|
|
//------------------------------------------------------------------------------
// File: WinCtrl.cpp
//
// Desc: DirectShow base classes - implements video control interface class.
//
//@@BEGIN_MSINTERNAL
//
// December 1995
//
//@@END_MSINTERNAL
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
// The control interface methods require us to be connected
#define CheckConnected(pin,code) \
{ \ if (pin == NULL) { \ ASSERT(!TEXT("Pin not set")); \ } else if (pin->IsConnected() == FALSE) { \ return (code); \ } \ }
// This checks to see whether the window has a drain. An application can in
// most environments set the owner/parent of windows so that they appear in
// a compound document context (for example). In this case, the application
// would probably like to be told of any keyboard/mouse messages. Therefore
// we pass these messages on untranslated, returning TRUE if we're successful
BOOL WINAPI PossiblyEatMessage(HWND hwndDrain, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (hwndDrain != NULL && !InSendMessage()) { switch (uMsg) { case WM_CHAR: case WM_DEADCHAR: case WM_KEYDOWN: case WM_KEYUP: case WM_LBUTTONDBLCLK: case WM_LBUTTONDOWN: case WM_LBUTTONUP: case WM_MBUTTONDBLCLK: case WM_MBUTTONDOWN: case WM_MBUTTONUP: case WM_MOUSEACTIVATE: case WM_MOUSEMOVE: // If we pass this on we don't get any mouse clicks
//case WM_NCHITTEST:
case WM_NCLBUTTONDBLCLK: case WM_NCLBUTTONDOWN: case WM_NCLBUTTONUP: case WM_NCMBUTTONDBLCLK: case WM_NCMBUTTONDOWN: case WM_NCMBUTTONUP: case WM_NCMOUSEMOVE: case WM_NCRBUTTONDBLCLK: case WM_NCRBUTTONDOWN: case WM_NCRBUTTONUP: case WM_RBUTTONDBLCLK: case WM_RBUTTONDOWN: case WM_RBUTTONUP: case WM_SYSCHAR: case WM_SYSDEADCHAR: case WM_SYSKEYDOWN: case WM_SYSKEYUP:
DbgLog((LOG_TRACE, 2, TEXT("Forwarding %x to drain"))); PostMessage(hwndDrain, uMsg, wParam, lParam);
return TRUE; } } return FALSE; }
// This class implements the IVideoWindow control functions (dual interface)
// we support a large number of properties and methods designed to allow the
// client (whether it be an automation controller or a C/C++ application) to
// set and get a number of window related properties such as it's position.
// We also support some methods that duplicate the properties but provide a
// more direct and efficient mechanism as many values may be changed in one
CBaseControlWindow::CBaseControlWindow( CBaseFilter *pFilter, // Owning filter
CCritSec *pInterfaceLock, // Locking object
TCHAR *pName, // Object description
LPUNKNOWN pUnk, // Normal COM ownership
HRESULT *phr) : // OLE return code
CBaseVideoWindow(pName,pUnk), m_pInterfaceLock(pInterfaceLock), m_hwndOwner(NULL), m_hwndDrain(NULL), m_bAutoShow(TRUE), m_pFilter(pFilter), m_bCursorHidden(FALSE), m_pPin(NULL) { ASSERT(m_pFilter); ASSERT(m_pInterfaceLock); ASSERT(phr); m_BorderColour = VIDEO_COLOUR; }
// Set the title caption on the base window, we don't do any field checking
// as we really don't care what title they intend to have. We can always get
// it back again later with GetWindowText. The only other complication is to
// do the necessary string conversions between ANSI and OLE Unicode strings
STDMETHODIMP CBaseControlWindow::put_Caption(BSTR strCaption) { CheckPointer(strCaption,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); #ifdef UNICODE
SetWindowText(m_hwnd, strCaption); #else
CHAR Caption[CAPTION];
WideCharToMultiByte(CP_ACP,0,strCaption,-1,Caption,CAPTION,NULL,NULL); SetWindowText(m_hwnd, Caption); #endif
return NOERROR; }
// Get the current base window title caption, once again we do no real field
// checking. We allocate a string for the window title to be filled in with
// which ensures the interface doesn't fiddle around with getting memory. A
// BSTR is a normal C string with the length at position (-1), we use the
// WriteBSTR helper function to create the caption to try and avoid OLE32
STDMETHODIMP CBaseControlWindow::get_Caption(BSTR *pstrCaption) { CheckPointer(pstrCaption,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); WCHAR WideCaption[CAPTION];
#ifdef UNICODE
GetWindowText(m_hwnd,WideCaption,CAPTION); #else
// Convert the ASCII caption to a UNICODE string
TCHAR Caption[CAPTION]; GetWindowText(m_hwnd,Caption,CAPTION); MultiByteToWideChar(CP_ACP,0,Caption,-1,WideCaption,CAPTION); #endif
