|
|
/******************************Module*Header*******************************\
* Module Name: heap.c * * This module contains the routines for a 2-d heap. It is used primarily * for allocating space for device-format-bitmaps in off-screen memory. * * Off-screen bitmaps are a big deal on NT because: * * 1) It reduces the working set. Any bitmap stored in off-screen * memory is a bitmap that isn't taking up space in main memory. * * 2) There is a speed win by using the accelerator hardware for * drawing, in place of NT's GDI code. NT's GDI is written entirely * in 'C++' and perhaps isn't as fast as it could be. * * 3) It leads naturally to nifty tricks that can take advantage of * the hardware, such as MaskBlt support and cheap double buffering * for OpenGL. * * The heap algorithm employed herein attempts to solve an unsolvable * problem: the problem of keeping arbitrary sized bitmaps as packed as * possible in a 2-d space, when the bitmaps can come and go at random. * * This problem is due entirely to the nature of the hardware for which this * driver is written: the hardware treats everything as 2-d quantities. If * the hardware bitmap pitch could be changed so that the bitmaps could be * packed linearly in memory, the problem would be infinitely easier (it is * much easier to track the memory, and the accelerator can be used to re-pack * the heap to avoid segmentation). * * If your hardware can treat bitmaps as one dimensional quantities (as can * the XGA and ATI), by all means please implement a new off-screen heap. * * When the heap gets full, old allocations will automatically be punted * from off-screen and copied to DIBs, which we'll let GDI draw on. * * Note that this heap manages reverse-L shape off-screen memory * configurations (where the scan pitch is longer than the visible screen, * such as happens at 800x600 when the scan length must be a multiple of * 1024). * * NOTE: All heap operations must be done under some sort of synchronization, * whether it's controlled by GDI or explicitly by the driver. All * the routines in this module assume that they have exclusive access * to the heap data structures; multiple threads partying in here at * the same time would be a Bad Thing. (By default, GDI does NOT * synchronize drawing on device-created bitmaps.) * * Copyright (c) 1993-1996 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#define OH_ALLOC_SIZE 4000 // Do all memory allocations in 4k chunks
#define OH_QUANTUM 4 // The minimum dimension of an allocation
#define CXCY_SENTINEL 0x7fffffff // The sentinel at the end of the available
// list has this very large 'cxcy' value
// This macro results in the available list being maintained with a
// cx-major, cy-minor sort:
#define CXCY(cx, cy) (((cx) << 16) | (cy))
/******************************Public*Routine******************************\
* OH* pohNewNode * * Allocates a basic memory unit in which we'll pack our data structures. * * Since we'll have a lot of OH nodes, most of which we will be * occasionally traversing, we do our own memory allocation scheme to * keep them densely packed in memory. * * It would be the worst possible thing for the working set to simply * call EngAllocMem(sizeof(OH)) every time we needed a new node. There * would be no locality; OH nodes would get scattered throughout memory, * and as we traversed the available list for one of our allocations, * it would be far more likely that we would hit a hard page fault. \**************************************************************************/
OH* pohNewNode( PDEV* ppdev) { LONG i; LONG cOhs; OHALLOC* poha; OH* poh;
if (ppdev->heap.pohFreeList == NULL) { // We zero-init to initialize all the OH flags, and to help in
// debugging (we can afford to do this since we'll be doing this
// very infrequently):
poha = EngAllocMem(FL_ZERO_MEMORY, OH_ALLOC_SIZE, ALLOC_TAG); if (poha == NULL) return(NULL);
// Insert this OHALLOC at the begining of the OHALLOC chain:
poha->pohaNext = ppdev->heap.pohaChain; ppdev->heap.pohaChain = poha;
// This has a '+ 1' because OHALLOC includes an extra OH in its
// structure declaration:
cOhs = (OH_ALLOC_SIZE - sizeof(OHALLOC)) / sizeof(OH) + 1;
// The big OHALLOC allocation is simply a container for a bunch of
// OH data structures in an array. The new OH data structures are
// linked together and added to the OH free list:
poh = &poha->aoh[0]; for (i = cOhs - 1; i != 0; i--) { poh->pohNext = poh + 1; poh = poh + 1; }
poh->pohNext = NULL; ppdev->heap.pohFreeList = &poha->aoh[0]; }
poh = ppdev->heap.pohFreeList; ppdev->heap.pohFreeList = poh->pohNext;
return(poh); }
/******************************Public*Routine******************************\
* VOID vOhFreeNode * * Frees our basic data structure allocation unit by adding it to a free * list. * \**************************************************************************/
VOID vOhFreeNode( PDEV* ppdev, OH* poh) { if (poh == NULL) return;
poh->pohNext = ppdev->heap.pohFreeList; ppdev->heap.pohFreeList = poh; poh->ohState = -1; }
/******************************Public*Routine******************************\
* VOID vCalculateMaximumNonPermanent * * Traverses the list of in-use and available rectangles to find the one * with the maximal area. * \**************************************************************************/
VOID vCalculateMaximumNonPermanent( PDEV* ppdev) { OH* poh; OH* pohSentinel; LONG lArea; LONG lMaxArea; LONG cxMax; LONG cyMax; LONG i;
lMaxArea = 0; cxMax = 0; cyMax = 0;
// First time through, loop through the list of free available
// rectangles:
pohSentinel = &ppdev->heap.ohFree;
for (i = 2; i != 0; i--) { for (poh = pohSentinel->pohNext; poh != pohSentinel; poh = poh->pohNext) { ASSERTDD(poh->ohState != OH_PERMANENT, "Permanent node in free or discardable list");
// We don't have worry about this multiply overflowing
// because we are dealing in physical screen coordinates,
// which will probably never be more than 15 bits:
lArea = poh->cx * poh->cy; if (lArea > lMaxArea) { cxMax = poh->cx; cyMax = poh->cy; lMaxArea = lArea; } }
// Second time through, loop through the list of discardable
// rectangles:
pohSentinel = &ppdev->heap.ohDiscardable; }
// All that we are interested in is the dimensions of the rectangle
// that has the largest possible available area (and remember that
// there might not be any possible available area):
ppdev->heap.cxMax = cxMax; ppdev->heap.cyMax = cyMax; }
/******************************Public*Routine******************************\
