|
|
/******************************Module*Header*******************************\
* Module Name: gendrop.c * * The Splash style of the 3D Flying Objects screen saver. * * Simulation of a drop of water falling into a pool of water. * * Copyright (c) 1994 Microsoft Corporation * \**************************************************************************/
#include <stdlib.h>
#include <windows.h>
#include <GL\gl.h>
#include <string.h>
#include <math.h>
#include "ss3dfo.h"
#include "mesh.h"
#define FLOAT_SMALL (1e-6)
#define DROPPREC 10
// Remember from pre-calc:
// x = r cos th
// y = r sin th
// to convert from polar to rect, and that
// x = x' cos th - y' sin th
// y = x' sin th + y' cos th
// to rotate axes.
//
// Also, note that the equation for a lemniscate is:
// r = sqrt(sin 2*th)
//
static POINT3D *circle; static POINT3D *drop; static POINT3D *curves; static MESH waterMesh; static MESH waterInmesh; static MESH waterOutmesh; static MESH waterBorderMesh; static MESH *drops; static int iPrec; static float fRadiusFact = 0.35f;
static GLfloat light0Pos[] = {100.0f, 100.0f, 100.0f, 0.0f}; static dropList[DROPPREC];
void genCurves() { int i; double angle; double step = -PI / (float)(iPrec - 1); double start = PI / 2.0; double rotSin = sin(PI / 4.0); double rotCos = cos(PI / 4.0); double aFract = 0.0; double bFract = 1.0; double fractInc = 1.0 / (double)(iPrec - 1); POINT3D *pt = curves;
for (i = 0, angle = start; i < iPrec; i++, angle += step) { circle[i].x = (float) (0.5 * cos(angle)); circle[i].y = (float) (0.5 * sin(angle)); }
step = (-PI / 4.0) / (float)(iPrec - 1); start = PI / 4.0;
for (i = 0, angle = start; i < iPrec; i++, angle += step) { double x, y, r; double xrot, yrot; double sinVal;
sinVal = sin(2.0 * angle); if (sinVal < 0.0) sinVal = -sinVal;
r = 1.5 * sqrt(sinVal); x = r * cos(angle); y = r * sin(angle);
xrot = x * rotCos - y * rotSin; yrot = x * rotSin + y * rotCos - 1.0;
drop[i].x = (float) xrot; drop[i].y = (float) yrot; }
for (i = 0; i < DROPPREC; i++) { int j;
for (j = 0; j < iPrec; j++, pt++) { pt->x = (float) (aFract * circle[j].x + bFract * drop[j].x);
pt->y = (float) (aFract * circle[j].y + bFract * drop[j].y);
pt->z = 0.0f; } aFract += fractInc; bFract -= fractInc; } }
#define NORMS(x, y) waterMesh.norms[((x) * iPrec) + y]
#define BNORMS(x, y) waterBorderMesh.norms[((x) * iPrec) + y]
#define INGRID(x, y) waterInmesh.pts[((x) * iPrec) + y]
#define OUTGRID(x, y) waterOutmesh.pts[((x) * iPrec) + y]
#define GRID(x, y) waterMesh.pts[((x) * iPrec) + y]
#define BGRID(x, y) waterBorderMesh.pts[((x) * iPrec) + y]
void genWater(double freq, double damp, double mag, double w, double minr) { int i; int j; double r; double theta; double thetaInc = (2.0 * PI) / (float)iPrec; double posInc = 1.0 / (float)iPrec; int facecount; double xCenter = 0.0; double zCenter = 0.0; POINT3D norm; static BOOL first = TRUE;
if (first) { for (i = 0, r = 0.0; i < iPrec; i++, r += posInc) { for (j = 0, theta = 0.0; j < iPrec; j++, theta += thetaInc) { float x, z; float dx, dz; float rr;
x = (float) cos(theta); z = (float) sin(theta);
