|
|
/*
** Copyright 1994, Silicon Graphics, Inc. ** All Rights Reserved. ** ** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.; ** the contents of this file may not be disclosed to third parties, copied or ** duplicated in any form, in whole or in part, without the prior written ** permission of Silicon Graphics, Inc. ** ** RESTRICTED RIGHTS LEGEND: ** Use, duplication or disclosure by the Government is subject to restrictions ** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data ** and Computer Software clause at DFARS 252.227-7013, and/or in similar or ** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished - ** rights reserved under the Copyright Laws of the United States. ** ** Author: Eric Veach, July 1994. */
#include "mesh.h"
#include "tess.h"
#include "normal.h"
#include <math.h>
#include <assert.h>
#define TRUE 1
#define FALSE 0
#define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
static void Normalize( GLdouble v[3] ) { GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
assert( len > 0 ); len = sqrt( len ); v[0] /= len; v[1] /= len; v[2] /= len; }
#define ABS(x) ((x) < 0 ? -(x) : (x))
static int LongAxis( GLdouble v[3] ) { int i = 0;
if( ABS(v[1]) > ABS(v[0]) ) { i = 1; } if( ABS(v[2]) > ABS(v[i]) ) { i = 2; } return i; }
static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] ) { GLUvertex *v, *v1, *v2; GLdouble c, tLen2, maxLen2; GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3]; GLUvertex *maxVert[3], *minVert[3]; GLUvertex *vHead = &tess->mesh->vHead; int i;
maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD; minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
for( v = vHead->next; v != vHead; v = v->next ) { for( i = 0; i < 3; ++i ) { c = v->coords[i]; if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; } if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; } } }
/* Find two vertices separated by at least 1/sqrt(3) of the maximum
* distance between any two vertices */ i = 0; if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; } if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; } if( minVal[i] >= maxVal[i] ) { /* All vertices are the same -- normal doesn't matter */ norm[0] = 0; norm[1] = 0; norm[2] = 1; return; }
/* Look for a third vertex which forms the triangle with maximum area
* (Length of normal == twice the triangle area) */ maxLen2 = 0; v1 = minVert[i]; v2 = maxVert[i]; d1[0] = v1->coords[0] - v2->coords[0]; d1[1] = v1->coords[1] - v2->coords[1]; d1[2] = v1->coords[2] - v2->coords[2]; for( v = vHead->next; v != vHead; v = v->next ) { d2[0] = v->coords[0] - v2->coords[0]; d2[1] = v->coords[1] - v2->coords[1]; d2[2] = v->coords[2] - v2->coords[2]; tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1]; tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2]; tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0]; tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2]; if( tLen2 > maxLen2 ) { maxLen2 = tLen2; norm[0] = tNorm[0]; norm[1] = tNorm[1]; norm[2] = tNorm[2]; } }
if( maxLen2 <= 0 ) { /* All points lie on a single line -- any decent normal will do */ norm[0] = norm[1] = norm[2] = 0; norm[LongAxis(d1)] = 1; } }
static void CheckOrientation( GLUtesselator *tess ) { GLdouble area; GLUface *f, *fHead = &tess->mesh->fHead; GLUvertex *v, *vHead = &tess->mesh->vHead; GLUhalfEdge *e;
/* When we compute the normal automatically, we choose the orientation
* so that the the sum of the signed areas of all contours is non-negative. */ area = 0; for( f = fHead->next; f != fHead; f = f->next ) { e = f->anEdge; if( e->winding <= 0 ) continue; do { area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t); e = e->Lnext; } while( e != f->anEdge ); } if( area < 0 ) { /* Reverse the orientation by flipping all the t-coordinates */ for( v = vHead->next; v != vHead; v = v->next ) { v->t = - v->t; } tess->tUnit[0] = - tess->tUnit[0]; tess->tUnit[1] = - tess->tUnit[1]; tess->tUnit[2] = - tess->tUnit[2]; } }
#ifdef DEBUG
#include <stdlib.h>
extern int RandomSweep; #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
#define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
#else
#if defined(SLANTED_SWEEP)
/* The "feature merging" is not intended to be complete. There are
* special cases where edges are nearly parallel to the sweep line * which are not implemented. The algorithm should still behave * robustly (ie. produce a reasonable tesselation) in the presence * of such edges, however it may miss features which could have been * merged. We could minimize this effect by choosing the sweep line * direction to be something unusual (ie. not parallel to one of the * coordinate axes). */ #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
#define S_UNIT_Y 0.86052074622010633
#else
#define S_UNIT_X 1.0
#define S_UNIT_Y 0.0
#endif
#endif
/* Determine the polygon normal and project vertices onto the plane
* of the polygon. */ void __gl_projectPolygon( GLUtesselator *tess ) { GLUvertex *v, *vHead = &tess->mesh->vHead; GLdouble w, norm[3]; GLdouble *sUnit, *tUnit; int i, computedNormal = FALSE;
norm[0] = tess->normal[0]; norm[1] = tess->normal[1]; norm[2] = tess->normal[2]; if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) { ComputeNormal( tess, norm ); computedNormal = TRUE; } sUnit = tess->sUnit; tUnit = tess->tUnit; i = LongAxis( norm );
#if defined(DEBUG) || defined(TRUE_PROJECT)
/* Choose the initial sUnit vector to be approximately perpendicular
* to the normal. */ Normalize( norm );
sUnit[i] = 0; sUnit[(i+1)%3] = S_UNIT_X; sUnit[(i+2)%3] = S_UNIT_Y;
/* Now make it exactly perpendicular */ w = Dot( sUnit, norm ); sUnit[0] -= w * norm[0]; sUnit[1] -= w * norm[1]; sUnit[2] -= w * norm[2]; Normalize( sUnit );
/* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */ tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1]; tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2]; tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0]; Normalize( tUnit ); #else
/* Project perpendicular to a coordinate axis -- better numerically */ sUnit[i] = 0; sUnit[(i+1)%3] = S_UNIT_X; sUnit[(i+2)%3] = S_UNIT_Y; tUnit[i] = 0; tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y; tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X; #endif
/* Project the vertices onto the sweep plane */ for( v = vHead->next; v != vHead; v = v->next ) { v->s = Dot( v->coords, sUnit ); v->t = Dot( v->coords, tUnit ); } if( computedNormal ) { CheckOrientation( tess ); } }
|