return WriteBSTR(pstrCaption,WideCaption); }
// Set the window style using GWL_EXSTYLE
STDMETHODIMP CBaseControlWindow::put_WindowStyleEx(long WindowStyleEx) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Should we be taking off WS_EX_TOPMOST
if (GetWindowLong(m_hwnd,GWL_EXSTYLE) & WS_EX_TOPMOST) { if ((WindowStyleEx & WS_EX_TOPMOST) == 0) { SendMessage(m_hwnd,m_ShowStageTop,(WPARAM) FALSE,(LPARAM) 0); } }
// Likewise should we be adding WS_EX_TOPMOST
if (WindowStyleEx & WS_EX_TOPMOST) { SendMessage(m_hwnd,m_ShowStageTop,(WPARAM) TRUE,(LPARAM) 0); WindowStyleEx &= (~WS_EX_TOPMOST); if (WindowStyleEx == 0) return NOERROR; } return DoSetWindowStyle(WindowStyleEx,GWL_EXSTYLE); }
// Gets the current GWL_EXSTYLE base window style
STDMETHODIMP CBaseControlWindow::get_WindowStyleEx(long *pWindowStyleEx) { CheckPointer(pWindowStyleEx,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); return DoGetWindowStyle(pWindowStyleEx,GWL_EXSTYLE); }
// Set the window style using GWL_STYLE
STDMETHODIMP CBaseControlWindow::put_WindowStyle(long WindowStyle) { // These styles cannot be changed dynamically
if ((WindowStyle & WS_DISABLED) || (WindowStyle & WS_ICONIC) || (WindowStyle & WS_MAXIMIZE) || (WindowStyle & WS_MINIMIZE) || (WindowStyle & WS_HSCROLL) || (WindowStyle & WS_VSCROLL)) {
return E_INVALIDARG; }
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); return DoSetWindowStyle(WindowStyle,GWL_STYLE); }
// Get the current GWL_STYLE base window style
STDMETHODIMP CBaseControlWindow::get_WindowStyle(long *pWindowStyle) { CheckPointer(pWindowStyle,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); return DoGetWindowStyle(pWindowStyle,GWL_STYLE); }
// Change the base window style or the extended styles depending on whether
// WindowLong is GWL_STYLE or GWL_EXSTYLE. We must call SetWindowPos to have
// the window displayed in it's new style after the change which is a little
// tricky if the window is not currently visible as we realise it offscreen.
// In most cases the client will call get_WindowStyle before they call this
// and then AND and OR in extra bit settings according to the requirements
HRESULT CBaseControlWindow::DoSetWindowStyle(long Style,long WindowLong) { RECT WindowRect;
// Get the window's visibility before setting the style
BOOL bVisible = IsWindowVisible(m_hwnd); EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
// Set the new style flags for the window
SetWindowLong(m_hwnd,WindowLong,Style); UINT WindowFlags = SWP_SHOWWINDOW | SWP_FRAMECHANGED | SWP_NOACTIVATE; WindowFlags |= SWP_NOZORDER | SWP_NOSIZE | SWP_NOMOVE;
// Show the window again in the current position
if (bVisible == TRUE) {
SetWindowPos(m_hwnd, // Base window handle
HWND_TOP, // Just a place holder
0,0,0,0, // Leave size and position
WindowFlags); // Just draw it again
return NOERROR; }
// Move the window offscreen so the user doesn't see the changes
MoveWindow((HWND) m_hwnd, // Base window handle
GetSystemMetrics(SM_CXSCREEN), // Current desktop width
GetSystemMetrics(SM_CYSCREEN), // Likewise it's height
WIDTH(&WindowRect), // Use the same width
HEIGHT(&WindowRect), // Keep height same to
TRUE); // May as well repaint
// Now show the previously hidden window
SetWindowPos(m_hwnd, // Base window handle
HWND_TOP, // Just a place holder
0,0,0,0, // Leave size and position
WindowFlags); // Just draw it again
ShowWindow(m_hwnd,SW_HIDE);
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2); }
MoveWindow((HWND) m_hwnd, // Base window handle
WindowRect.left, // Existing x coordinate
WindowRect.top, // Existing y coordinate
WIDTH(&WindowRect), // Use the same width
HEIGHT(&WindowRect), // Keep height same to
TRUE); // May as well repaint
return NOERROR; }
// Get the current base window style (either GWL_STYLE or GWL_EXSTYLE)
HRESULT CBaseControlWindow::DoGetWindowStyle(long *pStyle,long WindowLong) { *pStyle = GetWindowLong(m_hwnd,WindowLong); return NOERROR; }
// Change the visibility of the base window, this takes the same parameters
// as the ShowWindow Win32 API does, so the client can have the window hidden
// or shown, minimised to an icon, or maximised to play in full screen mode
// We pass the request on to the base window to actually make the change
