|
|
/******************************Module*Header*******************************\
* Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1995 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev);
BYTE* gpjBase; BYTE* gpjPorts; BYTE* gpjMmu0;
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, // ulVersion
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE /* | TC_SCROLLBLT */, // flTextCaps --
// Setting TC_SCROLLBLT tells console to scroll
// by repainting the entire window. Otherwise,
// scrolls are done by calling the driver to
// do screen to screen copies.
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulBltAlignment
0, // ulPanningHorzRes
0, // ulPanningVertRes
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = {
(GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER | GCAPS_DIRECTDRAW | GCAPS_ASYNCMOVE ), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvDitherColor, (PFN) DrvDitherColor }, #if !DRIVER_PUNT_ALL
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvPaint, (PFN) DrvPaint }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif
};
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/
BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
DISPDBG((100, "DrvEnableDriver"));
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE); }
/******************************Public*Routine******************************\
* VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/
VOID DrvDisableDriver(VOID) { return; }
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * * (This function mostly returns back information; DrvEnableSurface is used * for initializing the hardware and driver components.) * \**************************************************************************/
DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{ PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
DISPDBG((100, "DrvEnablePDEV"));
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; }
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = (PDEV*) EngAllocMem(0, sizeof(PDEV), ALLOC_TAG); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem")); goto ReturnFailure0; }
memset(ppdev, 0, sizeof(PDEV));
ppdev->hDriver = hDriver;
if (!bGetChipIDandRev(hDriver, ppdev)) { //
// This puppy wasn't recognized as a W32
//
goto ReturnFailure1; }
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { goto ReturnFailure1; }
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; }
return((DHPDEV) ppdev);
ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV")); return(0); }
/******************************Public*Routine******************************\
* DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/
VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev); EngFreeMem(ppdev); }
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/
VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; }
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface * * Creates the drawing surface, initializes the hardware, and initializes * driver components. This function is called after DrvEnablePDEV, and * performs the final device initialization. * \**************************************************************************/
HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First, enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev)) goto ReturnFailure;
if (!bEnableBanking(ppdev)) goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure;
if (!bEnablePointer(ppdev)) goto ReturnFailure;
if (!bEnableText(ppdev)) goto ReturnFailure;
if (!bEnableBrushCache(ppdev)) goto ReturnFailure;
if (!bEnablePalette(ppdev)) goto ReturnFailure;
if (!bEnableDirectDraw(ppdev)) goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG); if (pdsurf == NULL) { DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem")); goto ReturnFailure; }
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB
pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev; pdsurf->cBlt = 0; pdsurf->iUniq = 0;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
//
// If we could map the entire framebuffer linearly into main memory
// (i.e., we didn't have to go through a 64k aperture), it would be
// beneficial to create the surface via EngCreateBitmap, giving GDI a
// pointer to the framebuffer bits. When we pass a call on to GDI
// where it can't directly read/write to the surface bits because the
// surface is device managed, it has to create a temporary bitmap and
// call our DrvCopyBits routine to get/set a copy of the affected bits.
// For example, the OpenGL component prefers to be able to write on the
// framebuffer bits directly.
sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen;
if (ppdev->bAutoBanking) { HSURF hsurfFrameBuf;
// Engine-managed surface:
hsurfFrameBuf = (HSURF) EngCreateBitmap(sizl, ppdev->lDelta, ppdev->iBitmapFormat, BMF_TOPDOWN, ppdev->pjScreen); if (hsurfFrameBuf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateBitmap")); goto ReturnFailure; }
if (!EngAssociateSurface(hsurfFrameBuf, ppdev->hdevEng, 0)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 1")); goto ReturnFailure; }
ppdev->psoFrameBuffer = EngLockSurface(hsurfFrameBuf); if (ppdev->psoFrameBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Couldn't lock our surface")); goto ReturnFailure; } }
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; }
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 2")); goto ReturnFailure; }
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG);
if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc")); goto ReturnFailure; }
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure: DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0); }
/******************************Public*Routine******************************\
* VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/
VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
if (ppdev->bAutoBanking) { EngUnlockSurface(ppdev->psoFrameBuffer); }
vDisableDirectDraw(ppdev); vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableBanking(ppdev); vDisableHardware(ppdev);
EngDeleteSurface(ppdev->hsurfScreen);
if (ppdev->pvTmpBuffer) { EngFreeMem(ppdev->pvTmpBuffer); }
if (ppdev->pdsurfScreen) { EngFreeMem(ppdev->pdsurfScreen); } }
/******************************Public*Routine******************************\
* VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/
BOOL DrvAssertMode( DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable) { //////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE;
return(TRUE); }
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE); } else { //////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE)) { vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
// return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
ppdev->bEnabled = TRUE;
return(TRUE); } }
return(FALSE); }
/******************************Public*Routine******************************\
* ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/
ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) {
DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize;
if (!bGetChipIDandRev(hDriver, NULL)) { //
// This puppy wasn't recognized as a W32
//
return(0); }
cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); }
if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { //
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; }
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION; pdm->dmSize = sizeof(DEVMODEW); pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes); }
EngFreeMem(pVideoModeInformation);
return(cbOutputSize); }
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/
BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn; VIDEO_MODE_INFORMATION VideoModeInfo; LONG cjEndOfFrameBuffer; LONG cjPointerOffset; LONG lDelta; ULONG ulMode;
if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode.
ulMode = ppdev->ulMode;
if (ppdev->bAutoBanking) { ulMode |= VIDEO_MODE_MAP_MEM_LINEAR; }
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; }
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_CURRENT_MODE, NULL, 0, &VideoModeInfo, sizeof(VideoModeInfo), &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE")); goto ReturnFalse; }
#if DEBUG_HEAP
VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth; VideoModeInfo.VideoMemoryBitmapHeight = VideoModeInfo.VisScreenHeight; #endif
// The following variables are determined only after the initial
// modeset:
ppdev->lDelta = VideoModeInfo.ScreenStride; ppdev->flCaps = VideoModeInfo.AttributeFlags;
ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth; ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight;
DISPDBG((1,"ppdev->cxMemory = %d",ppdev->cxMemory)); DISPDBG((1,"ppdev->cyMemory = %d",ppdev->cyMemory));
#if DRIVER_PUNT_ALL
//
// Force SW cursor if PUNT_ALL
//
ppdev->flCaps |= CAPS_SW_POINTER; #endif
if (ppdev->ulChipID != ET6000) { if ((ppdev->cBpp > 1) || (ppdev->cxScreen > 1024)) { ppdev->flCaps |= CAPS_SW_POINTER; } }
if (ppdev->cxScreen < 512) { // The 320x240 and 320x200 modes can't use HW pointers
ppdev->flCaps |= CAPS_SW_POINTER; }
// If we're using the hardware pointer, reserve the last 1k of
// the frame buffer to store the pointer shape:
if (!(ppdev->flCaps & (CAPS_SW_POINTER))) { // Byte offset from start of frame buffer to end:
cjEndOfFrameBuffer = ppdev->cyMemory * ppdev->lDelta;
// We'll reserve the end of off-screen memory for the hardware
// pointer shape.
cjPointerOffset = (cjEndOfFrameBuffer - SPRITE_BUFFER_SIZE);
// If we are using the ET6000 then we are going to round up to the
// next 1K boundary. This is necessary because of the requirements
// of the ET6000 sprite.
