pHalInfo->ddCaps.dwFXCaps |= DDFXCAPS_BLTSTRETCHX | DDFXCAPS_BLTSTRETCHY;
// YUV is supported only above 8bpp:
if (ppdev->iBitmapFormat != BMF_8BPP) { pHalInfo->ddCaps.dwCaps |= DDCAPS_BLTFOURCC;
*pdwNumFourCC = 1; if (pdwFourCC) { *pdwFourCC = FOURCC_YUY2; } } }
// Tell DirectDraw that we support additional callbacks via
// DdGetDriverInfo:
pHalInfo->GetDriverInfo = DdGetDriverInfo; pHalInfo->dwFlags |= DDHALINFO_GETDRIVERINFOSET;
return(TRUE); }
/******************************Public*Routine******************************\
* BOOL DrvEnableDirectDraw * * This function is called by GDI when a new mode is set, immediately after * it calls our DrvEnableSurface and DrvGetDirectDrawInfo. * \**************************************************************************/
BOOL DrvEnableDirectDraw( DHPDEV dhpdev, DD_CALLBACKS* pCallBacks, DD_SURFACECALLBACKS* pSurfaceCallBacks, DD_PALETTECALLBACKS* pPaletteCallBacks) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
pCallBacks->WaitForVerticalBlank = DdWaitForVerticalBlank; pCallBacks->MapMemory = DdMapMemory; pCallBacks->dwFlags = DDHAL_CB32_WAITFORVERTICALBLANK | DDHAL_CB32_MAPMEMORY;
pSurfaceCallBacks->Blt = DdBlt; pSurfaceCallBacks->Flip = DdFlip; pSurfaceCallBacks->Lock = DdLock; pSurfaceCallBacks->GetBltStatus = DdGetBltStatus; pSurfaceCallBacks->GetFlipStatus = DdGetFlipStatus; pSurfaceCallBacks->dwFlags = DDHAL_SURFCB32_BLT | DDHAL_SURFCB32_FLIP | DDHAL_SURFCB32_LOCK | DDHAL_SURFCB32_GETBLTSTATUS | DDHAL_SURFCB32_GETFLIPSTATUS;
// We can do overlays only when the Streams processor is enabled:
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { pCallBacks->CreateSurface = DdCreateSurface; pCallBacks->CanCreateSurface = DdCanCreateSurface; pCallBacks->dwFlags |= DDHAL_CB32_CREATESURFACE | DDHAL_CB32_CANCREATESURFACE;
pSurfaceCallBacks->SetColorKey = DdSetColorKey; pSurfaceCallBacks->UpdateOverlay = DdUpdateOverlay; pSurfaceCallBacks->SetOverlayPosition = DdSetOverlayPosition; pSurfaceCallBacks->dwFlags |= DDHAL_SURFCB32_SETCOLORKEY | DDHAL_SURFCB32_UPDATEOVERLAY | DDHAL_SURFCB32_SETOVERLAYPOSITION; ppdev->ulColorKey = 0; }
// We can do blts with funky surface formats only when the pixel
// formatter is enabled:
else if (ppdev->flCaps & CAPS_PIXEL_FORMATTER) { pCallBacks->CreateSurface = DdCreateSurface; pCallBacks->CanCreateSurface = DdCanCreateSurface; pCallBacks->dwFlags |= DDHAL_CB32_CREATESURFACE | DDHAL_CB32_CANCREATESURFACE; }
return(TRUE); }
/******************************Public*Routine******************************\
* VOID DrvDisableDirectDraw * * This function is called by GDI when the driver is to be disabled, just * before it calls DrvDisableSurface. * \**************************************************************************/
VOID DrvDisableDirectDraw( DHPDEV dhpdev) { }
/******************************Public*Routine******************************\
* VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/
BOOL DrvAssertMode( DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable) { //////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE;
return(TRUE); }
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
// there is HW setup in bEnablePointer that needs to be done at assert time too
// coming back from full-screen DOS or hibernate so call enablepointer which
// then calls vAssertModePointer itself. In 8bpp, the DAC resolution was not
// being set correctly after FSdos or Hib. causing screen to be dim
bEnablePointer(ppdev);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE); } else { //////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE)) { vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
// return code with TRUE
bEnablePointer(ppdev);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
ppdev->bEnabled = TRUE;
return(TRUE); } }
return(FALSE); }
/******************************Public*Routine******************************\
* ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/
ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) { DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize;
cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); }
if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { //
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; }
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION; pdm->dmSize = sizeof(DEVMODEW); pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes); }
EngFreeMem(pVideoModeInformation);
return(cbOutputSize); }
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/
BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { BYTE* pjIoBase; BYTE* pjMmBase; DWORD ReturnedDataLength; ULONG ulReturn; BYTE jExtendedMemoryControl; VIDEO_MODE_INFORMATION VideoModeInfo; LONG cjEndOfFrameBuffer; LONG cjPointerOffset; LONG lDelta; ULONG ulMiscState;
pjIoBase = ppdev->pjIoBase; pjMmBase = ppdev->pjMmBase;
if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode.