STDMETHODIMP CBaseControlWindow::put_WindowState(long WindowState) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); DoShowWindow(WindowState); return NOERROR; }
// Get the current window state, this function returns a subset of the SW bit
// settings available in ShowWindow, if the window is visible then SW_SHOW is
// set, if it is hidden then the SW_HIDDEN is set, if it is either minimised
// or maximised then the SW_MINIMIZE or SW_MAXIMIZE is set respectively. The
// other SW bit settings are really set commands not readable output values
STDMETHODIMP CBaseControlWindow::get_WindowState(long *pWindowState) { CheckPointer(pWindowState,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); ASSERT(pWindowState); *pWindowState = FALSE;
// Is the window visible, a window is termed visible if it is somewhere on
// the current desktop even if it is completely obscured by other windows
// so the flag is a style for each window set with the WS_VISIBLE bit
if (IsWindowVisible(m_hwnd) == TRUE) {
// Is the base window iconic
if (IsIconic(m_hwnd) == TRUE) { *pWindowState |= SW_MINIMIZE; }
// Has the window been maximised
else if (IsZoomed(m_hwnd) == TRUE) { *pWindowState |= SW_MAXIMIZE; }
// Window is normal
else { *pWindowState |= SW_SHOW; }
} else { *pWindowState |= SW_HIDE; } return NOERROR; }
// This makes sure that any palette we realise in the base window (through a
// media type or through the overlay interface) is done in the background and
// is therefore mapped to existing device entries rather than taking it over
// as it will do when we this window gets the keyboard focus. An application
// uses this to make sure it doesn't have it's palette removed by the window
STDMETHODIMP CBaseControlWindow::put_BackgroundPalette(long BackgroundPalette) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cWindowLock(&m_WindowLock);
// Check this is a valid automation boolean type
if (BackgroundPalette != OATRUE) { if (BackgroundPalette != OAFALSE) { return E_INVALIDARG; } }
// Make sure the window realises any palette it has again
m_bBackground = (BackgroundPalette == OATRUE ? TRUE : FALSE); PostMessage(m_hwnd,m_RealizePalette,0,0); PaintWindow(FALSE);
return NOERROR; }
// This returns the current background realisation setting
STDMETHODIMP CBaseControlWindow::get_BackgroundPalette(long *pBackgroundPalette) { CheckPointer(pBackgroundPalette,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cWindowLock(&m_WindowLock);
// Get the current background palette setting
*pBackgroundPalette = (m_bBackground == TRUE ? OATRUE : OAFALSE); return NOERROR; }
// Change the visibility of the base window
STDMETHODIMP CBaseControlWindow::put_Visible(long Visible) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (Visible != OATRUE) { if (Visible != OAFALSE) { return E_INVALIDARG; } }
// Convert the boolean visibility into SW_SHOW and SW_HIDE
INT Mode = (Visible == OATRUE ? SW_SHOWNORMAL : SW_HIDE); DoShowWindow(Mode); return NOERROR; }
// Return OATRUE if the window is currently visible otherwise OAFALSE
STDMETHODIMP CBaseControlWindow::get_Visible(long *pVisible) { CheckPointer(pVisible,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// See if the base window has a WS_VISIBLE style - this will return TRUE
// even if the window is completely obscured by other desktop windows, we
// return FALSE if the window is not showing because of earlier calls
BOOL Mode = IsWindowVisible(m_hwnd); *pVisible = (Mode == TRUE ? OATRUE : OAFALSE); return NOERROR; }
// Change the left position of the base window. This keeps the window width
// and height properties the same so it effectively shunts the window left or
// right accordingly - there is the Width property to change that dimension
STDMETHODIMP CBaseControlWindow::put_Left(long Left) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bSuccess; RECT WindowRect;
// Get the current window position in a RECT
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2); }
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
WindowRect.bottom = WindowRect.bottom - WindowRect.top; WindowRect.right = WindowRect.right - WindowRect.left; UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
Left, // New left position