* OH* pohFree * * Frees an off-screen heap allocation. The free space will be combined * with any adjacent free spaces to avoid segmentation of the 2-d heap. * * Note: A key idea here is that the data structure for the upper-left- * most node must be kept at the same physical CPU memory so that * adjacency links are kept correctly (when two free spaces are * merged, the lower or right node can be freed). * \**************************************************************************/
OH* pohFree( PDEV* ppdev, OH* poh) { ULONG cxcy; OH* pohBeside; OH* pohNext; OH* pohPrev; OHSTATE oldState;
if (poh == NULL) return(NULL);
DISPDBG((2, "Freeing %li x %li at (%li, %li)", poh->cx, poh->cy, poh->x, poh->y));
#if DEBUG_HEAP
{ RECTL rclBitmap; RBRUSH_COLOR rbc; LONG xOffset; LONG yOffset; LONG xyOffset;
rclBitmap.left = poh->x; rclBitmap.top = poh->y; rclBitmap.right = poh->x + poh->cx; rclBitmap.bottom = poh->y + poh->cy;
xOffset = ppdev->xOffset; yOffset = ppdev->yOffset; xyOffset = ppdev->xyOffset;
ppdev->xOffset = 0; ppdev->yOffset = 0; ppdev->xyOffset = 0;
ppdev->pfnFillSolid(ppdev, 1, &rclBitmap, 0x0, rbc, NULL);
ppdev->xOffset = xOffset; ppdev->yOffset = yOffset; ppdev->xyOffset = xyOffset; } #endif
oldState = poh->ohState; if (oldState != OH_DISCARDABLE) { // We can remove the 'reserved' status unless we are merely
// deleting a discardable rectangle that was temporarily
// placed in a reserve rectangle:
poh->cxReserved = 0; poh->cyReserved = 0; }
// Update the uniqueness to show that space has been freed, so that
// we may decide to see if some DIBs can be moved back into off-screen
// memory:
ppdev->iHeapUniq++;
MergeLoop:
// Try merging with the right sibling:
pohBeside = poh->pohRight; if ((poh->cxReserved != poh->cx) && (pohBeside->ohState == OH_FREE) && (pohBeside->cy == poh->cy) && (pohBeside->pohUp == poh->pohUp) && (pohBeside->pohDown == poh->pohDown) && (pohBeside->pohRight->pohLeft != pohBeside)) { // Add the right rectangle to ours:
poh->cx += pohBeside->cx; poh->pohRight = pohBeside->pohRight;
// Remove 'pohBeside' from the free list and free it:
pohBeside->pohNext->pohPrev = pohBeside->pohPrev; pohBeside->pohPrev->pohNext = pohBeside->pohNext;
vOhFreeNode(ppdev, pohBeside); goto MergeLoop; }
// Try merging with the lower sibling:
pohBeside = poh->pohDown; if ((poh->cyReserved != poh->cy) && (pohBeside->ohState == OH_FREE) && (pohBeside->cx == poh->cx) && (pohBeside->pohLeft == poh->pohLeft) && (pohBeside->pohRight == poh->pohRight) && (pohBeside->pohDown->pohUp != pohBeside)) { poh->cy += pohBeside->cy; poh->pohDown = pohBeside->pohDown;
pohBeside->pohNext->pohPrev = pohBeside->pohPrev; pohBeside->pohPrev->pohNext = pohBeside->pohNext;
vOhFreeNode(ppdev, pohBeside); goto MergeLoop; }
// Don't do any more merge this rectangle into anything to the
// top or to the left if it's reserved:
if (!poh->cxReserved) { // Try merging with the left sibling:
pohBeside = poh->pohLeft; if ((pohBeside->cxReserved != pohBeside->cx) && (pohBeside->ohState == OH_FREE) && (pohBeside->cy == poh->cy) && (pohBeside->pohUp == poh->pohUp) && (pohBeside->pohDown == poh->pohDown) && (pohBeside->pohRight == poh) && (poh->pohRight->pohLeft != poh)) { // We add our rectangle to the one to the left:
pohBeside->cx += poh->cx; pohBeside->pohRight = poh->pohRight;
// Remove 'poh' from whatever list it was in (if we were
// asked to free a 'permanent' node, it will have been in
// the permanent list) and free it:
poh->pohNext->pohPrev = poh->pohPrev; poh->pohPrev->pohNext = poh->pohNext;
vOhFreeNode(ppdev, poh);
poh = pohBeside; goto MergeLoop; }
// Try merging with the upper sibling:
pohBeside = poh->pohUp; if ((pohBeside->cyReserved != pohBeside->cy) && (pohBeside->ohState == OH_FREE) && (pohBeside->cx == poh->cx) && (pohBeside->pohLeft == poh->pohLeft) && (pohBeside->pohRight == poh->pohRight) && (pohBeside->pohDown == poh) && (poh->pohDown->pohUp != poh)) { pohBeside->cy += poh->cy; pohBeside->pohDown = poh->pohDown;
poh->pohNext->pohPrev = poh->pohPrev; poh->pohPrev->pohNext = poh->pohNext;
vOhFreeNode(ppdev, poh);
poh = pohBeside; goto MergeLoop; } }
// Remove this node from whatever list it's in:
poh->pohNext->pohPrev = poh->pohPrev; poh->pohPrev->pohNext = poh->pohNext;
cxcy = CXCY(poh->cx, poh->cy);
// Insert the node, in order, into the free list:
pohNext = ppdev->heap.ohFree.pohNext; while (pohNext->cxcy < cxcy) { pohNext = pohNext->pohNext; } pohPrev = pohNext->pohPrev;
pohPrev->pohNext = poh; pohNext->pohPrev = poh; poh->pohPrev = pohPrev; poh->pohNext = pohNext; poh->cxcy = cxcy; poh->ohState = OH_FREE;
if (oldState == OH_PERMANENT) { // Removing the permanent entry means that we may be able to
// enlarge the maximum possible rectangle we can allow:
vCalculateMaximumNonPermanent(ppdev); }
// Return the node pointer for the new and improved available rectangle:
return(poh); }
/******************************Public*Routine******************************\
* BOOL bDiscardEverythingInRectangle * * Throws out of the heap any discardable bitmaps that intersect with the * specified rectangle. * \**************************************************************************/
BOOL bDiscardEverythingInRectangle( PDEV* ppdev, LONG x, LONG y, LONG cx, LONG cy) { BOOL bRet; OH* poh; OH* pohNext;
bRet = TRUE; // Assume success
poh = ppdev->heap.ohDiscardable.pohNext; while (poh != &ppdev->heap.ohDiscardable) { ASSERTDD(poh->ohState == OH_DISCARDABLE, "Non-discardable node in discardable list");
pohNext = poh->pohNext;
if ((poh->x < x + cx) && (poh->y < y + cy) && (poh->x + poh->cx > x) && (poh->y + poh->cy > y)) { // The two rectangles intersect. Give the boot to the
// discardable bitmap:
if (!pohMoveOffscreenDfbToDib(ppdev, poh)) bRet = FALSE; }
poh = pohNext; }
return(bRet); }
/******************************Public*Routine******************************\
* BOOL bFreeRightAndBottomSpace * * Given a free off-screen rectangle, allocates the upper-left part of * the rectangle to hold the allocation request, and puts the two rectangles * comprising the unused right and bottom portions on the free list. * \**************************************************************************/
BOOL bFreeRightAndBottomSpace( PDEV* ppdev, OH* pohThis, LONG cxThis, LONG cyThis, BOOL bQuantum) // Set if inifitely small allocations should be
// allowed
{ ULONG cxcy; // Temporary versions
OH* pohNext; OH* pohPrev; LONG cxRem; LONG cyRem; OH* pohBelow; LONG cxBelow; LONG cyBelow; OH* pohBeside; LONG cxBeside; LONG cyBeside; LONG cQuantum;
// We're going to use the upper-left corner of our given rectangle,
// and divide the unused remainder into two rectangles which will
// go on the free list.
