|
|
//
// CCL32.CPP
// Common Control Classes
//
// Copyright Microsoft 1998-
//
// PRECOMP
#include "precomp.h"
#define COMPILE_MULTIMON_STUBS
#include <multimon.h>
#include <regentry.h>
#include "NMWbObj.h"
LRESULT CALLBACK DummyMouseHookProc( int code, WPARAM wParam, LPARAM lParam );
HHOOK g_utMouseHookHandle = NULL; HWND g_utCaptureWindow = NULL;
void UT_CaptureMouse( HWND hwnd ) { // disable asynchronous input so we don't lose capture because the
// left button isn't down
g_utMouseHookHandle = SetWindowsHookEx( WH_JOURNALRECORD, DummyMouseHookProc, g_hInstance, NULL );
if( g_utMouseHookHandle == NULL ) { WARNING_OUT(("Failed to insert JournalRecord hook")); }
// grap mouse
::SetCapture(hwnd); g_utCaptureWindow = hwnd; }
void UT_ReleaseMouse( HWND hwnd ) { ::ReleaseCapture(); g_utCaptureWindow = NULL;
if (g_utMouseHookHandle != NULL ) { // le go my lego
::UnhookWindowsHookEx( g_utMouseHookHandle ); g_utMouseHookHandle = NULL; } }
LRESULT CALLBACK DummyMouseHookProc( int code, WPARAM wParam, LPARAM lParam ) { return( CallNextHookEx( g_utMouseHookHandle, code, wParam, lParam ) ); }
//
// General definitions
//
#define MAX_OPTIONS_LINE_LENGTH 255
#define MAX_SECTION_LEN 200
//
//
// Function: HexDigitToByte
//
// Purpose: Helper function to convert a single hex digit to a byte value.
//
//
BOOL HexDigitToByte(char cHexDigit, BYTE& byte);
BOOL HexDigitToByte(char cHexDigit, BYTE& byte) { // Decimal digits
if ( (cHexDigit >= '0') && (cHexDigit <= '9')) { byte = (BYTE) (cHexDigit - '0'); return(TRUE); }
// Uppercase characters
if ( (cHexDigit >= 'A') && (cHexDigit <= 'F')) { byte = (BYTE) ((cHexDigit - 'A') + 10); return(TRUE); }
// Lowercase characters
if ( (cHexDigit >= 'a') && (cHexDigit <= 'f')) { byte = (BYTE) ((cHexDigit - 'a') + 10); return(TRUE); }
// The character is not a valid hex digit
return(FALSE); }
//
//
// Function: GetIntegerOption
//
// Purpose: Retrieve a named option from the dictionary and convert the
// option string to a long integer value.
//
//
LONG OPT_GetIntegerOption ( LPCSTR cstrOptionName, LONG lDefault ) { LONG lResult; TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
if (OPT_Lookup(cstrOptionName, cstrValue, MAX_OPTIONS_LINE_LENGTH)) { // Option has been found, convert it to a long
lResult = RtStrToInt(cstrValue); } else { // The option is not in the dictionary, return the default
lResult = lDefault; }
return lResult; }
//
//
// Function: GetBooleanOption
//
// Purpose: Retrieve a named option from the dictionary and convert it to
// a boolean value.
//
//
BOOL OPT_GetBooleanOption ( LPCSTR cstrOptionName, BOOL bDefault ) { TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH];
// Lookup the option
if (OPT_Lookup(cstrOptionName, cstrValue,MAX_OPTIONS_LINE_LENGTH)) { return(cstrValue[0] == 'y' || cstrValue[0] =='Y') ; }
return bDefault; }
//
//
// Function: GetStringOption
//
// Purpose: Retrieve a named option from the dictionary and return a copy
// of it. No conversion of the string is performed.
//
//
void OPT_GetStringOption ( LPCSTR cstrOptionName, LPSTR cstrValue, UINT size ) { if (!OPT_Lookup(cstrOptionName, cstrValue, size) || !(lstrlen(cstrValue))) { *cstrValue = _T('\0'); } }
//
//
// Function: Lookup
//
// Purpose: Retrieve a named option from the dictionary and return a copy
// of it in the CString object passed. No conversion is performed.
//
//
BOOL OPT_Lookup ( LPCSTR cstrOptionName, LPCSTR cstrResult, UINT size ) { BOOL fSuccess = FALSE; HKEY read_hkey = NULL; DWORD read_type; DWORD read_bufsize;
// open key
if (RegOpenKeyEx( HKEY_CURRENT_USER, NEW_WHITEBOARD_KEY, 0, KEY_EXECUTE, &read_hkey ) != ERROR_SUCCESS ) { TRACE_MSG(("Could not open key")); goto bail_out; }
// read key's value
read_bufsize = size; if (RegQueryValueEx( read_hkey, cstrOptionName, NULL, &read_type, (LPBYTE)cstrResult, &read_bufsize ) != ERROR_SUCCESS ) { TRACE_MSG(("Could not read key")); goto bail_out; }
// check for valid type
if (read_type != REG_SZ) { WARNING_OUT(("Bad key data")); goto bail_out; }
fSuccess = TRUE;
bail_out: if (read_hkey != NULL) RegCloseKey(read_hkey);
return (fSuccess); }
//
//
// Function: GetWindowRectOption
//
// Purpose: Retrieve a named option from the dictionary and convert it to
// a window rectangle. The rectangle is checked to make sure that
// it is at least partially on screen, and not zero sized.
