|
|
/////////////////////////////////////////////////////////////////////////////
// FILE : fipsdll.c //
// DESCRIPTION : //
// AUTHOR : //
// HISTORY : //
// Nov 29 1999 jeffspel Created //
// //
// Copyright (C) 1999 Microsoft Corporation All Rights Reserved //
/////////////////////////////////////////////////////////////////////////////
#include <ntddk.h>
#include <fipsapi.h>
#include <rsa_fast.h>
#include <rsa_math.h>
#include <randlib.h>
//
// Fill in the DESTable struct with the decrypt and encrypt
// key expansions.
//
// Assumes that the second parameter points to DES_BLOCKLEN
// bytes of key.
//
//
#pragma alloc_text(PAGER32C, FipsDesKey)
#pragma alloc_text(PAGER32C, FipsDes)
#pragma alloc_text(PAGER32C, Fips3Des3Key)
#pragma alloc_text(PAGER32C, Fips3Des)
#pragma alloc_text(PAGER32C, FipsSHAInit)
#pragma alloc_text(PAGER32C, FipsSHAUpdate)
#pragma alloc_text(PAGER32C, FipsSHAFinal)
#pragma alloc_text(PAGER32C, FipsCBC)
#pragma alloc_text(PAGER32C, FIPSGenRandom)
#pragma alloc_text(PAGER32C, FipsCBC)
#pragma alloc_text(PAGER32C, FIPSGenRandom)
#pragma alloc_text(PAGER32C, FipsBlockCBC)
#pragma alloc_text(PAGER32C, FipsHmacSHAInit)
#pragma alloc_text(PAGER32C, FipsHmacSHAUpdate)
#pragma alloc_text(PAGER32C, FipsHmacSHAFinal)
#pragma alloc_text(PAGER32C, HmacMD5Init)
#pragma alloc_text(PAGER32C, HmacMD5Update)
#pragma alloc_text(PAGER32C, HmacMD5Final)
void * __stdcall RSA32Alloc( unsigned long cb ) { return (void *)ExAllocatePool(PagedPool, cb); }
void __stdcall RSA32Free( void *pv ) { ExFreePool( pv ); }
VOID FipsDesKey(DESTable *DesTable, UCHAR *pbKey) { UCHAR rgbTmpKey[DES_KEYSIZE];
RtlCopyMemory(rgbTmpKey, pbKey, DES_KEYSIZE);
deskey(DesTable, rgbTmpKey);
RtlZeroMemory(rgbTmpKey, DES_KEYSIZE); }
//
// Encrypt or decrypt with the key in DESTable
//
//
VOID FipsDes(UCHAR *pbOut, UCHAR *pbIn, void *pKey, int iOp) { DESTable TmpDESTable;
RtlCopyMemory(&TmpDESTable, pKey, sizeof(DESTable));
des(pbOut, pbIn, &TmpDESTable, iOp); RtlZeroMemory(&TmpDESTable, sizeof(DESTable)); }
//
// Fill in the DES3Table structs with the decrypt and encrypt
// key expansions.
//
// Assumes that the second parameter points to 3 * DES_BLOCKLEN
// bytes of key.
//
//
VOID Fips3Des3Key(PDES3TABLE pDES3Table, UCHAR *pbKey) { UCHAR rgbTmpKey[DES3_KEYSIZE];
RtlCopyMemory(rgbTmpKey, pbKey, DES3_KEYSIZE);
tripledes3key(pDES3Table, rgbTmpKey); RtlZeroMemory(rgbTmpKey, DES3_KEYSIZE); }
//
// Encrypt or decrypt with the key in pKey
//
VOID Fips3Des(UCHAR *pbIn, UCHAR *pbOut, void *pKey, int op) { DES3TABLE Tmp3DESTable;
RtlCopyMemory(&Tmp3DESTable, pKey, sizeof(DES3TABLE));
tripledes(pbIn, pbOut, &Tmp3DESTable, op); RtlZeroMemory(&Tmp3DESTable, sizeof(DES3TABLE)); }
//
// Initialize the SHA context.
//
VOID FipsSHAInit(A_SHA_CTX *pShaCtx) { A_SHAInit(pShaCtx); }
//
// Hash data into the hash context.