// Compute the width of the unused rectangle to the right, and the
// height of the unused rectangle below:
cyRem = pohThis->cy - cyThis; cxRem = pohThis->cx - cxThis;
// Given finite area, we wish to find the two rectangles that are
// most square -- i.e., the arrangement that gives two rectangles
// with the least perimiter:
cyBelow = cyRem; cxBeside = cxRem;
if (cxRem <= cyRem) { cxBelow = cxThis + cxRem; cyBeside = cyThis; } else { cxBelow = cxThis; cyBeside = cyThis + cyRem; }
// If 'bQuantum' is set, we only make new available rectangles of
// the unused right and bottom portions if they're greater in
// dimension than OH_QUANTUM (it hardly makes sense to do the
// book-work to keep around a 2-pixel wide available space, for
// example):
cQuantum = (bQuantum) ? 1 : OH_QUANTUM;
pohBeside = NULL; if (cxBeside >= cQuantum) { pohBeside = pohNewNode(ppdev); if (pohBeside == NULL) return(FALSE); }
pohBelow = NULL; if (cyBelow >= cQuantum) { pohBelow = pohNewNode(ppdev); if (pohBelow == NULL) { vOhFreeNode(ppdev, pohBeside); return(FALSE); }
// Insert this rectangle into the available list (which is
// sorted on ascending cxcy):
cxcy = CXCY(cxBelow, cyBelow); pohNext = ppdev->heap.ohFree.pohNext; while (pohNext->cxcy < cxcy) { pohNext = pohNext->pohNext; } pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohBelow; pohNext->pohPrev = pohBelow; pohBelow->pohPrev = pohPrev; pohBelow->pohNext = pohNext;
// Now update the adjacency information:
pohBelow->pohLeft = pohThis->pohLeft; pohBelow->pohUp = pohThis; pohBelow->pohRight = pohThis->pohRight; pohBelow->pohDown = pohThis->pohDown;
// Update the rest of the new node information:
pohBelow->cxReserved = 0; pohBelow->cyReserved = 0; pohBelow->cxcy = cxcy; pohBelow->ohState = OH_FREE; pohBelow->x = pohThis->x; pohBelow->y = pohThis->y + cyThis; pohBelow->xy = ((ppdev->cBpp * pohBelow->x) + (pohBelow->y * ppdev->lDelta)); pohBelow->cx = cxBelow; pohBelow->cy = cyBelow;
// Modify the current node to reflect the changes we've made:
pohThis->cy = cyThis; }
if (cxBeside >= cQuantum) { // Insert this rectangle into the available list (which is
// sorted on ascending cxcy):
cxcy = CXCY(cxBeside, cyBeside); pohNext = ppdev->heap.ohFree.pohNext; while (pohNext->cxcy < cxcy) { pohNext = pohNext->pohNext; } pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohBeside; pohNext->pohPrev = pohBeside; pohBeside->pohPrev = pohPrev; pohBeside->pohNext = pohNext;
// Now update the adjacency information:
pohBeside->pohUp = pohThis->pohUp; pohBeside->pohLeft = pohThis; pohBeside->pohDown = pohThis->pohDown; pohBeside->pohRight = pohThis->pohRight;
// Update the rest of the new node information:
pohBeside->cxReserved = 0; pohBeside->cyReserved = 0; pohBeside->cxcy = cxcy; pohBeside->ohState = OH_FREE; pohBeside->x = pohThis->x + cxThis; pohBeside->y = pohThis->y; pohBeside->xy = ((ppdev->cBpp * pohBeside->x) + (pohBeside->y * ppdev->lDelta)); pohBeside->cx = cxBeside; pohBeside->cy = cyBeside;
// Modify the current node to reflect the changes we've made:
pohThis->cx = cxThis; }
if (pohBelow != NULL) { pohThis->pohDown = pohBelow; if ((pohBeside != NULL) && (cyBeside == pohThis->cy)) pohBeside->pohDown = pohBelow; } if (pohBeside != NULL) { pohThis->pohRight = pohBeside; if ((pohBelow != NULL) && (cxBelow == pohThis->cx)) pohBelow->pohRight = pohBeside; }
pohThis->cxcy = CXCY(pohThis->cx, pohThis->cy);
return(TRUE); }
/******************************Public*Routine******************************\
* OH* pohMakeRoomAtLocation * * Attempts to allocate a rectangle at a specific position. * \**************************************************************************/
OH* pohMakeRoomAtLocation( PDEV* ppdev, POINTL* pptl, // Requested position for the rectangle
LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLONG floh) // Allocation flags
{ OH* poh; OH* pohTop; OH* pohLeft; LONG cxLeft; LONG cyTop; OH* pohRight;
if (!(floh & FLOH_ONLY_IF_ROOM)) { // First off, discard any bitmaps that overlap the requested
// rectangle, assuming we're allowed to:
if (!bDiscardEverythingInRectangle(ppdev, pptl->x, pptl->y, cxThis, cyThis)) return(NULL); }
// Now see if there is a free rectangle that entirely contains the
// requested rectangle.