WindowRect.top, // Leave top alone
WindowRect.right, // The WIDTH (not right)
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window options
if (bSuccess == FALSE) { return E_INVALIDARG; } return NOERROR; }
// Return the current base window left position
STDMETHODIMP CBaseControlWindow::get_Left(long *pLeft) { CheckPointer(pLeft,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect)); *pLeft = WindowRect.left; return NOERROR; }
// Change the current width of the base window. This property complements the
// left position property so we must keep the left edge constant and expand or
// contract to the right, the alternative would be to change the left edge so
// keeping the right edge constant but this is maybe a little more intuitive
STDMETHODIMP CBaseControlWindow::put_Width(long Width) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bSuccess; RECT WindowRect;
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2); }
WindowRect.bottom = WindowRect.bottom - WindowRect.top; UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
// This seems to have a bug in that calling SetWindowPos on a window with
// just the width changing causes it to ignore the width that you pass in
// and sets it to a mimimum value of 110 pixels wide (Windows NT 3.51)
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
WindowRect.top, // Leave top alone
Width, // New WIDTH dimension
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window options
if (bSuccess == FALSE) { return E_INVALIDARG; } return NOERROR; }
// Return the current base window width
STDMETHODIMP CBaseControlWindow::get_Width(long *pWidth) { CheckPointer(pWidth,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect)); *pWidth = WindowRect.right - WindowRect.left; return NOERROR; }
// This allows the client program to change the top position for the window in
// the same way that changing the left position does not affect the width of
// the image so changing the top position does not affect the window height
STDMETHODIMP CBaseControlWindow::put_Top(long Top) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bSuccess; RECT WindowRect;
// Get the current window position in a RECT
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2); }
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
WindowRect.bottom = WindowRect.bottom - WindowRect.top; WindowRect.right = WindowRect.right - WindowRect.left; UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
Top, // New top position
WindowRect.right, // The WIDTH (not right)
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window flags
if (bSuccess == FALSE) { return E_INVALIDARG; } return NOERROR; }
// Return the current base window top position
STDMETHODIMP CBaseControlWindow::get_Top(long *pTop) { CheckPointer(pTop,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect)); *pTop = WindowRect.top; return NOERROR; }
// Change the height of the window, this complements the top property so when
// we change this we must keep the top position for the base window, as said
// before we could keep the bottom and grow upwards although this is perhaps
// a little more intuitive since we already have a top position property
STDMETHODIMP CBaseControlWindow::put_Height(long Height) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bSuccess; RECT WindowRect;
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2); }
WindowRect.right = WindowRect.right - WindowRect.left; UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
WindowRect.top, // Leave top alone
WindowRect.right, // The WIDTH (not right)
Height, // New height dimension
WindowFlags); // Show window flags
if (bSuccess == FALSE) { return E_INVALIDARG; } return NOERROR; }
// Return the current base window height
STDMETHODIMP CBaseControlWindow::get_Height(long *pHeight) { CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect)); *pHeight = WindowRect.bottom - WindowRect.top; return NOERROR; }
// This can be called to change the owning window. Setting the owner is done
// through this function, however to make the window a true child window the
// style must also be set to WS_CHILD. After resetting the owner to NULL an
// application should also set the style to WS_OVERLAPPED | WS_CLIPCHILDREN.
