|
|
/******************************Module*Header*******************************\
* Module Name: bitblt.c * * Contains the high-level DrvBitBlt and DrvCopyBits functions. The low- * level stuff lives in 'blt.c'. * * !!! Change note about 'iType' * * Note: Since we've implemented device-bitmaps, any surface that GDI passes * to us can have 3 values for its 'iType': STYPE_BITMAP, STYPE_DEVICE * or STYPE_DEVBITMAP. We filter device-bitmaps that we've stored * as DIBs fairly high in the code, so after we adjust its 'pptlSrc', * we can treat STYPE_DEVBITMAP surfaces the same as STYPE_DEVICE * surfaces (e.g., a blt from an off-screen device bitmap to the screen * gets treated as a normal screen-to-screen blt). So throughout * this code, we will compare a surface's 'iType' to STYPE_BITMAP: * if it's equal, we've got a true DIB, and if it's unequal, we have * a screen-to-screen operation. * * Copyright (c) 1992-1995 Microsoft Corporation * \**************************************************************************/
#include "precomp.h"
/******************************Public*Data*********************************\
* Rop-needs-pattern table * * Determines if a rop2 needs uses a pattern. * * Use 'gabRopNeedsPattern[(rop3 >> 2) & 0xf]', but note that this can only * be done if it is known that the rop3 doesn't use a source. * \**************************************************************************/
BYTE gabRopNeedsPattern[] = { FALSE, // R2_BLACK
TRUE, // R2_NOTMERGEPEN
TRUE, // R2_MASKNOTPEN
TRUE, // R2_NOTCOPYPEN
TRUE, // R2_MASKPENNOT
FALSE, // R2_NOT
TRUE, // R2_XORPEN
TRUE, // R2_NOTMASKPEN
TRUE, // R2_MASKPEN
TRUE, // R2_NOTXORPEN
FALSE, // R2_NOP
TRUE, // R2_MERGENOTPEN
TRUE, // R2_COPYPEN
TRUE, // R2_MERGEPENNOT
TRUE, // R2_MERGEPEN
FALSE, // R2_WHITE
};
/******************************Public*Data*********************************\
* Mix-needs-pattern table * * Determines if a mix uses a pattern. * * Use 'gabMixNeedsPattern[mix & 0xf]' or 'gabMixNeedsPattern[mix & 0xff]'. * \**************************************************************************/
BYTE gabMixNeedsPattern[] = { FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F]
FALSE, // R2_BLACK
TRUE, // R2_NOTMERGEPEN
TRUE, // R2_MASKNOTPEN
TRUE, // R2_NOTCOPYPEN
TRUE, // R2_MASKPENNOT
FALSE, // R2_NOT
TRUE, // R2_XORPEN
TRUE, // R2_NOTMASKPEN
TRUE, // R2_MASKPEN
TRUE, // R2_NOTXORPEN
FALSE, // R2_NOP
TRUE, // R2_MERGENOTPEN
TRUE, // R2_COPYPEN
TRUE, // R2_MERGEPENNOT
TRUE, // R2_MERGEPEN
FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF]
};
/******************************Public*Data*********************************\
* MIX translation table * * Translates a mix 1-16, into an old style Rop 0-255. * \**************************************************************************/
BYTE gaRop3FromMix[] = { 0xFF, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F]
0x00, // R2_BLACK
0x05, // R2_NOTMERGEPEN
0x0A, // R2_MASKNOTPEN
0x0F, // R2_NOTCOPYPEN
0x50, // R2_MASKPENNOT
0x55, // R2_NOT
0x5A, // R2_XORPEN
0x5F, // R2_NOTMASKPEN
0xA0, // R2_MASKPEN
0xA5, // R2_NOTXORPEN
0xAA, // R2_NOP
0xAF, // R2_MERGENOTPEN
0xF0, // R2_COPYPEN
0xF5, // R2_MERGEPENNOT
0xFA, // R2_MERGEPEN
0xFF // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF]
};
#if DBG
// This table is big, so we only use to aid in debugging...