//
//
void OPT_GetWindowRectOption(LPRECT pRect) { RegEntry reWnd( NEW_WHITEBOARD_KEY, HKEY_CURRENT_USER ); pRect->left = reWnd.GetNumber( REGVAL_WINDOW_XPOS, 0); pRect->top = reWnd.GetNumber( REGVAL_WINDOW_YPOS, 0); int cx = reWnd.GetNumber( REGVAL_WINDOW_WIDTH, 0); int cy = reWnd.GetNumber( REGVAL_WINDOW_HEIGHT, 0); pRect->right = pRect->left + cx; pRect->bottom = pRect->top + cy;
int iTop = pRect->top; int iLeft = pRect->left; int iBottom = pRect->bottom; int iRight = pRect->right;
//
// If it was an empty rect
//
if( !(pRect->bottom || pRect->top || pRect->left || pRect->right) ) { MINMAXINFO lpmmi; g_pMain->OnGetMinMaxInfo(&lpmmi); iTop = 0; iLeft = 0; iBottom = lpmmi.ptMinTrackSize.y; iRight = lpmmi.ptMinTrackSize.x; } // Make sure that the window rectangle is (at least partially) on
// screen, and not too large. First get the screen size
int screenWidth = ::GetSystemMetrics(SM_CXSCREEN); int screenHeight = ::GetSystemMetrics(SM_CYSCREEN); // Check the window size
if ((iRight - iLeft) > screenWidth) { iRight = iLeft + screenWidth; } if ((iBottom - iTop) > screenHeight) { iTop = screenHeight; }
// Check the window position
if (iLeft >= screenWidth) { // Off screen to the right - keep the width the same
iLeft = screenWidth - (iRight - iLeft); iRight = screenWidth; }
if (iRight < 0) { // Off screen to the left - keep the width the same
iRight = iRight - iLeft; iLeft = 0; }
if (iTop >= screenHeight) { // Off screen to the bottom - keep the height the same
iTop = screenHeight - (iBottom - iTop); iBottom = screenHeight; }
if (iBottom < 0) { // Off screen to the top - keep the height the same
iBottom = (iBottom - iTop); iTop = 0; }
pRect->left = iLeft; pRect->top = iTop; pRect->right = iRight; pRect->bottom = iBottom; }
//
//
// Function: GetDataOption
//
// Purpose: Retrieve a named option from the dictionary and parse it as
// an ASCII representation of a string of hex bytes.
//
//
int OPT_GetDataOption ( LPCSTR cstrOptionName, int iBufferLength, BYTE* pbResult ) { TCHAR cstrValue[MAX_OPTIONS_LINE_LENGTH]; BYTE* pbSaveResult = pbResult;
// Lookup the option
OPT_GetStringOption(cstrOptionName, cstrValue,MAX_OPTIONS_LINE_LENGTH); if (lstrlen(cstrValue)) { // Calculate the maximum number of characters to convert
int iMaxChars = min(2 * iBufferLength, lstrlen(cstrValue));
// Option found, convert the string to hex bytes
for (int iIndex = 0; iIndex < iMaxChars; iIndex += 2) { BYTE bByteHigh = 0; BYTE bByteLow = 0;
if ( (HexDigitToByte(cstrValue[iIndex], bByteHigh) == FALSE) || (HexDigitToByte(cstrValue[iIndex + 1], bByteLow) == FALSE)) { // The character was not a valid hex digit
break; }
// Build the result byte
*pbResult++ = (BYTE) ((bByteHigh << 4) | bByteLow); } }
// Return the length of data in the buffer
return (int)(pbResult - pbSaveResult); }
//
//
// Function: SetStringOption
//
// Purpose: Set the value of an option in the dictionary.