dx = x - (float) xCenter; dz = z - (float) zCenter;
rr = (float) sqrt((dx * dx) + (dz * dz)); dx /= rr; dz /= rr; dx *= i / (float)(iPrec - 1); dz *= i / (float)(iPrec - 1); GRID(i, j).x = dx + (float) xCenter; GRID(i, j).z = dz + (float) zCenter;
INGRID(i, j).y = 0.0f; OUTGRID(i, j).y = 0.0f; } } }
for (i = (iPrec - 1), r = 1.0; i >= 0; i--, r -= posInc) { float val;
if (i == 0) { if (minr != 0.0) val = (float) (-mag * cos(w + (r * freq)) * exp((-damp * r)/2.0)); else val = INGRID(0, 0).y * 0.95f; } else val = OUTGRID(i - 1, 0).y * 0.95f;
for (j = 0; j < iPrec; j++) OUTGRID(i, j).y = val; }
for (i = 0, r = 0.0; i < iPrec; i++, r += posInc) { for (j = 0; j < iPrec; j++) { if (i == iPrec-1) INGRID(i, j).y = -OUTGRID(i, j).y; else INGRID(i, j).y = INGRID(i + 1, j).y * 0.95f; } }
waterMesh.numFaces = 0; waterBorderMesh.numFaces = 0;
for (i = 0; i < iPrec; i++) { for (j = 0; j < iPrec; j++) { NORMS(i, j).x = 0.0f; NORMS(i, j).y = 0.0f; NORMS(i, j).z = 0.0f; } }
for (i = 0, r = 0.0; i < iPrec; i++, r += posInc) { for (j = 0, theta = 0.0; j < iPrec; j++, theta += thetaInc) { GRID(i, j).y = OUTGRID(i, j).y + INGRID(i, j).y;
if (i == (iPrec - 1)) { GRID(i, j).y = 0.0f;
BGRID(0, j).x = GRID(i, j).x; BGRID(0, j).z = GRID(i, j).z; BGRID(0, j).y = GRID(i, j).y;
BGRID(1, j).x = GRID(i, j).x; BGRID(1, j).z = GRID(i, j).z; BGRID(1, j).y = -0.5f; } } }
for (i = 0; i < 2; i++) { for (j = 0; j < iPrec; j++) { BNORMS(i, j).x = 0.0f; BNORMS(i, j).y = 0.0f; BNORMS(i, j).z = 0.0f; } }
for (facecount = 0, i = 0; i < (iPrec - 1); i++) { for (j = 0; j < iPrec; j++) { int k, l;
k = i + 1;
if (j == (iPrec - 1)) l = 0; else l = j + 1;
ss_calcNorm(&norm, &GRID(k, j), &GRID(i, j), &GRID(i, l));
if (norm.x > -FLOAT_SMALL && norm.x < FLOAT_SMALL && norm.y > -FLOAT_SMALL && norm.y < FLOAT_SMALL && norm.z > -FLOAT_SMALL && norm.z < FLOAT_SMALL) ss_calcNorm(&norm, &GRID(i, l), &GRID(k, l), &GRID(k, j));
waterMesh.faces[facecount].material = 0; waterMesh.faces[facecount].norm = norm;
NORMS(i, j).x += norm.x; NORMS(i, j).y += norm.y; NORMS(i, j).z += norm.z;
NORMS(k, j).x += norm.x; NORMS(k, j).y += norm.y; NORMS(k, j).z += norm.z;
NORMS(i, l).x += norm.x; NORMS(i, l).y += norm.y; NORMS(i, l).z += norm.z;
NORMS(k, l).x += norm.x; NORMS(k, l).y += norm.y; NORMS(k, l).z += norm.z;
waterMesh.faces[facecount].p[0] = (k * iPrec) + j; waterMesh.faces[facecount].p[1] = (i * iPrec) + j; waterMesh.faces[facecount].p[2] = (k * iPrec) + l; waterMesh.faces[facecount].p[3] = (i * iPrec) + l; waterMesh.numFaces++; facecount++; } }
waterMesh.numPoints = iPrec * iPrec;
for (facecount = 0, i = 0; i < 1; i++) { for (j = 0; j < iPrec; j++) { int k, l;
k = i + 1;
if (j == (iPrec - 1)) l = 0; else l = j + 1;
ss_calcNorm(&norm, &BGRID(k, j), &BGRID(i, j), &BGRID(i, l));
waterBorderMesh.faces[facecount].material = 0; waterBorderMesh.faces[facecount].norm = norm;
// Setting SMOOTH_BORDER will render the border (the sides of the "pool")
// with smooth shading. This effect is good at higher tesselations, but
// doesn't really look that good for low tesselations.