// We cannot lock the object here because the SetParent causes an interthread
// SendMessage to the owner window. If they are in GetState we will sit here
// incomplete with the critical section locked therefore blocking out source
// filter threads from accessing us. Because the source thread can't enter us
// it can't get buffers or call EndOfStream so the GetState will not complete
STDMETHODIMP CBaseControlWindow::put_Owner(OAHWND Owner) { // Check we are connected otherwise reject the call
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); m_hwndOwner = (HWND) Owner; HWND hwndParent = m_hwndOwner;
// Add or remove WS_CHILD as appropriate
LONG Style = GetWindowLong(m_hwnd,GWL_STYLE); if (Owner == NULL) { Style &= (~WS_CHILD); } else { Style |= (WS_CHILD); } SetWindowLong(m_hwnd,GWL_STYLE,Style);
// Don't call this with the filter locked
SetParent(m_hwnd,hwndParent);
PaintWindow(TRUE); NOTE1("Changed parent %lx",hwndParent);
return NOERROR; }
// This complements the put_Owner to get the current owning window property
// we always return NOERROR although the returned window handle may be NULL
// to indicate no owning window (the desktop window doesn't qualify as one)
// If an application sets the owner we call SetParent, however that returns
// NULL until the WS_CHILD bit is set on, so we store the owner internally
STDMETHODIMP CBaseControlWindow::get_Owner(OAHWND *Owner) { CheckPointer(Owner,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); *Owner = (OAHWND) m_hwndOwner; return NOERROR; }
// And renderer supporting IVideoWindow may have an HWND set who will get any
// keyboard and mouse messages we receive posted on to them. This is separate
// from setting an owning window. By separating the two, applications may get
// messages sent on even when they have set no owner (perhaps it's maximised)
STDMETHODIMP CBaseControlWindow::put_MessageDrain(OAHWND Drain) { // Check we are connected otherwise reject the call
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); m_hwndDrain = (HWND) Drain; return NOERROR; }
// Return the current message drain
STDMETHODIMP CBaseControlWindow::get_MessageDrain(OAHWND *Drain) { CheckPointer(Drain,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); *Drain = (OAHWND) m_hwndDrain; return NOERROR; }
// This is called by the filter graph to inform us of a message we should know
// is being sent to our owning window. We have this because as a child window
// we do not get certain messages that are only sent to top level windows. We
// must see the palette changed/changing/query messages so that we know if we
// have the foreground palette or not. We pass the message on to our window
// using SendMessage - this will cause an interthread send message to occur
STDMETHODIMP CBaseControlWindow::NotifyOwnerMessage(OAHWND hwnd, // Window handle
long uMsg, // Message ID
LONG_PTR wParam, // Parameters
LONG_PTR lParam) // for message
{ CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Only interested in these Windows messages
switch (uMsg) {
case WM_SYSCOLORCHANGE: case WM_PALETTECHANGED: case WM_PALETTEISCHANGING: case WM_QUERYNEWPALETTE: case WM_DEVMODECHANGE: case WM_DISPLAYCHANGE: case WM_ACTIVATEAPP:
// If we do not have an owner then ignore
if (m_hwndOwner == NULL) { return NOERROR; } SendMessage(m_hwnd,uMsg,(WPARAM)wParam,(LPARAM)lParam); break;
// do NOT fwd WM_MOVE. the parameters are the location of the parent
// window, NOT what the renderer should be looking at. But we need
// to make sure the overlay is moved with the parent window, so we
// do this.
case WM_MOVE: PostMessage(m_hwnd,WM_PAINT,0,0); break; } return NOERROR; }
// Allow an application to have us set the base window in the foreground. We
// have this because it is difficult for one thread to do do this to a window
// owned by another thread. We ask the base window class to do the real work
STDMETHODIMP CBaseControlWindow::SetWindowForeground(long Focus) { // Check this is a valid automation boolean type
if (Focus != OATRUE) { if (Focus != OAFALSE) { return E_INVALIDARG; } }
// We shouldn't lock as this sends a message
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bFocus = (Focus == OATRUE ? TRUE : FALSE); DoSetWindowForeground(bFocus);
return NOERROR; }
// This allows a client to set the complete window size and position in one
// atomic operation. The same affect can be had by changing each dimension
// in turn through their individual properties although some flashing will
// occur as each of them gets updated (they are better set at design time)
STDMETHODIMP CBaseControlWindow::SetWindowPosition(long Left,long Top,long Width,long Height) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); BOOL bSuccess;
// Set the new size and position