for (poh = ppdev->heap.ohFree.pohNext; poh != &ppdev->heap.ohFree; poh = poh->pohNext) { ASSERTDD(poh->ohState == OH_FREE, "Non-free node in free list");
// See if the current free rectangle completely contains the
// requested rectangle:
if ((poh->x <= pptl->x) && (poh->y <= pptl->y) && (poh->x + poh->cx >= pptl->x + cxThis) && (poh->y + poh->cy >= pptl->y + cyThis)) { // We can't reserve this rectangle, or make it permanent, if it's
// already been reserved:
if ((!poh->cxReserved) || ((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)) == 0)) { // The 'poh' rectangle entirely contains the requested
// rectangle. We may have a situation like this, where
// the smaller rectangle is the requested rectangle, and
// the larger rectangle is the available rectangle:
//
// +-------------------+
// | |
// | +---------+ |
// | |Requested| |
// | | | |
// | +---------+ |
// | |
// +-------------------+
//
// We want to make the space to the left and to the top of
// the requested rectangle available to the heap. Our
// free-space routine only knows how to free space to the
// right and bottom of an allocation, though. So we will
// temporarily allocate temporary rectangles to subdivide
// our rectangle like the following:
//
// +-------------------+
// |Top |
// +----+--------------+
// |Left|Free |
// | | |
// | | |
// | | |
// +----+--------------+
//
// Then, in the resulting 'Free' space, we will allocate the
// upper-left corner for our requested rectangle, after which
// we will go back and free the 'Top' and 'Left' temporary
// rectangles.
pohTop = NULL; pohLeft = NULL; cxLeft = pptl->x - poh->x; cyTop = pptl->y - poh->y;
if (cyTop > 0) { if (!bFreeRightAndBottomSpace(ppdev, poh, poh->cx, cyTop, TRUE)) { return(NULL); }
pohTop = poh; poh = pohTop->pohDown; }
if (cxLeft > 0) { if (!bFreeRightAndBottomSpace(ppdev, poh, cxLeft, poh->cy, TRUE)) { pohFree(ppdev, pohTop); return(NULL); }
pohLeft = poh; poh = pohLeft->pohRight; }
ASSERTDD((poh->x == pptl->x) && (poh->y == pptl->y) && (poh->x + poh->cx >= poh->x + cxThis) && (poh->y + poh->cy >= poh->y + cyThis), "poh must properly fit requested rectangle");
// Finally, we can subdivide to get our requested rectangle:
if (!bFreeRightAndBottomSpace(ppdev, poh, cxThis, cyThis, FALSE)) poh = NULL; // Fail this call
// Free our temporary rectangles, if there are any:
pohFree(ppdev, pohTop); pohFree(ppdev, pohLeft);
return(poh); } } }
// There was no free rectangle that completely contains the requested
// rectangle:
return(NULL); }
/******************************Public*Routine******************************\
* OH* pohMakeRoomAnywhere * * Allocates space for an off-screen rectangle. It will attempt to find * the smallest available free rectangle, and will allocate the block out * of its upper-left corner. The remaining two rectangles will be placed * on the available free space list. * * If the rectangle would have been large enough to fit into off-screen * memory, but there is not enough available free space, we will boot * bitmaps out of off-screen and into DIBs until there is enough room. * \**************************************************************************/
OH* pohMakeRoomAnywhere( PDEV* ppdev, LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLONG floh) // May have FLOH_ONLY_IF_ROOM set
{ ULONG cxcyThis; // Width and height search key
OH* pohThis; // Points to found available rectangle we'll use
ASSERTDD((cxThis > 0) && (cyThis > 0), "Illegal allocation size");
// Increase the width to get the proper alignment (thus ensuring that all
// allocations will be properly aligned):
cxThis = (cxThis + (HEAP_X_ALIGNMENT - 1)) & ~(HEAP_X_ALIGNMENT - 1);
// We can't succeed if the requested rectangle is larger than the
// largest possible available rectangle:
if ((cxThis > ppdev->heap.cxMax) || (cyThis > ppdev->heap.cyMax)) return(NULL);
// Find the first available rectangle the same size or larger than
// the requested one:
cxcyThis = CXCY(cxThis, cyThis); pohThis = ppdev->heap.ohFree.pohNext; while (pohThis->cxcy < cxcyThis) { ASSERTDD(pohThis->ohState == OH_FREE, "Non-free node in free list");
pohThis = pohThis->pohNext; }
while (pohThis->cy < cyThis) { ASSERTDD(pohThis->ohState == OH_FREE, "Non-free node in free list");
pohThis = pohThis->pohNext; }
ASSERTDD(pohThis->ohState == OH_FREE, "Non-free node in free list");
if (pohThis->cxcy == CXCY_SENTINEL) { // There was no space large enough...
if (floh & FLOH_ONLY_IF_ROOM) return(NULL);
DISPDBG((2, "> Making room for %li x %li allocation...", cxThis, cyThis));
// We couldn't find an available rectangle that was big enough
// to fit our request. So throw things out of the heap until we
// have room, oldest allocations first:
do { pohThis = ppdev->heap.ohDiscardable.pohPrev; // Least-recently created
ASSERTDD(pohThis != &ppdev->heap.ohDiscardable, "Ran out of discardable entries -- Max not set correctly"); ASSERTDD(pohThis->ohState == OH_DISCARDABLE, "Non-discardable node in discardable list");
// We can safely exit here if we have to:
pohThis = pohMoveOffscreenDfbToDib(ppdev, pohThis); if (pohThis == NULL) return(NULL);
} while ((pohThis->cx < cxThis) || (pohThis->cy < cyThis)); }
if ((pohThis->cxReserved) && (floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT))) { // We can't reserve this rectangle, or make it permanent, if it's
// already been reserved. So throw absolutely everything out and
// search the free list.