//
VOID FipsSHAUpdate(A_SHA_CTX *pShaCtx, UCHAR *pb, unsigned int cb) { A_SHAUpdate(pShaCtx, pb, cb); }
//
// Finish the SHA hash and copy the final hash value into the pbHash out param.
//
VOID FipsSHAFinal(A_SHA_CTX *pShaCtx, UCHAR *pbHash) { A_SHAFinal(pShaCtx, pbHash); }
typedef void (*FIPSCIPHER)(UCHAR*, UCHAR*, void*, int);
//
// FipsCBC (cipher block chaining) performs a XOR of the feedback register
// with the plain text before calling the block cipher
//
// NOTE - Currently this function assumes that the block length is
// DES_BLOCKLEN (8 bytes).
//
// Return: Failure if FALSE is returned, TRUE if it succeeded.
//
BOOL FipsCBC( ULONG EncryptionAlg, PBYTE pbOutput, PBYTE pbInput, void *pKeyTable, int Operation, PBYTE pbFeedback ) { UCHAR rgbTmpKeyTable[DES3_TABLESIZE]; // 3DES is the max table size
ULONG cbKeyTable; FIPSCIPHER FipsCipher; BOOL fRet = TRUE; PBYTE pbOutputSave = NULL, pbInputSave = NULL, pbFeedbackSave = NULL; UINT64 OutputAlignedBuffer, InputAlignedBuffer, FeedbackAlignedBuffer;
#ifdef IA64
#define ALIGNMENT_BOUNDARY 7
#else
#define ALIGNMENT_BOUNDARY 3
#endif
// align input buffer
if ((ULONG_PTR) pbInput & ALIGNMENT_BOUNDARY) {
InputAlignedBuffer = *(UINT64 UNALIGNED *) pbInput; pbInputSave = pbInput;
if (pbOutput == pbInput) {
pbOutput = (PBYTE) &InputAlignedBuffer; }
pbInput = (PBYTE) &InputAlignedBuffer; }
// align output buffer
if ((ULONG_PTR) pbOutput & ALIGNMENT_BOUNDARY) {
OutputAlignedBuffer = *(UINT64 UNALIGNED *) pbOutput; pbOutputSave = pbOutput; pbOutput = (PBYTE) &OutputAlignedBuffer; }
if ((ULONG_PTR) pbFeedback & ALIGNMENT_BOUNDARY) {
FeedbackAlignedBuffer = *(UINT64 UNALIGNED *) pbFeedback; pbFeedbackSave = pbFeedback; pbFeedback = (PBYTE) &FeedbackAlignedBuffer; }
//
// determine the algorithm to use
//
switch(EncryptionAlg) { case FIPS_CBC_DES: { FipsCipher = des; cbKeyTable = DES_TABLESIZE; break; } case FIPS_CBC_3DES: { FipsCipher = tripledes; cbKeyTable = DES3_TABLESIZE; break; } default: fRet = FALSE; goto Ret; }
RtlCopyMemory(rgbTmpKeyTable, (UCHAR*)pKeyTable, cbKeyTable);
//
// optimize very common codepath: 8 byte blocks
//
if (Operation == ENCRYPT) { ((PUINT64) pbOutput)[0] = ((PUINT64) pbInput)[0] ^ ((PUINT64) pbFeedback)[0];
FipsCipher(pbOutput, pbOutput, rgbTmpKeyTable, ENCRYPT);
((PUINT64) pbFeedback)[0] = ((PUINT64) pbOutput)[0]; } else {
//
// two cases for output:
// input and output are separate buffers
// input and output are same buffers
//
if( pbOutput != pbInput ) {
FipsCipher(pbOutput, pbInput, rgbTmpKeyTable, DECRYPT);
((PUINT64) pbOutput)[0] ^= ((PUINT64) pbFeedback)[0]; ((PUINT64) pbFeedback)[0] = ((PUINT64) pbInput)[0];
} else {
UINT64 inputTemp;
inputTemp = ((PUINT64) pbInput)[0];
FipsCipher(pbOutput, pbInput, rgbTmpKeyTable, DECRYPT);
((PUINT64) pbOutput)[0] ^= ((PUINT64) pbFeedback)[0]; ((PUINT64) pbFeedback)[0] = inputTemp; } }
RtlZeroMemory(rgbTmpKeyTable, DES3_TABLESIZE);
if (pbInputSave) {
*(UINT64 UNALIGNED *) pbInputSave = InputAlignedBuffer; }
if (pbOutputSave) {
*(UINT64 UNALIGNED *) pbOutputSave = OutputAlignedBuffer; }
if (pbFeedbackSave) {
*(UINT64 UNALIGNED *) pbFeedbackSave = FeedbackAlignedBuffer; }
Ret: return fRet; }
//
// FipsBlockCBC (cipher block chaining) performs a XOR of the feedback register
// with the plain text before calling the block cipher
//
// NOTE - Currently this function assumes that the block length is
// DES_BLOCKLEN (8 bytes).