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; }
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_CURRENT_MODE, NULL, 0, &VideoModeInfo, sizeof(VideoModeInfo), &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE")); goto ReturnFalse; }
#if DEBUG_HEAP
VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth; VideoModeInfo.VideoMemoryBitmapHeight = VideoModeInfo.VisScreenHeight; #endif
// The following variables are determined only after the initial
// modeset:
ppdev->lDelta = VideoModeInfo.ScreenStride; ppdev->flCaps = VideoModeInfo.DriverSpecificAttributeFlags; ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth; ppdev->cxHeap = VideoModeInfo.VideoMemoryBitmapWidth; ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight; ppdev->cyHeap = VideoModeInfo.VideoMemoryBitmapHeight;
ppdev->bMmIo = ((ppdev->flCaps & CAPS_MM_IO) > 0);
// If we're using the S3 hardware pointer, reserve the last 1k of
// the frame buffer to store the pointer shape:
if (!(ppdev->flCaps & (CAPS_SW_POINTER | CAPS_DAC_POINTER))) { // Byte offset from start of frame buffer to end:
cjEndOfFrameBuffer = ppdev->cyMemory * ppdev->lDelta;
// We'll reserve the end of off-screen memory for the hardware
// pointer shape. Unfortunately, the S3 chips have a bug
// where the shape has to be stored on a 1K multiple,
// regardless of what the current screen stride is.
cjPointerOffset = (cjEndOfFrameBuffer - HW_POINTER_TOTAL_SIZE) & ~(HW_POINTER_TOTAL_SIZE - 1);
// Figure out the coordinate where the pointer shape starts:
lDelta = ppdev->lDelta;
ppdev->cjPointerOffset = cjPointerOffset; ppdev->yPointerShape = (cjPointerOffset / lDelta); ppdev->xPointerShape = CONVERT_FROM_BYTES((cjPointerOffset % lDelta), ppdev);
if (ppdev->yPointerShape >= ppdev->cyScreen) { // There's enough room for the pointer shape at the
// bottom of off-screen memory; reserve its room by
// lying about how much off-screen memory there is:
ppdev->cyMemory = ppdev->yPointerShape; } else { // There's not enough room for the pointer shape in
// off-screen memory; we'll have to simulate:
ppdev->flCaps |= CAPS_SW_POINTER; } }
// Do some parameter checking on the values that the miniport
// returned to us:
ASSERTDD(ppdev->cxMemory >= ppdev->cxScreen, "Invalid cxMemory"); ASSERTDD(ppdev->cyMemory >= ppdev->cyScreen, "Invalid cyMemory"); ASSERTDD((ppdev->flCaps & (CAPS_NEW_BANK_CONTROL | CAPS_NEWER_BANK_CONTROL)) || ((ppdev->cxMemory <= 1024) && (ppdev->cyMemory <= 1024)), "Have to have new bank control if more than 1meg memory"); ASSERTDD((ppdev->flCaps & (CAPS_SW_POINTER | CAPS_DAC_POINTER)) != (CAPS_SW_POINTER | CAPS_DAC_POINTER), "Should not set both Software and DAC cursor flags"); ASSERTDD(!(ppdev->flCaps & CAPS_MM_IO) || (ppdev->flCaps & (CAPS_MM_TRANSFER | CAPS_MM_32BIT_TRANSFER)), "Must enable memory-mapped transfer if memory-mapped I/O");
// First thing we do is unlock the accelerator registers:
ACQUIRE_CRTC_CRITICAL_SECTION(ppdev);
OUTPW(pjIoBase, CRTC_INDEX, ((SYSCTL_UNLOCK << 8) | CR39)); OUTPW(pjIoBase, CRTC_INDEX, ((REG_UNLOCK_1 << 8) | S3R8));
// Enable memory-mapped IO. Note that ulMiscState should not be
// read on non-memory mapped I/O S3's because it does not exist
// on 911/924's.