//
// NOTE: This is extremely painful! A better approach would be to
// keep separate 'cxMax' and 'cyMax' variables kept for free
// rectangles that are not reserved (cxMax and cyMax
// currently include reserved free rectangles).
if (!bDiscardEverythingInRectangle(ppdev, 0, 0, ppdev->cxMemory, ppdev->cyMemory)) { return(NULL); }
pohThis = &ppdev->heap.ohFree; do { pohThis = pohThis->pohNext;
if (pohThis == &ppdev->heap.ohFree) return(NULL);
} while ((pohThis->cxReserved) || (pohThis->cx < cxThis) || (pohThis->cy < cyThis)); }
if (!bFreeRightAndBottomSpace(ppdev, pohThis, cxThis, cyThis, FALSE)) return(NULL);
return(pohThis); }
/******************************Public*Routine******************************\
* OH* pohAllocate * * Allocates a rectangle in off-screen memory. * * Types: * * FLOH_RESERVE * * Reserves an off-screen rectangle. The space may still be used by * discardable bitmaps until the rectangle is committed via 'bOhCommit'. * * FLOH_MAKE_PERMANENT * * Allocates an off-screen rectangle that can never be booted * of the heap. It's the caller's responsibility to manage * the rectangle, which includes what to do with the memory in * DrvAssertMode when the display is changed to full-screen * mode. * * Default * * Allocates a 'discardable' off-screen rectangle for a DFB that may * be kicked out of off-screen if the space is needed. * * Options: * * FLOH_ONLY_IF_ROOM * * Allocates an off-screen rectangle only if there is free space * available -- i.e., no discardable rectangles will be moved out of * off-screen to make room. * * Default * * May move discardable rectangles out of off-screen to make room. * * Arguments: * * pptl * * If NULL, the rectangle will be allocated anywhere in un-used offscreen * memory. * * If non-NULL, is a requested position for the rectangle. * * NOTE: The heap will quickly fragment if arbitrary positions are * requested. This position option works best if there is only * one specific rectangle ever requested, or if the allocations * are always wider than they are high. * \**************************************************************************/
OH* pohAllocate( PDEV* ppdev, POINTL* pptl, // Optional requested position of rectangle
LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLOH floh) // Allocation flags
{ OH* pohThis; // Points to found available rectangle we'll use
OH* pohRoot; // Point to root of list where we'll insert node
ULONG cxcy; OH* pohNext; OH* pohPrev;
ASSERTDD((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)) != (FLOH_RESERVE | FLOH_MAKE_PERMANENT), "Illegal flags -- can't set both FLOH_RESERVE and FLOH_MAKE_PERMANENT");
if (pptl == NULL) { pohThis = pohMakeRoomAnywhere(ppdev, cxThis, cyThis, floh); if (pohThis == NULL) DISPDBG((2, "Can't allocate %li x %li with flags %li", cxThis, cyThis, floh)); } else { pohThis = pohMakeRoomAtLocation(ppdev, pptl, cxThis, cyThis, floh); if (pohThis == NULL) DISPDBG((2, "Can't allocate %li x %li at %li, %li with flags %li", cxThis, cyThis, pptl->x, pptl->y, floh)); }
if (pohThis == NULL) return(NULL);
// Calculate the effective start address for this bitmap in off-
// screen memory:
pohThis->pvScan0 = ppdev->pjScreen + (pohThis->y * ppdev->lDelta) + (pohThis->x * ppdev->cBpp);
// The caller is responsible for setting this field:
pohThis->pdsurf = NULL;
// Our 'reserve' logic expects the node to have 'free' status:
ASSERTDD(pohThis->ohState == OH_FREE, "Node not free after making room"); ASSERTDD(((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)) == 0) || (pohThis->cxReserved == 0), "Can't reserve a rectangle that's already reserved");
if (floh & FLOH_RESERVE) { // A non-zero value for 'cxReserved' means it's reserved:
pohThis->cxReserved = pohThis->cx; pohThis->cyReserved = pohThis->cy;
// Remove this node from its place in the free list:
pohThis->pohPrev->pohNext = pohThis->pohNext; pohThis->pohNext->pohPrev = pohThis->pohPrev;
// Now insert the node, in order, back into the free list:
cxcy = pohThis->cxcy;
pohNext = ppdev->heap.ohFree.pohNext; while (pohNext->cxcy < cxcy) { pohNext = pohNext->pohNext; } pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohThis; pohNext->pohPrev = pohThis; pohThis->pohPrev = pohPrev; pohThis->pohNext = pohNext; } else { // Remove this node from the free list:
pohThis->pohPrev->pohNext = pohThis->pohNext; pohThis->pohNext->pohPrev = pohThis->pohPrev;
if (floh & FLOH_MAKE_PERMANENT) { // Change status of node and insert into permanent list:
pohThis->ohState = OH_PERMANENT; pohRoot = &ppdev->heap.ohPermanent;
// Calculate the new maximum size rectangle available
// for allocation:
vCalculateMaximumNonPermanent(ppdev); } else { // Change status of node and insert into discardable list:
pohThis->ohState = OH_DISCARDABLE; pohRoot = &ppdev->heap.ohDiscardable; }
// Now insert the node at the head of the appropriate list:
pohThis->pohNext = pohRoot->pohNext; pohThis->pohPrev = pohRoot;
pohRoot->pohNext->pohPrev = pohThis; pohRoot->pohNext = pohThis; }
DISPDBG((2, " Allocated (%li x %li) at (%li, %li) with flags %li", cxThis, cyThis, pohThis->x, pohThis->y, floh));
return(pohThis); }
/******************************Public*Routine******************************\
* BOOL bOhCommit * * If 'bCommit' is TRUE, converts a 'reserved' allocation to 'permanent,' * moving from off-screen memory any discardable allocations that may have * been using the space. * * If 'bCommit' is FALSE, converts a 'permanent' allocation to 'reserved,' * allowing the space to be used by discardable allocations. * \**************************************************************************/
BOOL bOhCommit( PDEV* ppdev, OH* poh, BOOL bCommit) { BOOL bRet; LONG cx; LONG cy; ULONG cxcy; OH* pohRoot; OH* pohNext; OH* pohPrev;
bRet = FALSE; // Assume failure
if (poh == NULL) return(bRet);
if ((bCommit) && (poh->cxReserved)) { if (bDiscardEverythingInRectangle(ppdev, poh->x, poh->y, poh->cxReserved, poh->cyReserved)) { DISPDBG((2, "Commited %li x %li at (%li, %li)", poh->cx, poh->cy, poh->x, poh->y));
poh->ohState = OH_PERMANENT;
// Remove this node from the free list:
poh->pohPrev->pohNext = poh->pohNext; poh->pohNext->pohPrev = poh->pohPrev;