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
ASSERT(IsWindow(m_hwnd)); bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
Left, // Left position
Top, // Top position
Width, // Window width
Height, // Window height
WindowFlags); // Show window flags
ASSERT(bSuccess); #ifdef DEBUG
DbgLog((LOG_TRACE, 1, TEXT("SWP failed error %d"), GetLastError())); #endif
if (bSuccess == FALSE) { return E_INVALIDARG; } return NOERROR; }
// This complements the SetWindowPosition to return the current window place
// in device coordinates. As before the same information can be retrived by
// calling the property get functions individually but this is atomic and is
// therefore more suitable to a live environment rather than design time
STDMETHODIMP CBaseControlWindow::GetWindowPosition(long *pLeft,long *pTop,long *pWidth,long *pHeight) { // Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER); CheckPointer(pTop,E_POINTER); CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT WindowRect;
// Get the current window coordinates
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
// Convert the RECT into left,top,width and height values
*pLeft = WindowRect.left; *pTop = WindowRect.top; *pWidth = WindowRect.right - WindowRect.left; *pHeight = WindowRect.bottom - WindowRect.top;
return NOERROR; }
// When a window is maximised or iconic calling GetWindowPosition will return
// the current window position (likewise for the properties). However if the
// restored size (ie the size we'll return to when normally shown) is needed
// then this should be used. When in a normal position (neither iconic nor
// maximised) then this returns the same coordinates as GetWindowPosition
STDMETHODIMP CBaseControlWindow::GetRestorePosition(long *pLeft,long *pTop,long *pWidth,long *pHeight) { // Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER); CheckPointer(pTop,E_POINTER); CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Use GetWindowPlacement to find the restore position
WINDOWPLACEMENT Place; Place.length = sizeof(WINDOWPLACEMENT); EXECUTE_ASSERT(GetWindowPlacement(m_hwnd,&Place));
RECT WorkArea;
// We must take into account any task bar present
if (SystemParametersInfo(SPI_GETWORKAREA,0,&WorkArea,FALSE) == TRUE) { if (GetParent(m_hwnd) == NULL) { Place.rcNormalPosition.top += WorkArea.top; Place.rcNormalPosition.bottom += WorkArea.top; Place.rcNormalPosition.left += WorkArea.left; Place.rcNormalPosition.right += WorkArea.left; } }
// Convert the RECT into left,top,width and height values
*pLeft = Place.rcNormalPosition.left; *pTop = Place.rcNormalPosition.top; *pWidth = Place.rcNormalPosition.right - Place.rcNormalPosition.left; *pHeight = Place.rcNormalPosition.bottom - Place.rcNormalPosition.top;
return NOERROR; }
// Return the current border colour, if we are playing something to a subset
// of the base window display there is an outside area exposed. The default
// action is to paint this colour in the Windows background colour (defined
// as value COLOR_WINDOW) We reset to this default when we're disconnected
STDMETHODIMP CBaseControlWindow::get_BorderColor(long *Color) { CheckPointer(Color,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); *Color = (long) m_BorderColour; return NOERROR; }
// This can be called to set the current border colour
STDMETHODIMP CBaseControlWindow::put_BorderColor(long Color) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Have the window repainted with the new border colour
m_BorderColour = (COLORREF) Color; PaintWindow(TRUE); return NOERROR; }
// Delegate fullscreen handling to plug in distributor
STDMETHODIMP CBaseControlWindow::get_FullScreenMode(long *FullScreenMode) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CheckPointer(FullScreenMode,E_POINTER); return E_NOTIMPL; }
// Delegate fullscreen handling to plug in distributor
STDMETHODIMP CBaseControlWindow::put_FullScreenMode(long FullScreenMode) { return E_NOTIMPL; }
// This sets the auto show property, this property causes the base window to
// be displayed whenever we change state. This allows an application to have
// to do nothing to have the window appear but still allow them to change the
// default behaviour if for example they want to keep it hidden for longer
STDMETHODIMP CBaseControlWindow::put_AutoShow(long AutoShow) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (AutoShow != OATRUE) { if (AutoShow != OAFALSE) { return E_INVALIDARG; } }
m_bAutoShow = (AutoShow == OATRUE ? TRUE : FALSE); return NOERROR; }
// This can be called to get the current auto show flag. The flag is updated
// when we connect and disconnect and through this interface all of which are
// controlled and serialised by means of the main renderer critical section