if (ppdev->ulChipID == ET6000) { cjPointerOffset += 1023; cjPointerOffset &= 0xFFFFFC00; }
// Figure out the coordinate where the pointer shape starts:
lDelta = ppdev->lDelta;
ppdev->cjPointerOffset = cjPointerOffset; ppdev->yPointerShape = (cjPointerOffset / lDelta); ppdev->xPointerShape = (cjPointerOffset % lDelta) / ppdev->cBpp;
if (ppdev->yPointerShape >= ppdev->cyScreen) { // There's enough room for the pointer shape at the
// bottom of off-screen memory; reserve its room by
// lying about how much off-screen memory there is:
ppdev->cyMemory = ppdev->yPointerShape; } else { // There's not enough room for the pointer shape in
// off-screen memory; we'll have to simulate:
ppdev->flCaps |= CAPS_SW_POINTER; } }
{ BYTE* pjBase = ppdev->pjBase; LONG lDeltaScreen;
// Set the default state of the MMU Control Register so the ACL
// can start. This must be done on pre W32p chips.
if (ppdev->ulChipID != ET6000) { // Set a known state for all the MMU apertures, linear address,
// non-accelerated.
// Set MMU Aperture 2 so it will route its data to the ACL
CP_MMU_CTRL(ppdev, pjBase, 0x70 | MMU_APERTURE_2_ACL_BIT);
if (ppdev->ulChipID != W32P) { CP_STATE(ppdev, pjBase, 0x09); CP_X_POS_W32(ppdev, pjBase, 0); CP_Y_POS_W32(ppdev, pjBase, 0); } else { CP_X_POS_W32P(ppdev, pjBase, 0); CP_Y_POS_W32P(ppdev, pjBase, 0); } }
// Set default values to the following registers.
// These values should not change. If they are changed, it is the
// responsiblity of the of the code that changed them to set them
// back to the values they are set to here.
CP_SRC_WRAP(ppdev, pjBase, NO_PATTERN_WRAP); if (ppdev->ulChipID == ET6000) { CP_ACL_CONFIG(ppdev, pjBase, 0x06); CP_ROUTING_CTRL(ppdev, pjBase, 0x33); } else { // Enable using wait-states to sync with the ACL QUEUE.
CP_SYNC_ENABLE(ppdev, pjBase, 0x01); CP_ROUTING_CTRL(ppdev, pjBase, 0); }
// Set the W32's source and destination offset registers.
lDeltaScreen = ppdev->cxMemory;
CP_SRC_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1)); CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1));
// Set the default blit direction.
CP_XY_DIR(ppdev, pjBase, 0);
// The W32p overloads the Virtual Bus size register for use as the
// ACL pixel depth register.
// Set a default value for the ACL pixel depth to 1 byte.
// This should be benign on the W32 and W32i.
CP_BUS_SIZE(ppdev, pjBase, 0);
// If this is a W32p then we must set ASEN in the OperationStateReg
// the ACL can start.
if ((ppdev->ulChipID == W32P) || (ppdev->ulChipID == ET6000)) { CP_STATE(ppdev, pjBase, 0x10); }
//
// The following MUST be done for all pre-W32p chips. It must
// also be done for W32p rev A chips because the register still
// exists (though undocumented). The operation is harmless on
// later chips, so just do it.
//
CP_RELOAD_CTRL(ppdev, pjBase, 0);
//
// An outside source has told us that certain ET6000 cards will
// not correctly be reset during reboot if the ACL Transfer
// Disable Register is not cleared. The BIOS will normally clear
// this register during boot, but if the card gets hot, the
// register isn't always cleared. We will clear it here just
// to be sure.