/******************************Public*Data*********************************\
* ROP3 translation table - Use only for debugging * * Translates the usual ternary rop into A-vector notation. Each bit in * this new notation corresponds to a term in a polynomial translation of * the rop. * * Rop(D,S,P) = a + a D + a S + a P + a DS + a DP + a SP + a DSP * 0 d s p ds dp sp dsp * \**************************************************************************/
BYTE gajRop3[] = { 0x00, 0xff, 0xb2, 0x4d, 0xd4, 0x2b, 0x66, 0x99, 0x90, 0x6f, 0x22, 0xdd, 0x44, 0xbb, 0xf6, 0x09, 0xe8, 0x17, 0x5a, 0xa5, 0x3c, 0xc3, 0x8e, 0x71, 0x78, 0x87, 0xca, 0x35, 0xac, 0x53, 0x1e, 0xe1, 0xa0, 0x5f, 0x12, 0xed, 0x74, 0x8b, 0xc6, 0x39, 0x30, 0xcf, 0x82, 0x7d, 0xe4, 0x1b, 0x56, 0xa9, 0x48, 0xb7, 0xfa, 0x05, 0x9c, 0x63, 0x2e, 0xd1, 0xd8, 0x27, 0x6a, 0x95, 0x0c, 0xf3, 0xbe, 0x41, 0xc0, 0x3f, 0x72, 0x8d, 0x14, 0xeb, 0xa6, 0x59, 0x50, 0xaf, 0xe2, 0x1d, 0x84, 0x7b, 0x36, 0xc9, 0x28, 0xd7, 0x9a, 0x65, 0xfc, 0x03, 0x4e, 0xb1, 0xb8, 0x47, 0x0a, 0xf5, 0x6c, 0x93, 0xde, 0x21, 0x60, 0x9f, 0xd2, 0x2d, 0xb4, 0x4b, 0x06, 0xf9, 0xf0, 0x0f, 0x42, 0xbd, 0x24, 0xdb, 0x96, 0x69, 0x88, 0x77, 0x3a, 0xc5, 0x5c, 0xa3, 0xee, 0x11, 0x18, 0xe7, 0xaa, 0x55, 0xcc, 0x33, 0x7e, 0x81, 0x80, 0x7f, 0x32, 0xcd, 0x54, 0xab, 0xe6, 0x19, 0x10, 0xef, 0xa2, 0x5d, 0xc4, 0x3b, 0x76, 0x89, 0x68, 0x97, 0xda, 0x25, 0xbc, 0x43, 0x0e, 0xf1, 0xf8, 0x07, 0x4a, 0xb5, 0x2c, 0xd3, 0x9e, 0x61, 0x20, 0xdf, 0x92, 0x6d, 0xf4, 0x0b, 0x46, 0xb9, 0xb0, 0x4f, 0x02, 0xfd, 0x64, 0x9b, 0xd6, 0x29, 0xc8, 0x37, 0x7a, 0x85, 0x1c, 0xe3, 0xae, 0x51, 0x58, 0xa7, 0xea, 0x15, 0x8c, 0x73, 0x3e, 0xc1, 0x40, 0xbf, 0xf2, 0x0d, 0x94, 0x6b, 0x26, 0xd9, 0xd0, 0x2f, 0x62, 0x9d, 0x04, 0xfb, 0xb6, 0x49, 0xa8, 0x57, 0x1a, 0xe5, 0x7c, 0x83, 0xce, 0x31, 0x38, 0xc7, 0x8a, 0x75, 0xec, 0x13, 0x5e, 0xa1, 0xe0, 0x1f, 0x52, 0xad, 0x34, 0xcb, 0x86, 0x79, 0x70, 0x8f, 0xc2, 0x3d, 0xa4, 0x5b, 0x16, 0xe9, 0x08, 0xf7, 0xba, 0x45, 0xdc, 0x23, 0x6e, 0x91, 0x98, 0x67, 0x2a, 0xd5, 0x4c, 0xb3, 0xfe, 0x01 };
#define AVEC_NOT 0x01
#define AVEC_D 0x02
#define AVEC_S 0x04
#define AVEC_P 0x08
#define AVEC_DS 0x10
#define AVEC_DP 0x20
#define AVEC_SP 0x40
#define AVEC_DSP 0x80
#define AVEC_NEED_SOURCE (AVEC_S | AVEC_DS | AVEC_SP | AVEC_DSP)
#define AVEC_NEED_PATTERN (AVEC_P | AVEC_DP | AVEC_SP | AVEC_DSP)
#define AVEC_NEED_DEST (AVEC_D | AVEC_DS | AVEC_DP | AVEC_DSP)
#endif // DBG
/******************************Public*Table********************************\
* BYTE gajLeftMask[] and BYTE gajRightMask[] * * Edge tables for vXferScreenTo1bpp. \**************************************************************************/
BYTE gajLeftMask[] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; BYTE gajRightMask[] = { 0xff, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
/******************************Public*Routine******************************\
* BOOL bIntersect * * If 'prcl1' and 'prcl2' intersect, has a return value of TRUE and returns * the intersection in 'prclResult'. If they don't intersect, has a return * value of FALSE, and 'prclResult' is undefined. * \**************************************************************************/
BOOL bIntersect( RECTL* prcl1, RECTL* prcl2, RECTL* prclResult) { prclResult->left = max(prcl1->left, prcl2->left); prclResult->right = min(prcl1->right, prcl2->right);
if (prclResult->left < prclResult->right) { prclResult->top = max(prcl1->top, prcl2->top); prclResult->bottom = min(prcl1->bottom, prcl2->bottom);
if (prclResult->top < prclResult->bottom) { return(TRUE); } }
return(FALSE); }
/******************************Public*Routine******************************\
* LONG cIntersect * * This routine takes a list of rectangles from 'prclIn' and clips them * in-place to the rectangle 'prclClip'. The input rectangles don't * have to intersect 'prclClip'; the return value will reflect the * number of input rectangles that did intersect, and the intersecting * rectangles will be densely packed. * \**************************************************************************/
LONG cIntersect( RECTL* prclClip, RECTL* prclIn, // List of rectangles
LONG c) // Can be zero
{ LONG cIntersections; RECTL* prclOut;
cIntersections = 0; prclOut = prclIn;
for (; c != 0; prclIn++, c--) { prclOut->left = max(prclIn->left, prclClip->left); prclOut->right = min(prclIn->right, prclClip->right);
if (prclOut->left < prclOut->right) { prclOut->top = max(prclIn->top, prclClip->top); prclOut->bottom = min(prclIn->bottom, prclClip->bottom);