//
//
BOOL OPT_SetStringOption ( LPCSTR cstrOptionName, LPCSTR cstrValue ) { BOOL fSuccess = FALSE; HKEY write_hkey = NULL; DWORD disposition;
// open or create the key
if (RegCreateKeyEx( HKEY_CURRENT_USER, NEW_WHITEBOARD_KEY, 0, NULL, REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &write_hkey, &disposition) != ERROR_SUCCESS) { WARNING_OUT(("Could not write key")); goto bail_out; }
// got data, write the value
if (RegSetValueEx( write_hkey, cstrOptionName, 0, REG_SZ, (LPBYTE)cstrValue, _tcsclen(cstrValue) + sizeof(TCHAR)) != ERROR_SUCCESS ) { WARNING_OUT(("Could not write key value")); goto bail_out; }
fSuccess = TRUE;
bail_out: if (write_hkey != NULL) RegCloseKey(write_hkey);
return(fSuccess); }
//
//
// Function: SetIntegerOption
//
// Purpose: Write an integer option
//
//
BOOL OPT_SetIntegerOption ( LPCSTR cstrOptionName, LONG lValue ) { char cBuffer[20];
// Convert the integer value to ASCII decimal
wsprintf(cBuffer, "%ld", lValue);
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer); }
//
//
// Function: SetBooleanOption
//
// Purpose: Write a boolean option
//
//
BOOL OPT_SetBooleanOption ( LPCSTR cstrOptionName, BOOL bValue ) { char cBuffer[8];
wsprintf(cBuffer, "%c", (bValue ? 'Y' : 'N'));
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer); }
//
//
// Function: SetWindowRectOption
//
// Purpose: Write a window position rectangle
//
//
void OPT_SetWindowRectOption(LPCRECT pcRect) { RegEntry reWnd( NEW_WHITEBOARD_KEY, HKEY_CURRENT_USER ); reWnd.SetValue( REGVAL_WINDOW_XPOS, pcRect->left ); reWnd.SetValue( REGVAL_WINDOW_YPOS, pcRect->top ); reWnd.SetValue( REGVAL_WINDOW_WIDTH, pcRect->right - pcRect->left ); reWnd.SetValue( REGVAL_WINDOW_HEIGHT, pcRect->bottom - pcRect->top ); }
//
//
// Function: SetDataOption
//
// Purpose: Write a data option to the options file
//
//
BOOL OPT_SetDataOption ( LPCSTR cstrOptionName, int iBufferLength, BYTE* pbBuffer ) { char cBuffer[1024]; LPSTR cTmp;
ASSERT(iBufferLength*2 < sizeof(cBuffer));
// Loop through the data array converting a byte at a time
cTmp = cBuffer; for (int iIndex = 0; iIndex < iBufferLength; iIndex++) { // Convert the next byte to ASCII hex
wsprintf(cTmp, "%02x", pbBuffer[iIndex]);
// add it to the string to be written
cTmp += lstrlen(cTmp); }
// Write the option
return OPT_SetStringOption(cstrOptionName, cBuffer); }
//
//
// Function: CreateSystemPalette
//
// Purpose: Get a palette representing the system palette
//
//
HPALETTE CreateSystemPalette(void) { LPLOGPALETTE lpLogPal; HDC hdc; HPALETTE hPal = NULL; int nColors;
MLZ_EntryOut(ZONE_FUNCTION, "CreateSystemPalette");
hdc = ::CreateIC("DISPLAY", NULL, NULL, NULL);
if (!hdc) { ERROR_OUT(("Couldn't create DISPLAY IC")); return(NULL); }
nColors = ::GetDeviceCaps(hdc, SIZEPALETTE);
::DeleteDC(hdc);
if (nColors == 0) { TRACE_MSG(("CreateSystemPalette: device has no palette")); return(NULL); }
// Allocate room for the palette and lock it.
lpLogPal = (LPLOGPALETTE)::GlobalAlloc(GPTR, sizeof(LOGPALETTE) + nColors * sizeof(PALETTEENTRY));
if (lpLogPal != NULL) { lpLogPal->palVersion = PALVERSION; lpLogPal->palNumEntries = (WORD) nColors;
for (int iIndex = 0; iIndex < nColors; iIndex++) { lpLogPal->palPalEntry[iIndex].peBlue = 0; *((LPWORD) (&lpLogPal->palPalEntry[iIndex].peRed)) = (WORD) iIndex; lpLogPal->palPalEntry[iIndex].peFlags = PC_EXPLICIT; }
hPal = ::CreatePalette(lpLogPal);
// Free the logical palette structure
::GlobalFree((HGLOBAL)lpLogPal); }
return(hPal); }
//
//
// Function: CreateColorPalette
//
// Purpose: Get a 256-color palette
//
//
HPALETTE CreateColorPalette(void) { HDC hdc; HPALETTE hPal = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "CreateColorPalette");
// Find out how many colors are reserved
hdc = ::CreateIC("DISPLAY", NULL, NULL, NULL); if (!hdc) { ERROR_OUT(("Couldn't create DISPLAY IC")); return(NULL); }
UINT uiSystemUse = ::GetSystemPaletteUse(hdc);
// Get the number of static colors
int iCountStatic = 20; int iHalfCountStatic = 10; if (uiSystemUse == SYSPAL_NOSTATIC) { iCountStatic = 2; iHalfCountStatic = 1; }
LOGPALETTE_NM gIndeoPalette = gcLogPaletteIndeo;
// put system colors in correct lower and upper pal entries (bug NM4db:817)
::GetSystemPaletteEntries(hdc, 0, iHalfCountStatic, &(gIndeoPalette.aEntries[0]) );
::GetSystemPaletteEntries(hdc, MAXPALETTE - iHalfCountStatic, iHalfCountStatic, &(gIndeoPalette.aEntries[MAXPALETTE - iHalfCountStatic]) );
// Create the windows object for this palette
// from the logical palette
hPal = CreatePalette( (LOGPALETTE *)&gIndeoPalette );
// Delete the display DC
::DeleteDC(hdc);
return(hPal); }
//
//
// Function: FromScreenAreaBmp
//
// Purpose: Create a bitmap from an area of the screen
//
//
HBITMAP FromScreenAreaBmp(LPCRECT lprect) { RECT rcScreen; HBITMAP hBitMap = NULL;
//
// Get screen boundaries, in a way that works for single and multiple
// monitor scenarios.