//
// A possible enhancement for later: use smooth shading if tesselation
// exceeds some threshold. Should we just pick some arbitrary threshold?
// Make it a setup option? Things look pretty good now, so don't bother?
#if SMOOTH_BORDER
BNORMS(i, j).x += norm.x; BNORMS(i, j).y += norm.y; BNORMS(i, j).z += norm.z;
if (i) { BNORMS(i-1, j).x += norm.x; BNORMS(i-1, j).y += norm.y; BNORMS(i-1, j).z += norm.z; } if (j) { BNORMS(i, j-1).x += norm.x; BNORMS(i, j-1).y += norm.y; BNORMS(i, j-1).z += norm.z; }
BNORMS(k, j).x += norm.x; BNORMS(k, j).y += norm.y; BNORMS(k, j).z += norm.z;
BNORMS(i, l).x += norm.x; BNORMS(i, l).y += norm.y; BNORMS(i, l).z += norm.z; #else
BNORMS(i, j) = norm;
if (i) BNORMS(i-1, j) = norm; if (j) BNORMS(i, j-1) = norm;
BNORMS(k, j) = norm; BNORMS(i, l) = norm; #endif
waterBorderMesh.faces[facecount].p[0] = (k * iPrec) + j; waterBorderMesh.faces[facecount].p[1] = (i * iPrec) + j; waterBorderMesh.faces[facecount].p[2] = (k * iPrec) + l; waterBorderMesh.faces[facecount].p[3] = (i * iPrec) + l; waterBorderMesh.numFaces++; facecount++; } } waterBorderMesh.numPoints = 2 * iPrec;
ss_normalizeNorms(waterBorderMesh.norms, waterBorderMesh.numPoints); ss_normalizeNorms(waterMesh.norms, waterMesh.numPoints);
first = FALSE; }
void initDropScene() { int i;
iPrec = (int)(fTesselFact * 10.5); if (iPrec < 4) iPrec = 4;
if (fTesselFact > fRadiusFact) fRadiusFact = fTesselFact;
circle = (POINT3D *)SaverAlloc(iPrec * sizeof(POINT3D)); drop = (POINT3D *)SaverAlloc(iPrec * sizeof(POINT3D)); curves = (POINT3D *)SaverAlloc(DROPPREC * iPrec * sizeof(POINT3D)); drops = (MESH *)SaverAlloc(DROPPREC * sizeof(MESH));
glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-1.5, 1.5, -1.5, 1.5, 0.0, 3.0);
glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glTranslatef(0.0f, 0.0f, -1.5f);
glDisable(GL_CULL_FACE);
newMesh(&waterInmesh, iPrec * iPrec, iPrec * iPrec + iPrec); newMesh(&waterOutmesh, iPrec * iPrec, iPrec * iPrec + iPrec); newMesh(&waterMesh, iPrec * iPrec, iPrec * iPrec + iPrec); newMesh(&waterBorderMesh, iPrec, 2 * iPrec); genCurves();
for (i = 0; i < DROPPREC; i++) revolveSurface(&drops[i], &curves[i * iPrec], iPrec); for (i = 0; i < DROPPREC; i++) { GLuint id = 0x10 + i; dropList[i] = id; MakeList(id, &drops[i]); } for (i = 0; i < DROPPREC; i++) { delMesh(&drops[i]); }
SaverFree(circle); SaverFree(drop); SaverFree(curves); SaverFree(drops); }
void delDropScene() { delMesh(&waterMesh); delMesh(&waterInmesh); delMesh(&waterOutmesh); delMesh(&waterBorderMesh); }