// Now insert the node at the head of the permanent list:
pohRoot = &ppdev->heap.ohPermanent;
poh->pohNext = pohRoot->pohNext; poh->pohPrev = pohRoot;
pohRoot->pohNext->pohPrev = poh; pohRoot->pohNext = poh;
bRet = TRUE; } } else if ((!bCommit) && (poh->ohState == OH_PERMANENT)) { DISPDBG((2, "Decommited %li x %li at (%li, %li)", poh->cx, poh->cy, poh->x, poh->y));
poh->ohState = OH_FREE; poh->cxReserved = poh->cx; poh->cyReserved = poh->cy;
// Remove this node from the permanent list:
poh->pohPrev->pohNext = poh->pohNext; poh->pohNext->pohPrev = poh->pohPrev;
// Now insert the node, in order, into the free list:
cxcy = poh->cxcy;
pohNext = ppdev->heap.ohFree.pohNext; while (pohNext->cxcy < cxcy) { pohNext = pohNext->pohNext; } pohPrev = pohNext->pohPrev;
pohPrev->pohNext = poh; pohNext->pohPrev = poh; poh->pohPrev = pohPrev; poh->pohNext = pohNext;
bRet = TRUE; }
// Recalculate the biggest rectangle available for allocation:
vCalculateMaximumNonPermanent(ppdev);
return(bRet); }
/******************************Public*Routine******************************\
* BOOL bMoveDibToOffscreenDfbIfRoom * * Converts the DIB DFB to an off-screen DFB, if there's room for it in * off-screen memory. * * Returns: FALSE if there wasn't room, TRUE if successfully moved. * \**************************************************************************/
BOOL bMoveDibToOffscreenDfbIfRoom( PDEV* ppdev, DSURF* pdsurf) { OH* poh; SURFOBJ* pso; RECTL rclDst; POINTL ptlSrc; HSURF hsurf;
ASSERTDD(pdsurf->dt == DT_DIB, "Can't move a bitmap off-screen when it's already off-screen");
// If we're in full-screen mode, we can't move anything to off-screen
// memory:
if (!ppdev->bEnabled) return(FALSE);
poh = pohAllocate(ppdev, NULL, pdsurf->sizl.cx, pdsurf->sizl.cy, FLOH_ONLY_IF_ROOM); if (poh == NULL) { // There wasn't any free room.
return(FALSE); }
// 'pdsurf->sizl' is the actual bitmap dimension, not 'poh->cx' or
// 'poh->cy'.
rclDst.left = poh->x; rclDst.top = poh->y; rclDst.right = rclDst.left + pdsurf->sizl.cx; rclDst.bottom = rclDst.top + pdsurf->sizl.cy;
ptlSrc.x = 0; ptlSrc.y = 0;
ppdev->pfnPutBits(ppdev, pdsurf->pso, &rclDst, &ptlSrc);
// Update the data structures to reflect the new off-screen node:
pso = pdsurf->pso; pdsurf->dt = DT_SCREEN; pdsurf->poh = poh; poh->pdsurf = pdsurf;
// Now free the DIB. Get the hsurf from the SURFOBJ before we unlock
// it (it's not legal to dereference psoDib when it's unlocked):
hsurf = pso->hsurf; EngUnlockSurface(pso); EngDeleteSurface(hsurf);
return(TRUE); }
/******************************Public*Routine******************************\
* OH* pohMoveOffscreenDfbToDib * * Converts the DFB from being off-screen to being a DIB. * * Note: The caller does NOT have to call 'pohFree' on 'poh' after making * this call. * * Returns: NULL if the function failed (due to a memory allocation). * Otherwise, it returns a pointer to the coalesced off-screen heap * node that has been made available for subsequent allocations * (useful when trying to free enough memory to make a new * allocation). \**************************************************************************/
OH* pohMoveOffscreenDfbToDib( PDEV* ppdev, OH* poh) { DSURF* pdsurf; HBITMAP hbmDib; SURFOBJ* pso; RECTL rclDst; POINTL ptlSrc;
DISPDBG((2, "Throwing out %li x %li at (%li, %li)!", poh->cx, poh->cy, poh->x, poh->y));
pdsurf = poh->pdsurf;
ASSERTDD((poh->x != 0) || (poh->y != 0), "Can't make the visible screen into a DIB"); ASSERTDD(pdsurf->dt != DT_DIB, "Can't make a DIB into even more of a DIB");
hbmDib = EngCreateBitmap(pdsurf->sizl, 0, ppdev->iBitmapFormat, BMF_TOPDOWN, NULL); if (hbmDib) { if (EngAssociateSurface((HSURF) hbmDib, ppdev->hdevEng, 0)) { pso = EngLockSurface((HSURF) hbmDib); if (pso != NULL) { rclDst.left = 0; rclDst.top = 0; rclDst.right = pdsurf->sizl.cx; rclDst.bottom = pdsurf->sizl.cy;
ptlSrc.x = poh->x; ptlSrc.y = poh->y;
ppdev->pfnGetBits(ppdev, pso, &rclDst, &ptlSrc);
pdsurf->dt = DT_DIB; pdsurf->pso = pso;
// Don't even bother checking to see if this DIB should
// be put back into off-screen memory until the next
// heap 'free' occurs:
pdsurf->iUniq = ppdev->iHeapUniq; pdsurf->cBlt = 0;
// Remove this node from the off-screen DFB list, and free
// it. 'pohFree' will never return NULL:
return(pohFree(ppdev, poh)); } }
// Fail case:
EngDeleteSurface((HSURF) hbmDib); }
return(NULL); }
/******************************Public*Routine******************************\
* BOOL bMoveEverythingFromOffscreenToDibs * * This function is used when we're about to enter full-screen mode, which * would wipe all our off-screen bitmaps. GDI can ask us to draw on * device bitmaps even when we're in full-screen mode, and we do NOT have * the option of stalling the call until we switch out of full-screen. * We have no choice but to move all the off-screen DFBs to DIBs. * * Returns TRUE if all DSURFs have been successfully moved. * \**************************************************************************/
BOOL bMoveAllDfbsFromOffscreenToDibs( PDEV* ppdev) { // Throw out any discardable bitmaps over the entire surface:
return(bDiscardEverythingInRectangle(ppdev, 0, 0, ppdev->cxMemory, ppdev->cyMemory)); }
/******************************Public*Routine******************************\
* HBITMAP DrvCreateDeviceBitmap * * Function called by GDI to create a device-format-bitmap (DFB). We will * always try to allocate the bitmap in off-screen; if we can't, we simply * fail the call and GDI will create and manage the bitmap itself. * * Note: We do not have to zero the bitmap bits. GDI will automatically * call us via DrvBitBlt to zero the bits (which is a security * consideration). * \**************************************************************************/
HBITMAP DrvCreateDeviceBitmap( DHPDEV dhpdev, SIZEL sizl, ULONG iFormat) { PDEV* ppdev; OH* poh; DSURF* pdsurf; HBITMAP hbmDevice; FLONG flHooks;
ppdev = (PDEV*) dhpdev;
// If we're in full-screen mode, we hardly have any off-screen memory
// in which to allocate a DFB. LATER: We could still allocate an
// OH node and put the bitmap on the DIB DFB list for later promotion.