//
// Return: Failure if FALSE is returned, TRUE if it succeeded.
//
BOOL FipsBlockCBC( ULONG EncryptionAlg, PBYTE pbOutput, PBYTE pbInput, ULONG Length, void *pKeyTable, int Operation, PBYTE pbFeedback ) { UCHAR rgbTmpKeyTable[DES3_TABLESIZE]; // 3DES is the max table size
ULONG cbKeyTable; FIPSCIPHER FipsCipher; BOOL fRet = TRUE;
ASSERT ((Length % DESX_BLOCKLEN == 0) && (Length > 0)); if ((Length % DESX_BLOCKLEN != 0) || (Length == 0)) { return FALSE; }
//
// determine the algorithm to use
//
switch(EncryptionAlg) { case FIPS_CBC_DES: { FipsCipher = des; cbKeyTable = DES_TABLESIZE; break; } case FIPS_CBC_3DES: { FipsCipher = tripledes; cbKeyTable = DES3_TABLESIZE; break; } default: fRet = FALSE; goto Ret; }
RtlCopyMemory(rgbTmpKeyTable, (UCHAR*)pKeyTable, cbKeyTable);
//
// optimize very common codepath: 8 byte blocks
//
if (Operation == ENCRYPT) { ULONGLONG tmpData; // Make sure the input buffer not touched more than once. Else EFS will break mysteriously.
ULONGLONG chainBlock;
chainBlock = *(ULONGLONG *)pbFeedback; while (Length > 0){
tmpData = *(ULONGLONG *)pbInput; tmpData ^= chainBlock;
FipsCipher(pbOutput, (PUCHAR)&tmpData, rgbTmpKeyTable, ENCRYPT); chainBlock = *(ULONGLONG *)pbOutput;
Length -= DES_BLOCKLEN; pbInput += DES_BLOCKLEN; pbOutput += DES_BLOCKLEN;
} ((PUINT64) pbFeedback)[0] = chainBlock; } else {
PUCHAR pBuffer; PUCHAR pOutBuffer; ULONGLONG SaveFeedBack;
//
// two cases for output:
// input and output are separate buffers
// input and output are same buffers
//
pBuffer = pbInput + Length - DES_BLOCKLEN; pOutBuffer = pbOutput + Length - DES_BLOCKLEN; SaveFeedBack = *(ULONGLONG *)pBuffer;
while (pBuffer > pbInput) {
FipsCipher(pOutBuffer, pBuffer, rgbTmpKeyTable, DECRYPT); ((PUINT64) pOutBuffer)[0] ^= *(ULONGLONG *)( pBuffer - DES_BLOCKLEN ); pBuffer -= DES_BLOCKLEN; pOutBuffer -= DES_BLOCKLEN;
}
FipsCipher(pOutBuffer, pBuffer, rgbTmpKeyTable, DECRYPT); ((PUINT64) pOutBuffer)[0] ^= *(ULONGLONG *)pbFeedback; ((PUINT64) pbFeedback)[0] = SaveFeedBack;
}
RtlZeroMemory(rgbTmpKeyTable, DES3_TABLESIZE);
Ret: return fRet; }
//
// Function: FipsHmacSHAInit
//
// Description: Initialize a SHA-HMAC context
//
VOID FipsHmacSHAInit( OUT A_SHA_CTX *pShaCtx, IN UCHAR *pKey, IN unsigned int cbKey) { PUCHAR key = pKey; ULONG key_len = cbKey; UCHAR k_ipad[MAX_LEN_PAD]; /* inner padding - key XORd with ipad */ UCHAR tk[A_SHA_DIGEST_LEN]; ULONG i; UCHAR tmpKey[MAX_KEYLEN_SHA];
//
// if key is longer than 64 bytes reset it to key=A_SHA_(key) */
//
if (key_len > MAX_KEYLEN_SHA) { A_SHA_CTX tctx;
A_SHAInit(&tctx); A_SHAUpdate(&tctx, key, key_len); A_SHAFinal(&tctx, tk);
key = tk; key_len = A_SHA_DIGEST_LEN; }