if (prclOut->top < prclOut->bottom) { prclOut++; cIntersections++; } } }
return(cIntersections); }
/******************************Public*Routine******************************\
* VOID vXferScreenTo1bpp * * Performs a SRCCOPY transfer from the screen (when it's 8bpp) to a 1bpp * bitmap. * \**************************************************************************/
#if defined(i386)
VOID vXferScreenTo1bpp( // Type FNXFER
PDEV* ppdev, LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwMix, // Not used
SURFOBJ* psoDst, // Destination surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Provides colour-compressions information
{ LONG cjPel; VOID* pfnCompute; SURFOBJ soTmp; ULONG* pulXlate; ULONG ulForeColor; POINTL ptlSrc; RECTL rclTmp; BYTE* pjDst; BYTE jLeftMask; BYTE jRightMask; BYTE jNotLeftMask; BYTE jNotRightMask; LONG cjMiddle; LONG lDstDelta; LONG lSrcDelta; LONG cyTmpScans; LONG cyThis; LONG cyToGo;
ASSERTDD(c > 0, "Can't handle zero rectangles"); ASSERTDD(psoDst->iBitmapFormat == BMF_1BPP, "Only 1bpp destinations"); ASSERTDD(TMP_BUFFER_SIZE >= (ppdev->cxMemory * ppdev->cjPel), "Temp buffer has to be larger than widest possible scan");
// When the destination is a 1bpp bitmap, the foreground colour
// maps to '1', and any other colour maps to '0'.
if (ppdev->iBitmapFormat == BMF_8BPP) { // When the source is 8bpp or less, we find the forground colour
// by searching the translate table for the only '1':
pulXlate = pxlo->pulXlate; while (*pulXlate != 1) pulXlate++;
ulForeColor = pulXlate - pxlo->pulXlate; } else { ASSERTDD((ppdev->iBitmapFormat == BMF_16BPP) || (ppdev->iBitmapFormat == BMF_32BPP), "This routine only supports 8, 16 or 32bpp");
// When the source has a depth greater than 8bpp, the foreground
// colour will be the first entry in the translate table we get
// from calling 'piVector':
pulXlate = XLATEOBJ_piVector(pxlo);
ulForeColor = 0; if (pulXlate != NULL) // This check isn't really needed...
ulForeColor = pulXlate[0]; }
// We use the temporary buffer to keep a copy of the source
// rectangle:
soTmp.pvScan0 = ppdev->pvTmpBuffer;
do { // ptlSrc points to the upper-left corner of the screen rectangle
// for the current batch:
ptlSrc.x = prcl->left + (pptlSrc->x - prclDst->left); ptlSrc.y = prcl->top + (pptlSrc->y - prclDst->top);
// vGetBits takes absolute coordinates for the source point:
ptlSrc.x += ppdev->xOffset; ptlSrc.y += ppdev->yOffset;
pjDst = (BYTE*) psoDst->pvScan0 + (prcl->top * psoDst->lDelta) + (prcl->left >> 3);
cjPel = ppdev->cjPel;
soTmp.lDelta = (((prcl->right + 7L) & ~7L) - (prcl->left & ~7L)) * cjPel;
// Our temporary buffer, into which we read a copy of the source,
// may be smaller than the source rectangle. In that case, we
// process the source rectangle in batches.
//
// cyTmpScans is the number of scans we can do in each batch.
// cyToGo is the total number of scans we have to do for this
// rectangle.
//
// We take the buffer size less four so that the right edge case
// can safely read one dword past the end:
cyTmpScans = (TMP_BUFFER_SIZE - 4) / soTmp.lDelta; cyToGo = prcl->bottom - prcl->top;
ASSERTDD(cyTmpScans > 0, "Buffer too small for largest possible scan");
// Initialize variables that don't change within the batch loop:
rclTmp.top = 0; rclTmp.left = prcl->left & 7L; rclTmp.right = (prcl->right - prcl->left) + rclTmp.left;
// Note that we have to be careful with the right mask so that it
// isn't zero. A right mask of zero would mean that we'd always be
// touching one byte past the end of the scan (even though we
// wouldn't actually be modifying that byte), and we must never
// access memory past the end of the bitmap (because we can access
// violate if the bitmap end is exactly page-aligned).
jLeftMask = gajLeftMask[rclTmp.left & 7]; jRightMask = gajRightMask[rclTmp.right & 7]; cjMiddle = ((rclTmp.right - 1) >> 3) - (rclTmp.left >> 3) - 1;
if (cjMiddle < 0) { // The blt starts and ends in the same byte:
jLeftMask &= jRightMask; jRightMask = 0; cjMiddle = 0; }
jNotLeftMask = ~jLeftMask; jNotRightMask = ~jRightMask; lDstDelta = psoDst->lDelta - cjMiddle - 2; // Delta from the end of the destination
// to the start on the next scan, accounting
// for 'left' and 'right' bytes
lSrcDelta = soTmp.lDelta - ((8 * (cjMiddle + 2)) * cjPel); // Compute source delta for special cases
// like when cjMiddle gets bumped up to '0',
// and to correct aligned cases
do { // This is the loop that breaks the source rectangle into
// manageable batches.