//
if (rcScreen.right = ::GetSystemMetrics(SM_CXVIRTUALSCREEN)) { //
// This is Win98, NT 4.0 SP-3, or NT5
//
rcScreen.bottom = ::GetSystemMetrics(SM_CYVIRTUALSCREEN); rcScreen.left = ::GetSystemMetrics(SM_XVIRTUALSCREEN); rcScreen.top = ::GetSystemMetrics(SM_YVIRTUALSCREEN); } else { //
// The VIRTUALSCREEN size metrics are zero on older platforms
// which don't support them.
//
rcScreen.right = ::GetSystemMetrics(SM_CXSCREEN); rcScreen.bottom = ::GetSystemMetrics(SM_CYSCREEN); rcScreen.left = 0; rcScreen.top = 0; }
rcScreen.right += rcScreen.left; rcScreen.bottom += rcScreen.top;
//
// Clip bitmap rectangle to the screen.
//
if (IntersectRect(&rcScreen, &rcScreen, lprect)) { // Create a DC for the screen and create
// a memory DC compatible to screen DC
HDC hdisplayDC; hdisplayDC = ::CreateDC("DISPLAY", NULL, NULL, NULL);
HDC hmemDC; hmemDC = ::CreateCompatibleDC(hdisplayDC);
// Create a bitmap compatible with the screen DC
hBitMap = ::CreateCompatibleBitmap(hdisplayDC, rcScreen.right - rcScreen.left, rcScreen.bottom - rcScreen.top); if (hBitMap != NULL) { // Select new bitmap into memory DC
HBITMAP hOldBitmap = SelectBitmap(hmemDC, hBitMap);
// BitBlt screen DC to memory DC
::BitBlt(hmemDC, 0, 0, rcScreen.right - rcScreen.left, rcScreen.bottom - rcScreen.top, hdisplayDC, rcScreen.left, rcScreen.top, SRCCOPY);
// Select old bitmap back into memory DC and get handle to
// bitmap of the screen
SelectBitmap(hmemDC, hOldBitmap); }
::DeleteDC(hmemDC);
::DeleteDC(hdisplayDC); }
// return handle to the bitmap
return hBitMap; }
// Macro to round off the given value to the closest byte
#define WIDTHBYTES(i) (((i+31)/32)*4)
//
//
// Function: DIB_NumberOfColors
//
// Purpose: Calculates the number of colours in the DIB
//
//
UINT DIB_NumberOfColors(LPBITMAPINFOHEADER lpbi) { UINT numColors; int bits;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_NumberOfColors");
ASSERT(lpbi != NULL);
// With the BITMAPINFO format headers, the size of the palette
// is in biClrUsed, whereas in the BITMAPCORE - style headers, it
// is dependent on the bits per pixel ( = 2 raised to the power of
// bits/pixel).
if (lpbi->biSize == sizeof(BITMAPCOREHEADER)) { // Old DIB format, some apps still put this on the clipboard
numColors = 0; bits = ((LPBITMAPCOREHEADER)lpbi)->bcBitCount; } else { numColors = lpbi->biClrUsed; bits = lpbi->biBitCount; }
if ((numColors == 0) && (bits <= 8)) { numColors = (1 << bits); }
return numColors; }
//
//
// Function: DIB_PaletteLength
//
// Purpose: Calculates the palette size in bytes
//
//
UINT DIB_PaletteLength(LPBITMAPINFOHEADER lpbi) { UINT size;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_PaletteLength");
if (lpbi->biSize == sizeof(BITMAPCOREHEADER)) { size = DIB_NumberOfColors(lpbi) * sizeof(RGBTRIPLE); } else { size = DIB_NumberOfColors(lpbi) * sizeof(RGBQUAD); }
TRACE_MSG(("Palette length %d", size)); return(size); }
//
//
// Function: DIB_DataLength
//
// Purpose: Return the length of the DIB data (after the header and the
// color table.
//
//
UINT DIB_DataLength(LPBITMAPINFOHEADER lpbi) { MLZ_EntryOut(ZONE_FUNCTION, "DIB_DataLength");
ASSERT(lpbi);
UINT dwLength = 0;
// If the image is not compressed, calculate the length of the data
if (lpbi->biCompression == BI_RGB) { // Image is not compressed, the size can be given as zero in the header
// Calculate the width in bytes of the image
DWORD dwByteWidth = ( ((DWORD) lpbi->biWidth) * (DWORD) lpbi->biBitCount); TRACE_MSG(("Data byte width is %ld",dwByteWidth));
// Round the width to a multiple of 4 bytes
dwByteWidth = WIDTHBYTES(dwByteWidth); TRACE_MSG(("Rounded up to %ld",dwByteWidth));
dwLength = (dwByteWidth * ((DWORD) lpbi->biHeight)); } else { // Image is compressed, the length should be correct in the header
dwLength = lpbi->biSizeImage; }
TRACE_MSG(("Total data length is %d",dwLength));
return(dwLength); }
//
//
// Function: DIB_TotalLength
//
// Purpose: Return the total length of the DIB (header + colors + data).