if (ppdev->flCaps & CAPS_MM_IO) { OUTP(pjIoBase, CRTC_INDEX, 0x53);
jExtendedMemoryControl = INP(pjIoBase, CRTC_DATA);
OUTP(pjIoBase, CRTC_DATA, jExtendedMemoryControl | 0x10);
// Read the default MULTI_MISC register state.
IO_GP_WAIT(ppdev); // Wait so we don't interfere with any
// pending commands waiting on the
// FIFO
IO_READ_SEL(ppdev, 6); // We'll be reading index 0xE
IO_GP_WAIT(ppdev); // Wait until that's processed
IO_RD_REG_DT(ppdev, ulMiscState); // Read ulMiscState
// Make the colour and mask registers '32-bit'.
//
// NOTE: This is what precludes enabling MM I/O on 928 boards.
ulMiscState |= 0x0200; IO_MULT_MISC(ppdev, ulMiscState);
ppdev->ulMiscState = ulMiscState; }
RELEASE_CRTC_CRITICAL_SECTION(ppdev);
// Then set the rest of the default registers:
vResetClipping(ppdev);
if (ppdev->flCaps & CAPS_MM_IO) { IO_FIFO_WAIT(ppdev, 1); MM_WRT_MASK(ppdev, pjMmBase, -1); } else { if (DEPTH32(ppdev)) { IO_FIFO_WAIT(ppdev, 2); IO_WRT_MASK32(ppdev, -1); } else { IO_FIFO_WAIT(ppdev, 1); IO_WRT_MASK(ppdev, -1); } } } else { // Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); goto ReturnFalse; } }
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bAssertModeHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * * Note: Should be called before any access is done to the hardware from * the display driver. * \**************************************************************************/
BOOL bEnableHardware( PDEV* ppdev) { BYTE* pjIoBase; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[2]; VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; UCHAR* pj; USHORT* pw; ULONG* pd; ULONG i;
// We need a critical section merely because of some S3 weirdness:
// both the bank control registers and the cursor registers have
// to be accessed through the shared CRTC registers. We want to
// set the GCAPS_ASYNCMOVE flag to allow the cursor to move even
// while we're using the bank registers for a blt -- so we have to
// synchronize all accesses to the CRTC registers.
//
// (Note that in the case of GCAPS_ASYNCMOVE, GDI automatically
// synchronizes with DrvSetPalette, so you don't have to worry
// about overlap between asynchronous cursor moves and the palette
// registers.)
ppdev->csCrtc = EngCreateSemaphore(); if (ppdev->csCrtc == 0) { DISPDBG((0, "bEnableHardware - Error creating CRTC semaphore")); goto ReturnFalse; }
// Map io ports into virtual memory:
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, NULL, // input buffer
0, &VideoAccessRange, // output buffer
sizeof(VideoAccessRange), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Initialization error mapping IO port base")); goto ReturnFalse; }
ppdev->pjIoBase = (UCHAR*) VideoAccessRange[0].VirtualAddress; ppdev->pjMmBase = (BYTE*) VideoAccessRange[1].VirtualAddress;
pjIoBase = ppdev->pjIoBase;
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer
sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Error mapping buffer address")); goto ReturnFalse; }
// Record the Frame Buffer Linear Address.