// For FIPS compliance
RtlCopyMemory(tmpKey, key, key_len);
//
// Zero out the scratch arrays
//
RtlZeroMemory(k_ipad, sizeof(k_ipad));
RtlCopyMemory(k_ipad, tmpKey, key_len);
//
// XOR key with ipad and opad values
//
for (i = 0; i < MAX_KEYLEN_SHA/sizeof(unsigned __int64); i++) { ((unsigned __int64*)k_ipad)[i] ^= 0x3636363636363636; }
//
// Init the algorithm context
//
A_SHAInit(pShaCtx);
//
// Inner A_SHA_: start with inner pad
//
A_SHAUpdate(pShaCtx, k_ipad, MAX_KEYLEN_SHA);
RtlZeroMemory(tmpKey, key_len); }
//
// Function: FipsHmacSHAUpdate
//
// Description: Add more data to a SHA-HMAC context
//
VOID FipsHmacSHAUpdate( IN OUT A_SHA_CTX *pShaCtx, IN UCHAR *pb, IN unsigned int cb) { A_SHAUpdate(pShaCtx, pb, cb); }
//
// Function: FipsHmacSHAFinal
//
// Description: Return result of SHA-HMAC
//
VOID FipsHmacSHAFinal( IN A_SHA_CTX *pShaCtx, IN UCHAR *pKey, IN unsigned int cbKey, OUT UCHAR *pHash) { UCHAR k_opad[MAX_LEN_PAD]; /* outer padding - key XORd with opad */ UCHAR tk[A_SHA_DIGEST_LEN]; PUCHAR key = pKey; ULONG key_len = cbKey; ULONG i; UCHAR tmpKey[MAX_KEYLEN_SHA];
A_SHAFinal(pShaCtx, pHash);
//
// if key is longer than 64 bytes reset it to key=A_SHA_(key) */
//
if (key_len > MAX_KEYLEN_SHA) { A_SHA_CTX tctx;
A_SHAInit(&tctx); A_SHAUpdate(&tctx, key, key_len); A_SHAFinal(&tctx, tk);
key = tk; key_len = A_SHA_DIGEST_LEN; }
// For FIPS Compliance
RtlCopyMemory(tmpKey, key, key_len);
RtlZeroMemory(k_opad, sizeof(k_opad)); RtlCopyMemory(k_opad, tmpKey, key_len);
//
// XOR key with ipad and opad values
//
for (i = 0; i < MAX_KEYLEN_SHA/sizeof(unsigned __int64); i++) { ((unsigned __int64*)k_opad)[i] ^= 0x5c5c5c5c5c5c5c5c; }
//
// Now do outer A_SHA_
//
A_SHAInit(pShaCtx);
//
// start with outer pad
//
A_SHAUpdate(pShaCtx, k_opad, MAX_KEYLEN_SHA);
//
// then results of 1st hash
//
A_SHAUpdate(pShaCtx, pHash, A_SHA_DIGEST_LEN);
A_SHAFinal(pShaCtx, pHash);
RtlZeroMemory(tmpKey, key_len); }
//
// Function: HmacMD5Init
//
// Description: Initialize a MD5-HMAC context
//
VOID HmacMD5Init( OUT MD5_CTX *pMD5Ctx, IN UCHAR *pKey, IN unsigned int cbKey) { PUCHAR key = pKey; ULONG key_len = cbKey; UCHAR k_ipad[MAX_LEN_PAD]; /* inner padding - key XORd with ipad */ UCHAR tk[MD5DIGESTLEN]; ULONG i;
//
// if key is longer than 64 bytes reset it to key=MD5(key) */
//
if (key_len > MAX_KEYLEN_MD5) { MD5_CTX tctx;
MD5Init(&tctx); MD5Update(&tctx, key, key_len); MD5Final(&tctx);
//
// Copy out the partial hash
//
RtlCopyMemory (tk, tctx.digest, MD5DIGESTLEN);
key = tk; key_len = MD5DIGESTLEN; }
//
// Zero out the scratch arrays
//
RtlZeroMemory(k_ipad, sizeof(k_ipad));
RtlCopyMemory(k_ipad, key, key_len);
//
// XOR key with ipad and opad values