//
//
UINT DIB_TotalLength(LPBITMAPINFOHEADER lpbi) { MLZ_EntryOut(ZONE_FUNCTION, "DIB_TotalLength");
ASSERT(lpbi);
// Header + Palette + Bits
return(lpbi->biSize + DIB_PaletteLength(lpbi) + DIB_DataLength(lpbi)); }
//
//
// Function: DIB_CreatePalette
//
// Purpose: Create a palette object from the bitmap info color table
//
//
HPALETTE DIB_CreatePalette(LPBITMAPINFOHEADER lpbi) { LOGPALETTE *pPal; HPALETTE hpal = NULL; WORD nNumColors; BYTE red; BYTE green; BYTE blue; WORD i; RGBQUAD FAR * pRgb;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_CreatePalette");
if (!lpbi) return NULL;
if (lpbi->biSize != sizeof(BITMAPINFOHEADER)) return NULL;
// Get a pointer to the color table and the number of colors in it
pRgb = (RGBQUAD FAR *)((LPSTR)lpbi + (WORD)lpbi->biSize); nNumColors = (WORD)DIB_NumberOfColors(lpbi);
if (nNumColors) { TRACE_MSG(("There are %d colors in the palette",nNumColors));
// Allocate for the logical palette structure
pPal = (LOGPALETTE*) ::GlobalAlloc(GPTR, sizeof(LOGPALETTE) + (nNumColors * sizeof(PALETTEENTRY))); if (!pPal) { ERROR_OUT(("Couldn't allocate palette memory")); return(NULL); }
pPal->palNumEntries = nNumColors; pPal->palVersion = PALVERSION;
// Fill in the palette entries from the DIB color table and
// create a logical color palette.
for (i = 0; i < nNumColors; i++) { pPal->palPalEntry[i].peRed = pRgb[i].rgbRed; pPal->palPalEntry[i].peGreen = pRgb[i].rgbGreen; pPal->palPalEntry[i].peBlue = pRgb[i].rgbBlue; pPal->palPalEntry[i].peFlags = (BYTE)0; }
hpal = ::CreatePalette(pPal);
::GlobalFree((HGLOBAL)pPal); } else { if (lpbi->biBitCount == 24) { // A 24 bitcount DIB has no color table entries so, set the number
// of to the maximum value (256).
nNumColors = MAXPALETTE;
pPal = (LOGPALETTE*) ::GlobalAlloc(GPTR, sizeof(LOGPALETTE) + (nNumColors * sizeof(PALETTEENTRY))); if (!pPal) { ERROR_OUT(("Couldn't allocate palette memory")); return NULL; }
pPal->palNumEntries = nNumColors; pPal->palVersion = PALVERSION;
red = green = blue = 0;
// Generate 256 (= 8*8*4) RGB combinations to fill the palette
// entries.
for (i = 0; i < pPal->palNumEntries; i++) { pPal->palPalEntry[i].peRed = red; pPal->palPalEntry[i].peGreen = green; pPal->palPalEntry[i].peBlue = blue; pPal->palPalEntry[i].peFlags = (BYTE) 0;
if (!(red += 32)) if (!(green += 32)) blue += 64; }
hpal = ::CreatePalette(pPal); ::GlobalFree((HGLOBAL)pPal); } }
return hpal; }
//
//
// Function: DIB_Bits
//
// Purpose: Return a pointer to the bitmap bits data (from a pointer
// to the bitmap info header).
//
//
LPSTR DIB_Bits(LPBITMAPINFOHEADER lpbi) { MLZ_EntryOut(ZONE_FUNCTION, "DIB_Bits"); ASSERT(lpbi);
return ((LPSTR) (((char *) lpbi) + lpbi->biSize + DIB_PaletteLength(lpbi))); }
//
//
// Function: DIB_FromScreenArea
//
// Purpose: Create a DIB from an area of the screen
//
//
LPBITMAPINFOHEADER DIB_FromScreenArea(LPCRECT lprect) { HBITMAP hBitmap = NULL; HPALETTE hPalette = NULL; LPBITMAPINFOHEADER lpbi = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_FromScreenArea");
// Get the device-dependent bitmap from the screen area
hBitmap = FromScreenAreaBmp(lprect); if (hBitmap != NULL) { // Get the current system palette
hPalette = CreateSystemPalette(); lpbi = DIB_FromBitmap(hBitmap, hPalette, FALSE, FALSE); }
if (hPalette != NULL) ::DeletePalette(hPalette);
if (hBitmap != NULL) ::DeleteBitmap(hBitmap);
return(lpbi); }
//
//
// Function: DIB_Copy
//
// Purpose: Make a copy of the DIB memory
//
//
LPBITMAPINFOHEADER DIB_Copy(LPBITMAPINFOHEADER lpbi) { LPBITMAPINFOHEADER lpbiNew = NULL;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_Copy");
ASSERT(lpbi);
// Get the length of memory
DWORD dwLen = DIB_TotalLength(lpbi);
lpbiNew = (LPBITMAPINFOHEADER)::GlobalAlloc(GPTR, dwLen); if (lpbiNew != NULL) { // Copy the data
memcpy(lpbiNew, lpbi, dwLen); }
return(lpbiNew); }
//
//
// Function: DIB_FromBitmap
//
// Purpose: Creates a DIB from a bitmap and palette
//
//