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; ppdev->cjBank = VideoMemoryInfo.FrameBufferLength;
DISPDBG((1, "pjScreen: %lx pjMmBase: %lx", ppdev->pjScreen, ppdev->pjMmBase));
// Set all the register addresses.
ppdev->ioCur_y = pjIoBase + CUR_Y; ppdev->ioCur_x = pjIoBase + CUR_X; ppdev->ioDesty_axstp = pjIoBase + DEST_Y; ppdev->ioDestx_diastp = pjIoBase + DEST_X; ppdev->ioErr_term = pjIoBase + ERR_TERM; ppdev->ioMaj_axis_pcnt = pjIoBase + MAJ_AXIS_PCNT; ppdev->ioGp_stat_cmd = pjIoBase + CMD; ppdev->ioShort_stroke = pjIoBase + SHORT_STROKE; ppdev->ioBkgd_color = pjIoBase + BKGD_COLOR; ppdev->ioFrgd_color = pjIoBase + FRGD_COLOR; ppdev->ioWrt_mask = pjIoBase + WRT_MASK; ppdev->ioRd_mask = pjIoBase + RD_MASK; ppdev->ioColor_cmp = pjIoBase + COLOR_CMP; ppdev->ioBkgd_mix = pjIoBase + BKGD_MIX; ppdev->ioFrgd_mix = pjIoBase + FRGD_MIX; ppdev->ioMulti_function = pjIoBase + MULTIFUNC_CNTL; ppdev->ioPix_trans = pjIoBase + PIX_TRANS;
for (pw = (USHORT*) ppdev->pjMmBase, i = 0; i < XFER_BUFFERS; i++, pw += 2) { ppdev->apwMmXfer[i] = pw; } for (pd = (ULONG*) ppdev->pjMmBase, i = 0; i < XFER_BUFFERS; i++, pd++) { ppdev->apdMmXfer[i] = pd; }
// Now we can set the mode, unlock the accelerator, and reset the
// clipping:
if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse;
if (ppdev->flCaps & CAPS_MM_IO) { // Can do memory-mapped IO:
ppdev->pfnFillSolid = vMmFillSolid; ppdev->pfnFillPat = vMmFillPatFast; ppdev->pfnXfer1bpp = vMmXfer1bpp; ppdev->pfnXfer4bpp = vMmXfer4bpp; ppdev->pfnXferNative = vMmXferNative; ppdev->pfnCopyBlt = vMmCopyBlt; ppdev->pfnFastPatRealize = vMmFastPatRealize; ppdev->pfnTextOut = bMmTextOut; ppdev->pfnLineToTrivial = vMmLineToTrivial; ppdev->pfnLineToClipped = vMmLineToClipped; ppdev->pfnCopyTransparent = vMmCopyTransparent;
if (ppdev->flCaps & CAPS_MM_32BIT_TRANSFER) ppdev->pfnImageTransfer = vMmImageTransferMm32; else ppdev->pfnImageTransfer = vMmImageTransferMm16;
// On some cards, it may be faster to use the old I/O based
// glyph routine, which uses the CPU to draw all the glyphs
// to a monochrome buffer, and then uses the video hardware
// to colour expand the result:
if (!(ppdev->flCaps & CAPS_MM_GLYPH_EXPAND)) ppdev->pfnTextOut = bIoTextOut;
if (ppdev->flCaps & CAPS_NEW_MMIO) { ppdev->pfnTextOut = bNwTextOut; ppdev->pfnLineToTrivial = vNwLineToTrivial; ppdev->pfnLineToClipped = vNwLineToClipped; } } else { // Have to do IN/OUTs:
ppdev->pfnFillSolid = vIoFillSolid; ppdev->pfnFillPat = vIoFillPatFast; // bEnableBrushCache may override this value
ppdev->pfnXfer1bpp = vIoXfer1bpp; ppdev->pfnXfer4bpp = vIoXfer4bpp; ppdev->pfnXferNative = vIoXferNative; ppdev->pfnCopyBlt = vIoCopyBlt; ppdev->pfnFastPatRealize = vIoFastPatRealize; ppdev->pfnTextOut = bIoTextOut; ppdev->pfnLineToTrivial = vIoLineToTrivial; ppdev->pfnLineToClipped = vIoLineToClipped; ppdev->pfnCopyTransparent = vIoCopyTransparent;
if (ppdev->flCaps & CAPS_MM_TRANSFER) ppdev->pfnImageTransfer = vIoImageTransferMm16; else ppdev->pfnImageTransfer = vIoImageTransferIo16; }
#if DBG
{ ACQUIRE_CRTC_CRITICAL_SECTION(ppdev);
OUTP(pjIoBase, CRTC_INDEX, 0x30);
DISPDBG((0, "Chip: %lx Bank: %lx Width: %li Height: %li Stride: %li Flags: %08lx", (ULONG) INP(pjIoBase, CRTC_DATA), ppdev->cjBank, ppdev->cxMemory, ppdev->cyMemory, ppdev->lDelta, ppdev->flCaps));
RELEASE_CRTC_CRITICAL_SECTION(ppdev); } #endif