if (!ppdev->bEnabled) return(0);
// We only support device bitmaps that are the same colour depth
// as our display.
//
// Actually, those are the only kind GDI will ever call us with,
// but we may as well check. Note that this implies you'll never
// get a crack at 1bpp bitmaps.
if (iFormat != ppdev->iBitmapFormat) return(0);
// We don't want anything 8x8 or smaller -- they're typically brush
// patterns which we don't particularly want to stash in off-screen
// memory:
if ((sizl.cx <= 8) && (sizl.cy <= 8)) return(0);
poh = pohAllocate(ppdev, NULL, sizl.cx, sizl.cy, 0); if (poh != NULL) { pdsurf = EngAllocMem(0, sizeof(DSURF), ALLOC_TAG); if (pdsurf != NULL) { hbmDevice = EngCreateDeviceBitmap((DHSURF) pdsurf, sizl, iFormat); if (hbmDevice != NULL) { flHooks = ppdev->flHooks;
// Setting the SYNCHRONIZEACCESS flag tells GDI that we
// want all drawing to the bitmaps to be synchronized (GDI
// is multi-threaded and by default does not synchronize
// device bitmap drawing -- it would be a Bad Thing for us
// to have multiple threads using the accelerator at the
// same time):
flHooks |= HOOK_SYNCHRONIZEACCESS;
// It's a device-managed surface; make sure we don't set
// HOOK_SYNCHRONIZE, otherwise we may confuse GDI:
flHooks &= ~HOOK_SYNCHRONIZE;
if (EngAssociateSurface((HSURF) hbmDevice, ppdev->hdevEng, flHooks)) { pdsurf->dt = DT_SCREEN; pdsurf->poh = poh; pdsurf->sizl = sizl; pdsurf->ppdev = ppdev; poh->pdsurf = pdsurf;
return(hbmDevice); }
EngDeleteSurface((HSURF) hbmDevice); } EngFreeMem(pdsurf); } pohFree(ppdev, poh); }
return(0); }
/******************************Public*Routine******************************\
* VOID DrvDeleteDeviceBitmap * * Deletes a DFB. * \**************************************************************************/
VOID DrvDeleteDeviceBitmap( DHSURF dhsurf) { DSURF* pdsurf; PDEV* ppdev; SURFOBJ* psoDib; HSURF hsurfDib;
pdsurf = (DSURF*) dhsurf; ppdev = pdsurf->ppdev;
if (pdsurf->dt == DT_SCREEN) { pohFree(ppdev, pdsurf->poh); } else { ASSERTDD(pdsurf->dt == DT_DIB, "Expected DIB type");
psoDib = pdsurf->pso;
// Get the hsurf from the SURFOBJ before we unlock it (it's not
// legal to dereference psoDib when it's unlocked):
hsurfDib = psoDib->hsurf; EngUnlockSurface(psoDib); EngDeleteSurface(hsurfDib); }
EngFreeMem(pdsurf); }
/******************************Public*Routine******************************\
* BOOL bAssertModeOffscreenHeap * * This function is called whenever we switch in or out of full-screen * mode. We have to convert all the off-screen bitmaps to DIBs when * we switch to full-screen (because we may be asked to draw on them even * when in full-screen, and the mode switch would probably nuke the video * memory contents anyway). * \**************************************************************************/
BOOL bAssertModeOffscreenHeap( PDEV* ppdev, BOOL bEnable) { BOOL b = TRUE;
if (!bEnable) { b = bMoveAllDfbsFromOffscreenToDibs(ppdev); }
return(b); }
/******************************Public*Routine******************************\
* VOID vDisableOffscreenHeap * * Frees any resources allocated by the off-screen heap. * \**************************************************************************/
VOID vDisableOffscreenHeap( PDEV* ppdev) { OHALLOC* poha; OHALLOC* pohaNext; SURFOBJ* psoPunt; HSURF hsurf;
psoPunt = ppdev->psoPunt; if (psoPunt != NULL) { hsurf = psoPunt->hsurf; EngUnlockSurface(psoPunt); EngDeleteSurface(hsurf); }
psoPunt = ppdev->psoPunt2; if (psoPunt != NULL) { hsurf = psoPunt->hsurf; EngUnlockSurface(psoPunt); EngDeleteSurface(hsurf); }
poha = ppdev->heap.pohaChain; while (poha != NULL) { pohaNext = poha->pohaNext; // Grab the next pointer before it's freed
EngFreeMem(poha); poha = pohaNext; } }
/******************************Public*Routine******************************\
* BOOL bEnableOffscreenHeap * * Initializes the off-screen heap using all available video memory, * accounting for the portion taken by the visible screen. * * Input: ppdev->cxScreen * ppdev->cyScreen * ppdev->cxMemory * ppdev->cyMemory * \**************************************************************************/
BOOL bEnableOffscreenHeap( PDEV* ppdev) { OH* poh; SIZEL sizl; HSURF hsurf; POINTL ptlScreen;
DISPDBG((1, "Screen: %li x %li Memory: %li x %li", ppdev->cxScreen, ppdev->cyScreen, ppdev->cxMemory, ppdev->cyMemory));
ASSERTDD((ppdev->cxScreen <= ppdev->cxMemory) && (ppdev->cyScreen <= ppdev->cyMemory), "Memory must not have smaller dimensions than visible screen!");
ppdev->heap.pohaChain = NULL; ppdev->heap.pohFreeList = NULL;
// Initialize the available list, which will be a circular
// doubly-linked list kept in ascending 'cxcy' order, with a
// 'sentinel' at the end of the list:
poh = pohNewNode(ppdev); if (poh == NULL) goto ReturnFalse;
// The first node describes the entire video memory size:
poh->pohNext = &ppdev->heap.ohFree; poh->pohPrev = &ppdev->heap.ohFree; poh->ohState = OH_FREE; poh->x = 0; poh->y = 0; poh->xy = 0; poh->cx = ppdev->cxMemory; poh->cy = ppdev->cyMemory; poh->cxcy = CXCY(ppdev->cxMemory, ppdev->cyMemory); poh->pohLeft = &ppdev->heap.ohFree; poh->pohUp = &ppdev->heap.ohFree; poh->pohRight = &ppdev->heap.ohFree; poh->pohDown = &ppdev->heap.ohFree; poh->pvScan0 = ppdev->pjScreen;
// The second node is our free list sentinel:
ppdev->heap.ohFree.pohNext = poh; ppdev->heap.ohFree.pohPrev = poh; ppdev->heap.ohFree.cxcy = CXCY_SENTINEL; ppdev->heap.ohFree.cx = 0x7fffffff; ppdev->heap.ohFree.cy = 0x7fffffff; ppdev->heap.ohFree.ohState = OH_FREE;
// Initialize the discardable list, which will be a circular
// doubly-linked list kept in order, with a sentinel at the end.