cyThis = cyTmpScans; cyToGo -= cyThis; if (cyToGo < 0) cyThis += cyToGo;
rclTmp.bottom = cyThis;
vGetBits(ppdev, &soTmp, &rclTmp, &ptlSrc);
ptlSrc.y += cyThis; // Get ready for next batch loop
_asm { mov eax,ulForeColor ;eax = foreground colour ;ebx = temporary storage ;ecx = count of middle dst bytes ;dl = destination byte accumulator ;dh = temporary storage mov esi,soTmp.pvScan0 ;esi = source pointer mov edi,pjDst ;edi = destination pointer
; Figure out the appropriate compute routine:
mov ebx,cjPel mov pfnCompute,offset Compute_Destination_Byte_From_8bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_16bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_32bpp
Do_Left_Byte: call pfnCompute and dl,jLeftMask mov dh,jNotLeftMask and dh,[edi] or dh,dl mov [edi],dh inc edi mov ecx,cjMiddle dec ecx jl short Do_Right_Byte
Do_Middle_Bytes: call pfnCompute mov [edi],dl inc edi dec ecx jge short Do_Middle_Bytes
Do_Right_Byte: call pfnCompute and dl,jRightMask mov dh,jNotRightMask and dh,[edi] or dh,dl mov [edi],dh inc edi
add edi,lDstDelta add esi,lSrcDelta dec cyThis jnz short Do_Left_Byte
mov pjDst,edi ;save for next batch
jmp All_Done
Compute_Destination_Byte_From_8bpp: mov bl,[esi] sub bl,al cmp bl,1 adc dl,dl ;bit 0
mov bl,[esi+1] sub bl,al cmp bl,1 adc dl,dl ;bit 1
mov bl,[esi+2] sub bl,al cmp bl,1 adc dl,dl ;bit 2
mov bl,[esi+3] sub bl,al cmp bl,1 adc dl,dl ;bit 3
mov bl,[esi+4] sub bl,al cmp bl,1 adc dl,dl ;bit 4
mov bl,[esi+5] sub bl,al cmp bl,1 adc dl,dl ;bit 5
mov bl,[esi+6] sub bl,al cmp bl,1 adc dl,dl ;bit 6
mov bl,[esi+7] sub bl,al cmp bl,1 adc dl,dl ;bit 7
add esi,8 ;advance the source ret
Compute_Destination_Byte_From_16bpp: mov bx,[esi] sub bx,ax cmp bx,1 adc dl,dl ;bit 0
mov bx,[esi+2] sub bx,ax cmp bx,1 adc dl,dl ;bit 1
mov bx,[esi+4] sub bx,ax cmp bx,1 adc dl,dl ;bit 2
mov bx,[esi+6] sub bx,ax cmp bx,1 adc dl,dl ;bit 3
mov bx,[esi+8] sub bx,ax cmp bx,1 adc dl,dl ;bit 4
mov bx,[esi+10] sub bx,ax cmp bx,1 adc dl,dl ;bit 5
mov bx,[esi+12] sub bx,ax cmp bx,1 adc dl,dl ;bit 6
mov bx,[esi+14] sub bx,ax cmp bx,1 adc dl,dl ;bit 7
add esi,16 ;advance the source ret
Compute_Destination_Byte_From_32bpp: mov ebx,[esi] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 0
mov ebx,[esi+4] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 1
mov ebx,[esi+8] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 2
mov ebx,[esi+12] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 3
mov ebx,[esi+16] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 4
mov ebx,[esi+20] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 5
mov ebx,[esi+24] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 6
mov ebx,[esi+28] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 7
add esi,32 ;advance the source ret
All_Done: } } while (cyToGo > 0);
prcl++; } while (--c != 0); }
#endif // i386
/******************************Public*Routine******************************\
* BOOL bPuntBlt * * Has GDI do any drawing operations that we don't specifically handle * in the driver. * \**************************************************************************/
BOOL bPuntBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { PDEV* ppdev; DSURF* pdsurfSrc; DSURF* pdsurfDst; OH* pohSrc; OH* pohDst; POINTL ptlSrc;
#if DBG
{ //////////////////////////////////////////////////////////////////////
// Diagnostics
//
// Since calling the engine to do any drawing can be rather painful,
// particularly when the source is an off-screen DFB (since GDI will
// have to allocate a DIB and call us to make a temporary copy before
// it can even start drawing), we'll try to avoid it as much as
// possible.
//
// Here we simply spew out information describing the blt whenever
// this routine gets called (checked builds only, of course):
ULONG ulClip; PDEV* ppdev; ULONG ulAvec;
if (psoDst->dhpdev != NULL) ppdev = (PDEV*) psoDst->dhpdev; else ppdev = (PDEV*) psoSrc->dhpdev;
ulClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
DISPDBG((1, ">> Punt << Dst format: %li Dst type: %li Clip: %li Rop: %lx", psoDst->iBitmapFormat, psoDst->iType, ulClip, rop4));
if (psoSrc != NULL) DISPDBG((1, " << Src format: %li Src type: %li", psoSrc->iBitmapFormat, psoSrc->iType));
if ((pxlo != NULL) && !(pxlo->flXlate & XO_TRIVIAL) && (psoSrc != NULL)) { if (((psoSrc->dhsurf == NULL) && (psoSrc->iBitmapFormat != ppdev->iBitmapFormat)) || ((psoDst->dhsurf == NULL) && (psoDst->iBitmapFormat != ppdev->iBitmapFormat))) { // Don't bother printing the 'xlate' message when the source
// is a different bitmap format from the destination -- in
// those cases we know there always has to be a translate.