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/
VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); }
VideoMemory[0].RequestedVirtualAddress = ppdev->pjIoBase; VideoMemory[1].RequestedVirtualAddress = ppdev->pjMmBase;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS")); }
EngDeleteSemaphore(ppdev->csCrtc); }
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/
BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE; }
while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((8, " Checking against miniport mode:")); DISPDBG((8, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((8, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((8, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((8, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); EngFreeMem(pVideoBuffer); goto ReturnFalse; }
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected; EngFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; pdm->dmPelsWidth = 640; pdm->dmPelsHeight = 480; #endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight; ppdev->cBitsPerPel = VideoModeInformation.BitsPerPlane;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
// We handle HOOK_SYNCHRONIZE separately at surface creation time:
ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_FILLPATH | HOOK_COPYBITS | HOOK_STROKEPATH | HOOK_LINETO | HOOK_STRETCHBLT | HOOK_TRANSPARENTBLT);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8) { ppdev->cjPelSize = 1; ppdev->iBitmapFormat = BMF_8BPP;
// Assuming palette is orthogonal - all colors are same size.
ppdev->cPaletteShift = 8 - pgdi->ulDACRed; DISPDBG((3, "palette shift = %d\n", ppdev->cPaletteShift)); } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->cjPelSize = 2; ppdev->iBitmapFormat = BMF_16BPP; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else if (VideoModeInformation.BitsPerPlane == 24) { ppdev->cjPelSize = 3; ppdev->iBitmapFormat = BMF_24BPP; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else { ASSERTDD(VideoModeInformation.BitsPerPlane == 32, "This driver supports only 8, 16, 24 and 32bpp");
ppdev->cjPelSize = 4; ppdev->iBitmapFormat = BMF_32BPP; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
pdi->iDitherFormat = BMF_32BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); }
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE); }
/******************************Public*Routine******************************\
* DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/
DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller
DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); }
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = EngAllocMem(FL_ZERO_MEMORY, modes.NumModes * modes.ModeInformationLength, ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed EngAllocMem")); return 0; }
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) {
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
EngFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0); }
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes; pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16, 24 or 32 bits per pel.
//
while (ulTemp--) { if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) && (pVideoTemp->BitsPerPlane != 32))) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0; }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); }
return(modes.NumModes); }
|