// This node is also used for the screen-surface, for its offset:
ppdev->heap.ohDiscardable.pohNext = &ppdev->heap.ohDiscardable; ppdev->heap.ohDiscardable.pohPrev = &ppdev->heap.ohDiscardable; ppdev->heap.ohDiscardable.ohState = OH_DISCARDABLE;
// Initialize the permanent list, which will be a circular
// doubly-linked list kept in order, with a sentinel at the end.
ppdev->heap.ohPermanent.pohNext = &ppdev->heap.ohPermanent; ppdev->heap.ohPermanent.pohPrev = &ppdev->heap.ohPermanent; ppdev->heap.ohPermanent.ohState = OH_PERMANENT;
// For the moment, make the max really big so that the first
// allocation we're about to do will succeed:
ppdev->heap.cxMax = 0x7fffffff; ppdev->heap.cyMax = 0x7fffffff;
ptlScreen.x = 0; ptlScreen.y = 0;
// Finally, reserve the upper-left corner for the screen. We can
// actually throw away 'poh' because we'll never need it again
// (not even for disabling the off-screen heap since everything is
// freed using OHALLOCs):
poh = pohAllocate(ppdev, &ptlScreen, ppdev->cxScreen, ppdev->cyScreen, FLOH_MAKE_PERMANENT);
ASSERTDD((poh != NULL) && (poh->x == 0) && (poh->y == 0) && (poh->cx >= ppdev->cxScreen) && (poh->cy >= ppdev->cyScreen), "Screen allocation messed up");
// Remember it so that we can associate the screen SURFOBJ with this
// poh:
ppdev->pohScreen = poh;
// Here we allocate space for the ET6000 to use as a blt buffer. This
// lets us perform rops on host bitmaps by transferring them a line at
// a time into offscreen memory. We allocate screen_width * 2 lines
// so we can double buffer the transfers.
//
if (ppdev->ulChipID == ET6000) { OH* pohTemp;
ppdev->lBltBufferPitch = ppdev->lDelta;
// We need to fudge the ppdev->heap.cxMax value so that it doesn't
// forbid the next allocation.
ppdev->heap.cxMax = 0x7fffffff; ppdev->heap.cyMax = 0x7fffffff;
pohTemp = pohAllocate(ppdev, NULL, ppdev->cxScreen, 2, FLOH_MAKE_PERMANENT); if (pohTemp == NULL) { DISPDBG((0, "Could not allocate space for ET6000 blt buffer")); goto ReturnFalse; }
DISPDBG((1, "ET6000 blt buffer allocated successfully (%p)", pohTemp)); DISPDBG((1, " poh->x = %ld", pohTemp->x)); DISPDBG((1, " poh->y = %ld", pohTemp->y)); DISPDBG((1, " poh->cx = %ld", pohTemp->cx)); DISPDBG((1, " poh->cy = %ld", pohTemp->cy)); ppdev->pohBltBuffer = pohTemp; }
// Allocate a 'punt' SURFOBJ we'll use when the device-bitmap is in
// off-screen memory, but we want GDI to draw to it directly as an
// engine-managed surface:
sizl.cx = ppdev->cxMemory; sizl.cy = ppdev->cyMemory;
// We want to create it with exactly the same hooks and capabilities
// as our primary surface. We will override the 'lDelta' and 'pvScan0'
// fields later:
hsurf = (HSURF) EngCreateBitmap(sizl, 0xbadf00d, ppdev->iBitmapFormat, BMF_TOPDOWN, (VOID*) 0xbadf00d);
if ((hsurf == 0) || (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) || (!(ppdev->psoPunt = EngLockSurface(hsurf)))) { DISPDBG((0, "Failed punt surface creation"));
EngDeleteSurface(hsurf); goto ReturnFalse; }
// We need another for doing DrvBitBlt and DrvCopyBits when both
// surfaces are off-screen bitmaps:
hsurf = (HSURF) EngCreateBitmap(sizl, 0xbadf00d, ppdev->iBitmapFormat, BMF_TOPDOWN, (VOID*) 0xbadf00d);
if ((hsurf == 0) || (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) || (!(ppdev->psoPunt2 = EngLockSurface(hsurf)))) { DISPDBG((0, "Failed punt surface creation"));
EngDeleteSurface(hsurf); goto ReturnFalse; }
DISPDBG((5, "Passed bEnableOffscreenHeap"));
if (poh != NULL) return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableOffscreenHeap"));
return(FALSE); }
|