} else { DISPDBG((1, " << With xlate")); } }
// The high 2 bytes of rop4 is not guaranteed to be zero. So in order
// to get the low 8 bits as index, we have to &ffff before do >>
ulAvec = gajRop3[rop4 & 0xff] | gajRop3[(rop4 & 0xffff) >> 8];
if ((ulAvec & AVEC_NEED_PATTERN) && (pbo->iSolidColor == -1)) { if (pbo->pvRbrush == NULL) DISPDBG((1, " << With brush -- Not created")); else DISPDBG((1, " << With brush -- Created Ok")); } } #endif
if (psoDst->dhsurf != NULL) { ppdev = (PDEV*) psoDst->dhpdev; pdsurfDst = (DSURF*) psoDst->dhsurf; psoDst = ppdev->psoPunt; psoDst->pvScan0 = pdsurfDst->poh->pvScan0;
if (psoSrc != NULL) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; if ((pdsurfSrc != NULL) && (pdsurfSrc != pdsurfDst)) { // If we're doing a BitBlt between different off-screen
// surfaces, we have to be sure to give GDI different
// surfaces, otherwise it may get confused when it has
// to do screen-to-screen blts with a translate...
pohSrc = pdsurfSrc->poh; pohDst = pdsurfDst->poh;
psoSrc = ppdev->psoPunt2; psoSrc->pvScan0 = pohSrc->pvScan0;
// Undo the source pointer adjustment we did earlier:
ptlSrc.x = pptlSrc->x + (pohDst->x - pohSrc->x); ptlSrc.y = pptlSrc->y + (pohDst->y - pohSrc->y); pptlSrc = &ptlSrc; } } } else { ppdev = (PDEV*) psoSrc->dhpdev; pdsurfSrc = (DSURF*) psoSrc->dhsurf; psoSrc = ppdev->psoPunt; psoSrc->pvScan0 = pdsurfSrc->poh->pvScan0; }
return(EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4)); }
/******************************Public*Routine******************************\
* BOOL DrvBitBlt * * Implements the workhorse routine of a display driver. * \**************************************************************************/
BOOL DrvBitBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { PDEV* ppdev; DSURF* pdsurfDst; DSURF* pdsurfSrc; POINTL ptlSrc; BYTE jClip; OH* poh; BOOL bMore; CLIPENUM ce; LONG c; RECTL rcl; ULONG rop3; FNFILL* pfnFill; RBRUSH_COLOR rbc; // Realized brush or solid colour
FNXFER* pfnXfer; ULONG iSrcBitmapFormat; ULONG iDir;
jClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
pdsurfDst = (DSURF*) psoDst->dhsurf; // May be NULL
if (psoSrc == NULL) { ///////////////////////////////////////////////////////////////////
// Fills
///////////////////////////////////////////////////////////////////
// Fills are this function's "raison d'etre" (which is French
// for "purple armadillo"), so we handle them as quickly as
// possible:
ASSERTDD(pdsurfDst != NULL, "Expect only device destinations when no source");
if (pdsurfDst->dt == DT_SCREEN) { ppdev = (PDEV*) psoDst->dhpdev;
poh = pdsurfDst->poh; ppdev->xOffset = poh->x; ppdev->yOffset = poh->y;
// Make sure it doesn't involve a mask (i.e., it's really a
// Rop3):
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Since 'psoSrc' is NULL, the rop3 had better not indicate
// that we need a source.
ASSERTDD((((rop4 >> 2) ^ (rop4)) & 0x33) == 0, "Need source but GDI gave us a NULL 'psoSrc'");
Fill_It:
pfnFill = ppdev->pfnFillSolid; if (gabRopNeedsPattern[(rop4 >> 2) & 0xf]) { rbc.iSolidColor = pbo->iSolidColor; if (rbc.iSolidColor == -1) { // Try and realize the pattern brush; by doing
// this call-back, GDI will eventually call us
// again through DrvRealizeBrush:
rbc.prb = pbo->pvRbrush; if (rbc.prb == NULL) { rbc.prb = BRUSHOBJ_pvGetRbrush(pbo); if (rbc.prb == NULL) { // If we couldn't realize the brush, punt
// the call (it may have been a non 8x8
// brush or something, which we can't be
// bothered to handle, so let GDI do the
// drawing):
goto Punt_It; } } pfnFill = ppdev->pfnFillPat; } }
// Note that these 2 'if's are more efficient than
// a switch statement:
if (jClip == DC_TRIVIAL) { pfnFill(ppdev, 1, prclDst, rop4, rbc, pptlBrush); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnFill(ppdev, 1, &rcl, rop4, rbc, pptlBrush); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) pfnFill(ppdev, c, ce.arcl, rop4, rbc, pptlBrush);
} while (bMore); goto All_Done; } } } }
if ((psoSrc != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; if (pdsurfSrc->dt == DT_DIB) { // Here we consider putting a DIB DFB back into off-screen
// memory. If there's a translate, it's probably not worth
// moving since we won't be able to use the hardware to do
// the blt (a similar argument could be made for weird rops
// and stuff that we'll only end up having GDI simulate, but
// those should happen infrequently enough that I don't care).