LPBITMAPINFOHEADER DIB_FromBitmap ( HBITMAP hBitmap, HPALETTE hPalette, BOOL fGHandle, BOOL fTopBottom, BOOL fForce8Bits ) { LPBITMAPINFOHEADER lpbi = NULL; HGLOBAL hmem = NULL; BITMAP bm; BITMAPINFOHEADER bi; DWORD dwLen; WORD biBits;
MLZ_EntryOut(ZONE_FUNCTION, "DIB_FromBitmap");
// If the bitmap handle given is null, do nothing
if (hBitmap != NULL) { if (hPalette == NULL) hPalette = (HPALETTE)::GetStockObject(DEFAULT_PALETTE);
// Get the bitmap information
::GetObject(hBitmap, sizeof(bm), (LPSTR) &bm); if(!fForce8Bits) {
biBits = (WORD) (bm.bmPlanes * bm.bmBitsPixel);
if (biBits > 8) { if(g_pNMWBOBJ->CanDo24BitBitmaps()) { biBits = 24; } else { // If > 8, The maximum T126 supports is 8
biBits = 8; } } } else { biBits = 8; }
bi.biSize = sizeof(BITMAPINFOHEADER); bi.biWidth = bm.bmWidth; bi.biHeight = fTopBottom ? 0 - bm.bmHeight : bm.bmHeight; bi.biPlanes = 1; bi.biBitCount = biBits; bi.biCompression = 0; bi.biSizeImage = 0; bi.biXPelsPerMeter = 0; bi.biYPelsPerMeter = 0; bi.biClrUsed = 0; bi.biClrImportant = 0;
dwLen = bi.biSize + DIB_PaletteLength(&bi);
HDC hdc; HPALETTE hPalOld;
hdc = ::CreateDC("DISPLAY", NULL, NULL, NULL); hPalOld = ::SelectPalette(hdc, hPalette, FALSE); ::RealizePalette(hdc);
// Allocate memory for the DIB
if (fGHandle) { // For the clipboard, we MUST use GHND
hmem = ::GlobalAlloc(GHND, dwLen); lpbi = (LPBITMAPINFOHEADER)::GlobalLock(hmem); } else { lpbi = (LPBITMAPINFOHEADER)::GlobalAlloc(GPTR, dwLen); }
if (lpbi != NULL) { *lpbi = bi;
// Call GetDIBits with a NULL lpBits param, so it will calculate the
// biSizeImage field for us
::GetDIBits(hdc, hBitmap, 0, (WORD) bm.bmHeight, NULL, (LPBITMAPINFO)lpbi, DIB_RGB_COLORS);
bi = *lpbi;
// If the driver did not fill in the biSizeImage field, make one up
if (bi.biSizeImage == 0) { bi.biSizeImage = WIDTHBYTES((DWORD)bm.bmWidth * biBits) * bm.bmHeight; }
// Realloc the buffer big enough to hold all the bits
dwLen = bi.biSize + DIB_PaletteLength(&bi) + bi.biSizeImage;
if (fGHandle) { HGLOBAL hT;
::GlobalUnlock(hmem); hT = ::GlobalReAlloc(hmem, dwLen, GHND); if (!hT) { ERROR_OUT(("Can't reallocate DIB handle")); ::GlobalFree(hmem); hmem = NULL; lpbi = NULL; } else { hmem = hT; lpbi = (LPBITMAPINFOHEADER)::GlobalLock(hmem); } } else { LPBITMAPINFOHEADER lpbiT;
lpbiT = (LPBITMAPINFOHEADER)::GlobalReAlloc((HGLOBAL)lpbi, dwLen, GMEM_MOVEABLE); if (!lpbiT) { ERROR_OUT(("Can't reallocate DIB ptr"));
::GlobalFree((HGLOBAL)lpbi); lpbi = NULL; } else { lpbi = lpbiT; } } }
if (lpbi != NULL) { ::GetDIBits(hdc, hBitmap, 0, (WORD)bm.bmHeight, DIB_Bits(lpbi), (LPBITMAPINFO)lpbi, DIB_RGB_COLORS);
if (fGHandle) { // We want to return the HANDLE, not the POINTER
::GlobalUnlock(hmem); lpbi = (LPBITMAPINFOHEADER)hmem; } }
// Restore the old palette and give back the device context
::SelectPalette(hdc, hPalOld, FALSE); ::DeleteDC(hdc); }
return(lpbi); }
//
// AbortProc()
// Process messages during printing
//
//
BOOL CALLBACK AbortProc(HDC, int) { MSG msg;
ASSERT(g_pPrinter);
// Message pump in case user wants to cancel printing
while (!g_pPrinter->Aborted() && PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE)) { if ( (g_pPrinter->m_hwndDialog == NULL) || !::IsDialogMessage(g_pPrinter->m_hwndDialog, &msg)) { TranslateMessage(&msg); DispatchMessage(&msg); } }
return !g_pPrinter->Aborted(); }
//
//
// Function: WbPrinter
//
// Purpose: Constructor for a printer object
//
//
WbPrinter::WbPrinter(LPCTSTR szDeviceName) { m_szDeviceName = szDeviceName; m_szPrintPageText[0] = 0;
// Set up the global pointer for the abort procedure
g_pPrinter = this;
// Create the dialog window
m_hwndDialog = ::CreateDialogParam(g_hInstance, MAKEINTRESOURCE(PRINTCANCEL), g_pMain->m_hwnd, CancelPrintDlgProc, 0);
// Save the original text for the page number area
::GetDlgItemText(m_hwndDialog, IDD_PRINT_PAGE, m_szPrintPageText, _MAX_PATH); }
//
//
// Function: ~WbPrinter
//
// Purpose: Destructor for a printer object
//
//
WbPrinter::~WbPrinter(void) { // Kill off the dialog etc. if still around
StopDialog();
ASSERT(m_hwndDialog == NULL);
g_pPrinter = NULL; }
//
// StopDialog()
// If the dialog is up, ends it.