void updateDropScene(int flags) { static double zrot = 0.0; static double yrot = 0.0; static double mxrot = 0.0; static double myrot = 0.0; static double mzrot = 0.0; static double mxrotInc = 0.0; static double myrotInc = 0.1; static double zrotInc = 3.0; static double yrotInc = 1.5; static double mzrotInc = 0.0; static double ypos = 1.0; static int dropnum = 0; static double radius = 0.3; static double damp = 1.0; static double mag = 0.0; static double w = 1.0; static double freq = 1.0; static double dist; static double minr = 0.0; static int h = 0; RGBA color;
glPushMatrix();
zrot += zrotInc; if (zrot >= 45.0) { zrot = 45.0; zrotInc = -(2.0 + ((float)rand() / (float)RAND_MAX) * 3.0); } else if (zrot <= -45.0) { zrot = -45.0; zrotInc = 2.0 + ((float)rand() / (float)RAND_MAX) * 3.0; }
yrot += yrotInc; if (yrot >= 10.0) { yrot = 10.0; yrotInc = -(1.0 + ((float)rand() / (float)RAND_MAX) * 2.0); } else if (zrot <= -10.0) { yrot = -10.0; yrotInc = 1.0 + ((float)rand() / (float)RAND_MAX) * 2.0; }
if ((ypos + 0.5 < -radius) && (mag < 0.05)) { radius = (float)rand() / (6.0 * (float)RAND_MAX) + 0.1; ypos = 1.0; dropnum = 0; }
dist = (ypos + 0.5);
if ((dist > -radius / 2.0) && (dist < radius / 2.0)) { if (dist <= 0.0) dist = radius / 2.0; else dist = (radius / 2.0) - dist; freq = (0.25 * PI) / dist; if (freq < 0.2) freq = 0.2;
minr = radius;
damp = 20.0; mag = (0.35 / fRadiusFact) + 0.2 * dist;
w = 0; } else { minr -= 0.05; if (minr < 0.0) minr = 0.0;
mag = mag * 0.95; if (minr == 0.0) { w -= (PI / 6.0); mag *= 0.75; } if (damp > 0.0) damp -= 1.0; }
genWater(freq, damp, mag, w, minr);
glRotatef((GLfloat) zrot, 0.0f, 0.0f, 1.0f); glRotatef(30.0f, 1.0f, 0.0f, 0.0f);
glPushMatrix(); glTranslatef(0.0f, -0.5f, 0.0f); glRotatef((GLfloat) (myrot * (180.0 / PI)), 0.0f, 1.0f, 0.0f);
if (bColorCycle) { ss_HsvToRgb((float)h, 1.0f, 1.0f, &color );
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat *) &color); h++; h %= 360; } else { glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat *) &Material[6].kd); }
updateObject(&waterMesh, bSmoothShading);
if (bSmoothShading) glShadeModel(GL_FLAT);
if (!bColorCycle) glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat *) &Material[2].kd);
updateObject2(&waterBorderMesh, FALSE); glPopMatrix();
if (bSmoothShading) glShadeModel(GL_SMOOTH);
if (dist > -radius) {
if (!bColorCycle) glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat *) &Material[6].kd); glTranslatef(0.0f, (GLfloat) ypos, 0.0f); glScalef((GLfloat) radius, (GLfloat) radius, (GLfloat) radius); glRotatef(180.0f, 1.0f, 0.0f, 0.0f); glEnable(GL_NORMALIZE); glCallList(dropList[dropnum]); glDisable(GL_NORMALIZE);
}
myrot += myrotInc;
ypos -= 0.08; dropnum = (int) ((DROPPREC - 1) - (ypos * (DROPPREC - 1))); if (dropnum > (DROPPREC - 1)) dropnum = DROPPREC - 1;
glPopMatrix(); }
|