//
for (i = 0; i < MAX_KEYLEN_MD5/sizeof(unsigned __int64); i++) { ((unsigned __int64*)k_ipad)[i] ^= 0x3636363636363636; }
//
// Init the algorithm context
//
MD5Init(pMD5Ctx);
//
// Inner MD5: start with inner pad
//
MD5Update(pMD5Ctx, k_ipad, MAX_KEYLEN_MD5); }
//
// Function: HmacMD5Update
//
// Description: Add more data to a MD5-HMAC context
//
VOID HmacMD5Update( IN OUT MD5_CTX *pMD5Ctx, IN UCHAR *pb, IN unsigned int cb) { MD5Update(pMD5Ctx, pb, cb); }
//
// Function: HmacMD5Final
//
// Description: Return result of MD5-HMAC
//
VOID HmacMD5Final( IN MD5_CTX *pMD5Ctx, IN UCHAR *pKey, IN unsigned int cbKey, OUT UCHAR *pHash) { UCHAR k_opad[MAX_LEN_PAD]; /* outer padding - key XORd with opad */ UCHAR tk[MD5DIGESTLEN]; PUCHAR key = pKey; ULONG key_len = cbKey; ULONG i;
MD5Final(pMD5Ctx);
//
// Copy out the partial hash
//
RtlCopyMemory (pHash, pMD5Ctx->digest, MD5DIGESTLEN);
//
// if key is longer than 64 bytes reset it to key=MD5(key) */
//
if (key_len > MAX_KEYLEN_MD5) { MD5_CTX tctx;
MD5Init(&tctx); MD5Update(&tctx, key, key_len); MD5Final(&tctx);
//
// Copy out the partial hash
//
RtlCopyMemory (tk, tctx.digest, MD5DIGESTLEN);
key = tk; key_len = MD5DIGESTLEN; }
RtlZeroMemory(k_opad, sizeof(k_opad)); RtlCopyMemory(k_opad, key, key_len);
//
// XOR key with ipad and opad values
//
for (i = 0; i < MAX_KEYLEN_MD5/sizeof(unsigned __int64); i++) { ((unsigned __int64*)k_opad)[i] ^= 0x5c5c5c5c5c5c5c5c; }
//
// Now do outer MD5
//
MD5Init(pMD5Ctx);
//
// start with outer pad
//
MD5Update(pMD5Ctx, k_opad, MAX_KEYLEN_MD5);
//
// then results of 1st hash
//
MD5Update(pMD5Ctx, pHash, MD5DIGESTLEN);
MD5Final(pMD5Ctx);
RtlCopyMemory(pHash, pMD5Ctx->digest, MD5DIGESTLEN); }
static UCHAR DSSPRIVATEKEYINIT[] = { 0x67, 0x45, 0x23, 0x01, 0xef, 0xcd, 0xab, 0x89, 0x98, 0xba, 0xdc, 0xfe, 0x10, 0x32, 0x54, 0x76, 0xc3, 0xd2, 0xe1, 0xf0};
static UCHAR MODULUS[] = { 0xf5, 0xc1, 0x56, 0xb1, 0xd5, 0x48, 0x42, 0x2e, 0xbd, 0xa5, 0x44, 0x41, 0xc7, 0x1c, 0x24, 0x08, 0x3f, 0x80, 0x3c, 0x90};
UCHAR g_rgbRNGState[A_SHA_DIGEST_LEN];
//
// Function : AddSeeds
//
// Description : This function adds the 160 bit seeds pointed to by pdwSeed1 and
// pdwSeed2, it also adds 1 to this sum and mods the sum by
// 2^160.
//
VOID AddSeeds( IN ULONG *pdwSeed1, IN OUT ULONG *pdwSeed2 ) { ULONG dwTmp; ULONG dwOverflow = 1; ULONG i;
for (i = 0; i < 5; i++) { dwTmp = dwOverflow + pdwSeed1[i]; dwOverflow = (dwOverflow > dwTmp); pdwSeed2[i] = pdwSeed2[i] + dwTmp; dwOverflow = ((dwTmp > pdwSeed2[i]) || dwOverflow); } }
void SHA_mod_q( IN UCHAR *pbHash, IN UCHAR *pbQ, OUT UCHAR *pbNewHash ) //
// Given SHA(message), compute SHA(message) mod qdigit.