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { ppdev = (PDEV*) psoSrc->dhpdev;
// See 'DrvCopyBits' for some more comments on how this
// moving-it-back-into-off-screen-memory thing works:
if (pdsurfSrc->iUniq == ppdev->iHeapUniq) { if (--pdsurfSrc->cBlt == 0) { if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc)) goto Continue_It; } } else { // Some space was freed up in off-screen memory,
// so reset the counter for this DFB:
pdsurfSrc->iUniq = ppdev->iHeapUniq; pdsurfSrc->cBlt = HEAP_COUNT_DOWN; } }
psoSrc = pdsurfSrc->pso;
// Handle the case where the source is a DIB DFB and the
// destination is a regular bitmap:
if (psoDst->dhsurf == NULL) goto EngBitBlt_It;
} }
Continue_It:
if (pdsurfDst != NULL) { if (pdsurfDst->dt == DT_DIB) { psoDst = pdsurfDst->pso;
// If the destination is a DIB, we can only handle this
// call if the source is not a DIB:
if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL)) goto EngBitBlt_It; } }
// At this point, we know that either the source or the destination is
// not a DIB. Check for a DFB to screen, DFB to DFB, or screen to DFB
// case:
if ((psoSrc != NULL) && (psoDst->dhsurf != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; pdsurfDst = (DSURF*) psoDst->dhsurf;
ASSERTDD(pdsurfSrc->dt == DT_SCREEN, "Expected screen source"); ASSERTDD(pdsurfDst->dt == DT_SCREEN, "Expected screen destination");
ptlSrc.x = pptlSrc->x - (pdsurfDst->poh->x - pdsurfSrc->poh->x); ptlSrc.y = pptlSrc->y - (pdsurfDst->poh->y - pdsurfSrc->poh->y);
pptlSrc = &ptlSrc; }
if (psoDst->dhsurf != NULL) { pdsurfDst = (DSURF*) psoDst->dhsurf; ppdev = (PDEV*) psoDst->dhpdev;
ppdev->xOffset = pdsurfDst->poh->x; ppdev->yOffset = pdsurfDst->poh->y; } else { pdsurfSrc = (DSURF*) psoSrc->dhsurf; ppdev = (PDEV*) psoSrc->dhpdev;
ppdev->xOffset = pdsurfSrc->poh->x; ppdev->yOffset = pdsurfSrc->poh->y; }
// We bail here if we're running in a high-colour mode on the P9000:
if (ppdev->flStat & STAT_UNACCELERATED) goto EngBitBlt_It;
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Since we've already handled the cases where the ROP4 is really
// a ROP3 and no source is required, we can assert...
ASSERTDD((psoSrc != NULL) && (pptlSrc != NULL), "Expected no-source case to already have been handled");
///////////////////////////////////////////////////////////////////
// Bitmap transfers
///////////////////////////////////////////////////////////////////
// Since the foreground and background ROPs are the same, we
// don't have to worry about no stinking masks (it's a simple
// Rop3).
rop3 = (rop4 & 0xff); // Make it into a Rop3 (we keep the rop4
// around in case we decide to punt)
if (psoDst->dhsurf != NULL) { // The destination is the screen:
if ((rop3 >> 4) == (rop3 & 0xf)) { // The ROP3 doesn't require a pattern:
if (psoSrc->dhsurf == NULL) { //////////////////////////////////////////////////
// DIB-to-screen blt
// This section handles 1bpp, 4bpp and 8bpp sources.
iSrcBitmapFormat = psoSrc->iBitmapFormat; if (iSrcBitmapFormat == BMF_1BPP) { pfnXfer = ppdev->pfnXfer1bpp; goto Xfer_It; } else if ((iSrcBitmapFormat == ppdev->iBitmapFormat) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { pfnXfer = ppdev->pfnXferNative; goto Xfer_It; } else if ((iSrcBitmapFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP)) { pfnXfer = ppdev->pfnXfer4bpp; goto Xfer_It; } } else // psoSrc->dhsurf != NULL
{ if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { //////////////////////////////////////////////////
// Screen-to-screen blt with no translate
if (jClip == DC_TRIVIAL) { (ppdev->pfnCopyBlt)(ppdev, 1, prclDst, rop4, pptlSrc, prclDst); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) { (ppdev->pfnCopyBlt)(ppdev, 1, &rcl, rop4, pptlSrc, prclDst); } goto All_Done; } else { // Don't forget that we'll have to draw the
// rectangles in the correct direction:
if (pptlSrc->y >= prclDst->top) { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTDOWN; else iDir = CD_LEFTDOWN; } else { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTUP; else iDir = CD_LEFTUP; }
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, iDir, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) { (ppdev->pfnCopyBlt)(ppdev, c, ce.arcl, rop4, pptlSrc, prclDst); }
} while (bMore); goto All_Done; } } } } } else { #if defined(i386)
{ // We special case screen to monochrome blts because they
// happen fairly often. We only handle SRCCOPY rops and
// monochrome destinations (to handle a true 1bpp DIB
// destination, we would have to do near-colour searches
// on every colour; as it is, the foreground colour gets
// mapped to '1', and everything else gets mapped to '0'):
if ((psoDst->iBitmapFormat == BMF_1BPP) && (rop3 == 0xcc) && (pxlo->flXlate & XO_TO_MONO) && (ppdev->iBitmapFormat != BMF_24BPP)) { pfnXfer = vXferScreenTo1bpp; psoSrc = psoDst; // A misnomer, I admit
goto Xfer_It; } } #endif // i386
} } else if ((psoMsk == NULL) && (rop4 == 0xaacc)) { // The only time GDI will ask us to do a true rop4 using the brush
// mask is when the brush is 1bpp, and the background rop is AA
// (meaning it's a NOP):
goto Fill_It; }
// Just fall through to Punt_It...