//
if (ppdev->ulChipID == ET6000) { CP_XFER_DISABLE(ppdev, pjBase, 0); } }
// Do some paramater checking on the values that the miniport
// returned to us:
ASSERTDD(ppdev->cxMemory >= ppdev->cxScreen, "Invalid cxMemory"); ASSERTDD(ppdev->cyMemory >= ppdev->cyScreen, "Invalid cyMemory"); } else { // Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); goto ReturnFalse; } }
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bAssertModeHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * * Note: Should be called before any access is done to the hardware from * the display driver. * \**************************************************************************/
BOOL bEnableHardware( PDEV* ppdev) { VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; DWORD uRet; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[3]; ULONG ulMode;
ulMode = ppdev->ulMode | VIDEO_MODE_MAP_MEM_LINEAR;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { ulMode &= ~VIDEO_MODE_MAP_MEM_LINEAR;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) {
DISPDBG((0, "bEnableHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; } }
ppdev->bAutoBanking = (ulMode & VIDEO_MODE_MAP_MEM_LINEAR) ? TRUE : FALSE;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, NULL, 0, (PVOID) &VideoAccessRange, sizeof (VideoAccessRange), &ReturnedDataLength) != NO_ERROR) { DISPDBG((0, "bEnableHardware - Error mapping access ranges.")); goto ReturnFalse; }
ppdev->pjMmu0 = gpjMmu0 = VideoAccessRange[0].VirtualAddress; ppdev->pjMmu1 = ppdev->pjMmu0 + 1 * 0x2000; ppdev->pjMmu2 = ppdev->pjMmu0 + 2 * 0x2000;
ppdev->pjBase = gpjBase = VideoAccessRange[1].VirtualAddress; ppdev->pjPorts = gpjPorts = VideoAccessRange[2].VirtualAddress;
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
uRet = EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer
sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo), &ReturnedDataLength); if (uRet != NO_ERROR) { DISPDBG((0, "bEnableHardware - Error mapping video buffer")); goto ReturnFalse; }
DISPDBG((1, "FrameBufferBase(ie. pjScreen) %lx", VideoMemoryInfo.FrameBufferBase)); DISPDBG((1, "FrameBufferLength %lx", VideoMemoryInfo.FrameBufferLength));
// Record the Frame Buffer Linear Address.
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; ppdev->cjBank = VideoMemoryInfo.FrameBufferLength; //ppdev->bAutoBanking = (VideoMemoryInfo.VideoRamLength ==
// VideoMemoryInfo.FrameBufferLength)?
// TRUE:FALSE;
//
// We've done the mapping for IO ports and memory space, so let's get
// the pointer to the PCI config space. This is gotten from the CTRC
// registers 21,22, & 23 on the ET6000.
//
if (ppdev->ulChipID == ET6000) { char a, b, c;
OUTP(CRTC_INDEX, 0x23); a = INP(CRTC_DATA); OUTP(CRTC_INDEX, 0x22); b = INP(CRTC_DATA); OUTP(CRTC_INDEX, 0x21); c = INP(CRTC_DATA);
ppdev->PCIConfigSpaceAddr = ((long) a << 24) | ((long) b << 16) | ((long) c << 8); }
// Now we can set the mode and unlock the accelerator.
if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse;
// Can do memory-mapped IO:
if (ppdev->ulChipID == ET6000) { ppdev->pfnXfer1bpp = vET6000SlowXfer1bpp; } else { ppdev->pfnXfer1bpp = vSlowXfer1bpp; }
ppdev->pfnFillPat = vPatternFillScr; ppdev->pfnCopyBlt = vScrToScr; ppdev->pfnFastPatRealize = vFastPatRealize;
/////////////////////////////////////////////////////////////
// Fill in pfns specific to color depth
if (ppdev->cBpp == 3) { ppdev->pfnFillSolid = vSolidFillScr24; } else { ppdev->pfnFillSolid = vSolidFillScr; }
/////////////////////////////////////////////////////////////
// Fill in pfns specific to linear vs banked frame buffer
if (ppdev->bAutoBanking) { ppdev->pfnGetBits = vGetBitsLinear; ppdev->pfnPutBits = vPutBitsLinear; } else { ppdev->pfnGetBits = vGetBits; ppdev->pfnPutBits = vPutBits; }
/////////////////////////////////////////////////////////////
// Fill in pfns specific to chip type
if (ppdev->ulChipID == W32P) { ppdev->pfnXferNative = vXferBlt8p; } else if (ppdev->ulChipID == ET6000) { ppdev->pfnXferNative = vXferET6000; } else { ppdev->pfnXferNative = vXferBlt8i; }
#if DBG
{ DISPDBG((1, "cjBank: %lx, cxMemory: %li, cyMemory: %li, lDelta: %li, Flags: %lx", ppdev->cjBank, ppdev->cxMemory, ppdev->cyMemory, ppdev->lDelta, ppdev->flCaps));