// Output is in the interval [0, qdigit-1].
// Although SHA(message) may exceed qdigit,
// it cannot exceed 2*qdigit since the leftmost bit
// of qdigit is 1.
//
{ UCHAR rgbHash[A_SHA_DIGEST_LEN];
if (-1 != Compare((DWORD*)rgbHash, // hash is greater so subtract
(DWORD*)pbQ, A_SHA_DIGEST_LEN / sizeof(ULONG))) { Sub((DWORD*)pbNewHash, (DWORD*)rgbHash, (DWORD*)pbQ, A_SHA_DIGEST_LEN / sizeof(ULONG)); } else { memcpy(pbNewHash, pbHash, A_SHA_DIGEST_LEN / sizeof(ULONG)); } } // SHA_mod_q
//
// Function : RNG16BitStateCheck
//
// Description : This function compares each 160 bits of the buffer with
// the next 160 bits and if they are the same the function
// errors out. The IN buffer is expected to be A_SHA_DIGEST_LEN
// bytes long. The function fails if the RNG is gets the same
// input buffer of 160 bits twice in a row.
//
BOOL RNG16BitStateCheck( IN OUT ULONG *pdwOut, IN ULONG *pdwIn, IN ULONG cbNeeded ) { BOOL fRet = FALSE;
if (RtlEqualMemory(g_rgbRNGState, pdwIn, A_SHA_DIGEST_LEN)) { RtlCopyMemory(g_rgbRNGState, (BYTE*)pdwIn, A_SHA_DIGEST_LEN); goto Ret; }
RtlCopyMemory(g_rgbRNGState, (BYTE*)pdwIn, A_SHA_DIGEST_LEN);
RtlCopyMemory((BYTE*)pdwOut, (BYTE*)pdwIn, cbNeeded);
fRet = TRUE; Ret: return fRet; }
//
// Function : FIPSGenRandom
//
// Description : FIPS 186 RNG, the seed is generated by calling NewGenRandom.
//
BOOL FIPSGenRandom( IN OUT UCHAR *pb, IN ULONG cb ) { ULONG rgdwSeed[A_SHA_DIGEST_LEN/sizeof(ULONG)]; // 160 bits
ULONG rgdwNewSeed[A_SHA_DIGEST_LEN/sizeof(ULONG)]; // 160 bits
A_SHA_CTX SHACtxt; UCHAR rgbBuf[A_SHA_DIGEST_LEN]; ULONG cbBuf; UCHAR *pbTmp = pb; ULONG cbTmp = cb; ULONG i; BOOL fRet = FALSE;
while (cbTmp) { // get a 160 bit random seed
NewGenRandom(NULL, NULL, (BYTE*)rgdwNewSeed, sizeof(rgdwNewSeed));
for (i = 0; i < A_SHA_DIGEST_LEN/sizeof(ULONG); i++) { rgdwSeed[i] ^= rgdwNewSeed[i]; }
A_SHAInit (&SHACtxt); RtlCopyMemory(SHACtxt.state, DSSPRIVATEKEYINIT, A_SHA_DIGEST_LEN);
// perform the one way function
A_SHAUpdate(&SHACtxt, (BYTE*)rgdwSeed, sizeof(rgdwSeed)); A_SHAFinal(&SHACtxt, rgbBuf);
// continuous 16 bit state check
if (A_SHA_DIGEST_LEN < cbTmp) { cbBuf = A_SHA_DIGEST_LEN; } else { cbBuf = cbTmp; } if (!RNG16BitStateCheck((ULONG*)pbTmp, (ULONG*)rgbBuf, cbBuf)) { goto Ret; } pbTmp += cbBuf; cbTmp -= cbBuf; if (0 == cbTmp) break;
// modular reduction with modulus Q
SHA_mod_q(rgbBuf, MODULUS, (UCHAR*)rgdwNewSeed);
// (1 + previous seed + new random) mod 2^160
AddSeeds(rgdwNewSeed, rgdwSeed); }
fRet = TRUE; Ret: return fRet; }
|