//
void WbPrinter::StopDialog(void) { ::EnableWindow(g_pMain->m_hwnd, TRUE);
// Close and destroy the dialog
if (m_hwndDialog != NULL) { ::DestroyWindow(m_hwndDialog); m_hwndDialog = NULL; }
}
//
//
// Function: StartDoc
//
// Purpose: Tell the printer we are starting a new document
//
//
int WbPrinter::StartDoc ( HDC hdc, LPCTSTR szJobName, int nStartPage ) { // Initialize the result codes and page number
m_bAborted = FALSE; // Not aborted
m_nPrintResult = 1; // Greater than 0 implies all is well
// Disable the main window
::EnableWindow(g_pMain->m_hwnd, FALSE);
// Attach the printer DC
SetPrintPageNumber(nStartPage);
// Set up the abort routine for the print
if (SetAbortProc(hdc, AbortProc) >= 0) { // Abort routine successfully set
::ShowWindow(m_hwndDialog, SW_SHOW); ::UpdateWindow(m_hwndDialog);
DOCINFO docinfo;
docinfo.cbSize = sizeof(DOCINFO); docinfo.lpszDocName = szJobName; docinfo.lpszOutput = NULL; docinfo.lpszDatatype = NULL; // Windows 95 only; ignored on Windows NT
docinfo.fwType = 0; // Windows 95 only; ignored on Windows NT
// Initialize the document.
m_nPrintResult = ::StartDoc(hdc, &docinfo); }
return m_nPrintResult; }
//
//
// Function: StartPage
//
// Purpose: Tell the printer we are starting a new page
//
//
int WbPrinter::StartPage(HDC hdc, int nPageNumber) { MLZ_EntryOut(ZONE_FUNCTION, "WbPrinter::StartPage");
m_nPrintResult = -1; // Initialise to error
// If the print has been aborted, return an error.
if (m_bAborted) { TRACE_DEBUG(("Print has been aborted")); } else { SetPrintPageNumber(nPageNumber);
// Tell the printer of the new page number
m_nPrintResult = ::StartPage(hdc); }
return(m_nPrintResult); }
//
//
// Function: EndPage
//
// Purpose: Tell the printer we are finishing a page
//
//
int WbPrinter::EndPage(HDC hdc) { MLZ_EntryOut(ZONE_FUNCTION, "WbPrinter::EndPage");
m_nPrintResult = -1; // Initialise to error
// If the print has been aborted, return an error.
if (m_bAborted) { TRACE_DEBUG(("Print has been aborted")); } else { // Tell the printer of the new page number
m_nPrintResult = ::EndPage(hdc); }
return(m_nPrintResult); }
//
//
// Function: EndDoc
//
// Purpose: Tell the printer we have completed a document
//
//
int WbPrinter::EndDoc(HDC hdc) { // If an error has occurred the driver will already have aborted the print
if (m_nPrintResult > 0) { if (!m_bAborted) { // If we have not been aborted, and no error has occurred
// end the document
m_nPrintResult = ::EndDoc(hdc); } else { m_nPrintResult = ::AbortDoc(hdc); } }
StopDialog();
// Return an the error indicator
return m_nPrintResult; }
//
//
// Function: AbortDoc
//
// Purpose: Abort the document currently in progress
//
//
int WbPrinter::AbortDoc() { // Show that we have been aborted, the actual abort is
// done by the EndDoc call.
m_bAborted = TRUE;
//
// Renable the application window.
//
StopDialog();
// Return a positive value indicating "aborted OK"
return 1; }
//
//
// Function: SetPrintPageNumber
//
// Purpose: Set the number of the page currently being printed
//
//
void WbPrinter::SetPrintPageNumber(int nPageNumber) { // Display the number of the page currently being printed
TCHAR szPageNumber [10 + _MAX_PATH];
wsprintf(szPageNumber, m_szPrintPageText, nPageNumber); ::SetDlgItemText(m_hwndDialog, IDD_PRINT_PAGE, szPageNumber); }
//
// CancelPrintDlgProc()
// Dialog message handler for the cancel printing dialog
//
INT_PTR CALLBACK CancelPrintDlgProc(HWND hwnd, UINT uMessage, WPARAM wParam, LPARAM lParam) { BOOL fHandled = FALSE;
switch (uMessage) { case WM_INITDIALOG: ASSERT(g_pPrinter != NULL); ::SetDlgItemText(hwnd, IDD_DEVICE_NAME, g_pPrinter->m_szDeviceName); fHandled = TRUE; break;
case WM_COMMAND: switch (GET_WM_COMMAND_ID(wParam, lParam)) { case IDOK: case IDCANCEL: switch (GET_WM_COMMAND_CMD(wParam, lParam)) { case BN_CLICKED: ASSERT(g_pPrinter != NULL); g_pPrinter->AbortDoc(); break; } }
fHandled = TRUE; break; }
return(fHandled); }
//
// Bogus Bogus LAURABU
// STRING ARRAY (TEMP!)