Punt_It:
return(bPuntBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4));
//////////////////////////////////////////////////////////////////////
// Common bitmap transfer
Xfer_It: if (jClip == DC_TRIVIAL) { pfnXfer(ppdev, 1, prclDst, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnXfer(ppdev, 1, &rcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) { pfnXfer(ppdev, c, ce.arcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); }
} while (bMore); goto All_Done; }
////////////////////////////////////////////////////////////////////////
// Common DIB blt
EngBitBlt_It:
// Our driver doesn't handle any blt's between two DIBs. Normally
// a driver doesn't have to worry about this, but we do because
// we have DFBs that may get moved from off-screen memory to a DIB,
// where we have GDI do all the drawing. GDI does DIB drawing at
// a reasonable speed (unless one of the surfaces is a device-
// managed surface...)
//
// If either the source or destination surface in an EngBitBlt
// call-back is a device-managed surface (meaning it's not a DIB
// that GDI can draw with), GDI will automatically allocate memory
// and call the driver's DrvCopyBits routine to create a DIB copy
// that it can use. So this means that this could handle all 'punts',
// and we could conceivably get rid of bPuntBlt. But this would have
// a bad performance impact because of the extra memory allocations
// and bitmap copies -- you really don't want to do this unless you
// have to (or your surface was created such that GDI can draw
// directly onto it) -- I've been burned by this because it's not
// obvious that the performance impact is so bad.
//
// That being said, we only call EngBitBlt when all the surfaces
// are DIBs:
return(EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4));
All_Done: return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL DrvCopyBits * * Do fast bitmap copies. * * Note that GDI will (usually) automatically adjust the blt extents to * adjust for any rectangular clipping, so we'll rarely see DC_RECT * clipping in this routine (and as such, we don't bother special casing * it). * * I'm not sure if the performance benefit from this routine is actually * worth the increase in code size, since SRCCOPY BitBlts are hardly the * most common drawing operation we'll get. But what the heck. * \**************************************************************************/
BOOL DrvCopyBits( SURFOBJ* psoDst, SURFOBJ* psoSrc, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc) { PDEV* ppdev; DSURF* pdsurfSrc; DSURF* pdsurfDst; POINTL ptl; OH* pohSrc; OH* pohDst;
// DrvCopyBits is a fast-path for SRCCOPY blts. But it can still be
// pretty complicated: there can be translates, clipping, RLEs,
// bitmaps that aren't the same format as the screen, plus
// screen-to-screen, DIB-to-screen or screen-to-DIB operations,
// not to mention DFBs (device format bitmaps).
//
// Rather than making this routine almost as big as DrvBitBlt, I'll
// handle here only the speed-critical cases, and punt the rest to
// our DrvBitBlt routine.
//
// We'll try to handle anything that doesn't involve clipping:
if (((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL)) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { if (psoDst->dhsurf != NULL) { // We know the destination is either a DFB or the screen:
ppdev = (PDEV*) psoDst->dhpdev; pdsurfDst = (DSURF*) psoDst->dhsurf;
// See if the source is a plain DIB:
if (psoSrc->dhsurf != NULL) { pdsurfSrc = (DSURF*) psoSrc->dhsurf;
// Make sure the destination is really the screen or an
// off-screen DFB (i.e., not a DFB that we've converted
// to a DIB):
if (pdsurfDst->dt == DT_SCREEN) { ASSERTDD(psoSrc->dhsurf != NULL, "Can't be a DIB");
if (pdsurfSrc->dt == DT_SCREEN) {
Screen_To_Screen:
//////////////////////////////////////////////////////
// Screen-to-screen
ASSERTDD((psoSrc->dhsurf != NULL) && (pdsurfSrc->dt == DT_SCREEN) && (psoDst->dhsurf != NULL) && (pdsurfDst->dt == DT_SCREEN), "Should be a screen-to-screen case");
// pfnCopyBlt takes relative coordinates (relative
// to the destination surface, that is), so we have
// to change the start point to be relative to the
// destination surface too:
pohSrc = pdsurfSrc->poh; pohDst = pdsurfDst->poh;
ptl.x = pptlSrc->x - (pohDst->x - pohSrc->x); ptl.y = pptlSrc->y - (pohDst->y - pohSrc->y);
ppdev->xOffset = pohDst->x; ppdev->yOffset = pohDst->y;
(ppdev->pfnCopyBlt)(ppdev, 1, prclDst, 0xCCCC, &ptl, prclDst); return(TRUE); } else // (pdsurfSrc->dt != DT_SCREEN)
{ // Ah ha, the source is a DFB that's really a DIB.