if (ppdev->flCaps & CAPS_SW_POINTER) { DISPDBG((0, "Using software pointer")); } else { DISPDBG((0, "Using hardware pointer")); }
DISPDBG((0, "%d bpp mode", ppdev->cBpp * 8));
if(ppdev->bAutoBanking) { DISPDBG((0, "Linear Mode")); } else { DISPDBG((0, "Banked Mode")); } } #endif
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/
VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); }
VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvMemoryBufferVirtualAddr;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 1")); }
VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvPortsVirtualAddr;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 2")); } }
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/
BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE; }
while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((2, " Checking against miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); EngFreeMem(pVideoBuffer); goto ReturnFalse; }
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected; EngFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; #endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_COPYBITS | HOOK_STROKEPATH #if !DRIVER_PUNT_ALL
| HOOK_PAINT | HOOK_STRETCHBLT #endif
);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8) { ppdev->w32PatternWrap = PATTERN_WRAP_8x8; ppdev->cPelSize = 0; ppdev->cBpp = 1; ppdev->iBitmapFormat = BMF_8BPP; ppdev->ulWhite = 0xff; } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->w32PatternWrap = PATTERN_WRAP_16x8; ppdev->cPelSize = 1; ppdev->cBpp = 2; ppdev->iBitmapFormat = BMF_16BPP; ppdev->ulWhite = 0xffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else { ASSERTDD(VideoModeInformation.BitsPerPlane == 24, "This driver supports only 8, 16 and 24bpp");
ppdev->w32PatternWrap = PATTERN_WRAP_32x8; ppdev->cPelSize = 2; ppdev->cBpp = 3; ppdev->iBitmapFormat = BMF_24BPP; ppdev->ulWhite = 0xffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); }
DISPDBG((5, "Passed bInitializeModeFields")); return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields")); return(FALSE); }
/******************************Public*Routine******************************\
* DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/
DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); }
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = (PVIDEO_MODE_INFORMATION) EngAllocMem(0, modes.NumModes * modes.ModeInformationLength, ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed EngAllocMem")); return 0; }
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) {
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
EngFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0); }
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes; pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16 or 24 bits per pel.
//
while (ulTemp--) { if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) // !!! will this work
)) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0; }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); }
return(modes.NumModes); }
/******************************Public*Routine******************************\
* BOOL bGetChipIDandRev * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * * If bRetInfo is TRUE then pChipIDandRev is filled in. * * Returns TRUE if chip is one of the W32 family, FALSE otherwise * \**************************************************************************/
BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev) {
BYTE jChipID; BOOL bRet = TRUE; VIDEO_COPROCESSOR_INFORMATION VideoCoprocessorInfo; DWORD ReturnedDataLength;
//
// Get information about the video card.
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_GET_VIDEO_CARD_INFO, NULL, 0, &VideoCoprocessorInfo, sizeof(VIDEO_COPROCESSOR_INFORMATION), &ReturnedDataLength)) { RIP("bGetChipIDandRev - Couldn't get video card info"); bRet = FALSE; goto ReturnStatus; }
if (VideoCoprocessorInfo.ulChipID < W32) { bRet = FALSE; goto ReturnStatus; }
if (ppdev) { ppdev->ulChipID = VideoCoprocessorInfo.ulChipID; ppdev->ulRevLevel = VideoCoprocessorInfo.ulRevLevel; }
DISPDBG((1, "ulChipID = %d", VideoCoprocessorInfo.ulChipID)); DISPDBG((1, "ulRevLevel = %d", VideoCoprocessorInfo.ulRevLevel));
ReturnStatus: return (bRet); }
|