//
StrArray::StrArray() { m_pData = NULL; m_nSize = m_nMaxSize = 0; }
StrArray::~StrArray() { ClearOut(); }
void StrArray::ClearOut(void) { int iItem;
for (iItem = 0; iItem < m_nSize; iItem++) { if (m_pData[iItem] != NULL) { delete (LPTSTR)m_pData[iItem]; m_pData[iItem] = NULL; } }
m_nSize = 0; m_nMaxSize = 0;
if (m_pData != NULL) { delete[] m_pData; m_pData = NULL; }
}
void StrArray::SetSize(int nNewSize) { if (nNewSize == 0) { // shrink to nothing
ClearOut(); } else if (nNewSize <= m_nMaxSize) { // No shrinking allowed.
ASSERT(nNewSize >= m_nSize);
// We're still within the alloced block range
m_nSize = nNewSize; } else { //
// Make a larger array (isn't this lovely if you already have an
// array, we alloc a new one and free the old one)
//
int nNewMax;
nNewMax = (nNewSize + (ALLOC_CHUNK -1)) & ~(ALLOC_CHUNK-1); ASSERT(nNewMax >= m_nMaxSize); // no wrap around
DBG_SAVE_FILE_LINE LPCTSTR* pNewData = new LPCTSTR[nNewMax]; if (!pNewData) { ERROR_OUT(("StrArray::SetSize failed, couldn't allocate larger array")); } else { // Zero out the memory
ZeroMemory(pNewData, nNewMax * sizeof(LPCTSTR));
// If an old array exists, copy the existing string ptrs.
if (m_pData != NULL) { CopyMemory(pNewData, m_pData, m_nSize * sizeof(LPCTSTR));
//
// Delete the old array, but not the strings inside, we're
// keeping them around in the new array
//
delete[] m_pData; }
m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } } }
void StrArray::SetAtGrow(int nIndex, LPCTSTR newElement) { ASSERT(nIndex >= 0);
if (nIndex >= m_nSize) SetSize(nIndex+1);
SetAt(nIndex, newElement); }
LPCTSTR StrArray::operator[](int nIndex) const { ASSERT(nIndex >= 0); ASSERT(nIndex < m_nSize); return(m_pData[nIndex]); }
void StrArray::SetAt(int nIndex, LPCTSTR newElement) { ASSERT(nIndex >= 0); ASSERT(nIndex < m_nSize);
DBG_SAVE_FILE_LINE m_pData[nIndex] = new TCHAR[lstrlen(newElement) + 1]; lstrcpy((LPTSTR)m_pData[nIndex], newElement); }
void StrArray::Add(LPCTSTR newElement) { SetAtGrow(m_nSize, newElement); }
//
//char *StrTok(string, control) - tokenize string with delimiter in control
//
char * StrTok (char * string, char * control) { char *str; char *ctrl = control;
unsigned char map[32]; int count;
static char *nextoken;
/* Clear control map */ for (count = 0; count < 32; count++) map[count] = 0;
/* Set bits in delimiter table */ do { map[*ctrl >> 3] |= (1 << (*ctrl & 7)); } while (*ctrl++);
/* Initialize str. If string is NULL, set str to the saved
* pointer (i.e., continue breaking tokens out of the string * from the last StrTok call) */ if (string) str = string; else str = nextoken;
/* Find beginning of token (skip over leading delimiters). Note that
* there is no token iff this loop sets str to point to the terminal * null (*str == '\0') */ while ( (map[*str >> 3] & (1 << (*str & 7))) && *str ) str++;
string = str;
/* Find the end of the token. If it is not the end of the string,
* put a null there. */ for ( ; *str ; str++ ) if ( map[*str >> 3] & (1 << (*str & 7)) ) { *str++ = '\0'; break; }
/* Update nextoken (or the corresponding field in the per-thread data
* structure */ nextoken = str;
/* Determine if a token has been found. */ if ( string == str ) return NULL; else return string; }
StrCspn(char * string, char * control) { unsigned char *str = (unsigned char *)string; unsigned char *ctrl = (unsigned char *)control;
unsigned char map[32]; int count;
/* Clear out bit map */ for (count=0; count<32; count++) map[count] = 0;
/* Set bits in control map */ while (*ctrl) { map[*ctrl >> 3] |= (1 << (*ctrl & 7)); ctrl++; } count=0; map[0] |= 1; /* null chars not considered */ while (!(map[*str >> 3] & (1 << (*str & 7)))) { count++; str++; } return(count); }
|