ASSERTDD(psoDst->dhsurf != NULL, "Destination can't be a DIB here");
/////////////////////////////////////////////////////
// Put It Back Into Off-screen?
//
// We take this opportunity to decide if we want to
// put the DIB back into off-screen memory. This is
// a pretty good place to do it because we have to
// copy the bits to some portion of the screen,
// anyway. So we would incur only an extra screen-to-
// screen blt at this time, much of which will be
// over-lapped with the CPU.
//
// The simple approach we have taken is to move a DIB
// back into off-screen memory only if there's already
// room -- we won't throw stuff out to make space
// (because it's tough to know what ones to throw out,
// and it's easy to get into thrashing scenarios).
//
// Because it takes some time to see if there's room
// in off-screen memory, we only check one in
// HEAP_COUNT_DOWN times if there's room. To bias
// in favour of bitmaps that are often blt, the
// counters are reset every time any space is freed
// up in off-screen memory. We also don't bother
// checking if no space has been freed since the
// last time we checked for this DIB.
if (pdsurfSrc->iUniq == ppdev->iHeapUniq) { if (--pdsurfSrc->cBlt == 0) { if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc)) goto Screen_To_Screen; } } else { // Some space was freed up in off-screen memory,
// so reset the counter for this DFB:
pdsurfSrc->iUniq = ppdev->iHeapUniq; pdsurfSrc->cBlt = HEAP_COUNT_DOWN; }
// Since the destination is definitely the screen,
// we don't have to worry about creating a DIB to
// DIB copy case (for which we would have to call
// EngCopyBits):
psoSrc = pdsurfSrc->pso;
goto DIB_To_Screen; } } else // (pdsurfDst->dt != DT_SCREEN)
{ // Because the source is not a DIB, we don't have to
// worry about creating a DIB to DIB case here (although
// we'll have to check later to see if the source is
// really a DIB that's masquerading as a DFB...)
ASSERTDD(psoSrc->dhsurf != NULL, "Source can't be a DIB here");
psoDst = pdsurfDst->pso;
goto Screen_To_DIB; } } else if (psoSrc->iBitmapFormat == ppdev->iBitmapFormat) { // Make sure the destination is really the screen:
if (pdsurfDst->dt == DT_SCREEN) {
DIB_To_Screen:
//////////////////////////////////////////////////////
// DIB-to-screen
ASSERTDD((psoDst->dhsurf != NULL) && (pdsurfDst->dt == DT_SCREEN) && (psoSrc->dhsurf == NULL) && (psoSrc->iBitmapFormat == ppdev->iBitmapFormat), "Should be a DIB-to-screen case");
pohDst = pdsurfDst->poh; ppdev->xOffset = pohDst->x; ppdev->yOffset = pohDst->y;
ppdev->pfnXferNative(ppdev, 1, prclDst, 0xCCCC, psoSrc, pptlSrc, prclDst, NULL); return(TRUE); } } } else // (psoDst->dhsurf == NULL)
{
Screen_To_DIB:
pdsurfSrc = (DSURF*) psoSrc->dhsurf; ppdev = (PDEV*) psoSrc->dhpdev;
if (psoDst->iBitmapFormat == ppdev->iBitmapFormat) { if (pdsurfSrc->dt == DT_SCREEN) { //////////////////////////////////////////////////////
// Screen-to-DIB
ASSERTDD((psoSrc->dhsurf != NULL) && (pdsurfSrc->dt == DT_SCREEN) && (psoDst->dhsurf == NULL) && (psoDst->iBitmapFormat == ppdev->iBitmapFormat), "Should be a screen-to-DIB case");
// vGetBits takes absolute screen coordinates, so we have
// to muck with the source point:
pohSrc = pdsurfSrc->poh;
ptl.x = pptlSrc->x + pohSrc->x; ptl.y = pptlSrc->y + pohSrc->y;
vGetBits(ppdev, psoDst, prclDst, &ptl); return(TRUE); } else { // The source is a DFB that's really a DIB. Since we
// know that the destination is a DIB, we've got a DIB
// to DIB operation, and should call EngCopyBits:
psoSrc = pdsurfSrc->pso; goto EngCopyBits_It; } } } }
// We can't call DrvBitBlt if we've accidentally converted both
// surfaces to DIBs, because it isn't equipped to handle it:
ASSERTDD((psoSrc->dhsurf != NULL) || (psoDst->dhsurf != NULL), "Accidentally converted both surfaces to DIBs");
/////////////////////////////////////////////////////////////////
// A DrvCopyBits is after all just a simplified DrvBitBlt:
return(DrvBitBlt(psoDst, psoSrc, NULL, pco, pxlo, prclDst, pptlSrc, NULL, NULL, NULL, 0x0000CCCC));
EngCopyBits_It:
ASSERTDD((psoDst->dhsurf == NULL) && (psoSrc->dhsurf == NULL), "Both surfaces should be DIBs to call EngCopyBits");
return(EngCopyBits(psoDst, psoSrc, pco, pxlo, prclDst, pptlSrc)); }
|