STDMETHODIMP CBaseControlWindow::get_AutoShow(long *AutoShow) { CheckPointer(AutoShow,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); *AutoShow = (m_bAutoShow == TRUE ? OATRUE : OAFALSE); return NOERROR; }
// Return the minimum ideal image size for the current video. This may differ
// to the actual video dimensions because we may be using DirectDraw hardware
// that has specific stretching requirements. For example the Cirrus Logic
// cards have a minimum stretch factor depending on the overlay surface size
STDMETHODIMP CBaseControlWindow::GetMinIdealImageSize(long *pWidth,long *pHeight) { CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); FILTER_STATE State;
// Must not be stopped for this to work correctly
m_pFilter->GetState(0,&State); if (State == State_Stopped) { return VFW_E_WRONG_STATE; }
RECT DefaultRect = GetDefaultRect(); *pWidth = WIDTH(&DefaultRect); *pHeight = HEIGHT(&DefaultRect); return NOERROR; }
// Return the maximum ideal image size for the current video. This may differ
// to the actual video dimensions because we may be using DirectDraw hardware
// that has specific stretching requirements. For example the Cirrus Logic
// cards have a maximum stretch factor depending on the overlay surface size
STDMETHODIMP CBaseControlWindow::GetMaxIdealImageSize(long *pWidth,long *pHeight) { CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); FILTER_STATE State;
// Must not be stopped for this to work correctly
m_pFilter->GetState(0,&State); if (State == State_Stopped) { return VFW_E_WRONG_STATE; }
RECT DefaultRect = GetDefaultRect(); *pWidth = WIDTH(&DefaultRect); *pHeight = HEIGHT(&DefaultRect); return NOERROR; }
// Allow an application to hide the cursor on our window
STDMETHODIMP CBaseControlWindow::HideCursor(long HideCursor) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (HideCursor != OATRUE) { if (HideCursor != OAFALSE) { return E_INVALIDARG; } }
m_bCursorHidden = (HideCursor == OATRUE ? TRUE : FALSE); return NOERROR; }
// Returns whether we have the cursor hidden or not
STDMETHODIMP CBaseControlWindow::IsCursorHidden(long *CursorHidden) { CheckPointer(CursorHidden,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); *CursorHidden = (m_bCursorHidden == TRUE ? OATRUE : OAFALSE); return NOERROR; }
// This class implements the IBasicVideo control functions (dual interface)
// we support a large number of properties and methods designed to allow the
// client (whether it be an automation controller or a C/C++ application) to
// set and get a number of video related properties such as the native video
// size. We support some methods that duplicate the properties but provide a
// more direct and efficient mechanism as many values may be changed in one
CBaseControlVideo::CBaseControlVideo( CBaseFilter *pFilter, // Owning filter
CCritSec *pInterfaceLock, // Locking object
TCHAR *pName, // Object description
LPUNKNOWN pUnk, // Normal COM ownership
HRESULT *phr) : // OLE return code
CBaseBasicVideo(pName,pUnk), m_pFilter(pFilter), m_pInterfaceLock(pInterfaceLock), m_pPin(NULL) { ASSERT(m_pFilter); ASSERT(m_pInterfaceLock); ASSERT(phr); }
// Return an approximate average time per frame
STDMETHODIMP CBaseControlVideo::get_AvgTimePerFrame(REFTIME *pAvgTimePerFrame) { CheckPointer(pAvgTimePerFrame,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; COARefTime AvgTime(pVideoInfo->AvgTimePerFrame); *pAvgTimePerFrame = (REFTIME) AvgTime;
return NOERROR; }
// Return an approximate bit rate for the video
STDMETHODIMP CBaseControlVideo::get_BitRate(long *pBitRate) { CheckPointer(pBitRate,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; *pBitRate = pVideoInfo->dwBitRate; return NOERROR; }
// Return an approximate bit error rate
STDMETHODIMP CBaseControlVideo::get_BitErrorRate(long *pBitErrorRate) { CheckPointer(pBitErrorRate,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; *pBitErrorRate = pVideoInfo->dwBitErrorRate; return NOERROR; }
// This returns the current video width
STDMETHODIMP CBaseControlVideo::get_VideoWidth(long *pVideoWidth) { CheckPointer(pVideoWidth,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; *pVideoWidth = pVideoInfo->bmiHeader.biWidth; return NOERROR; }
// This returns the current video height
STDMETHODIMP CBaseControlVideo::get_VideoHeight(long *pVideoHeight) { CheckPointer(pVideoHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; *pVideoHeight = pVideoInfo->bmiHeader.biHeight; return NOERROR; }
// This returns the current palette the video is using as an array allocated
// by the user. To remain consistent we use PALETTEENTRY fields to return the
// colours in rather than RGBQUADs that multimedia decided to use. The memory
// is allocated by the user so we simple copy each in turn. We check that the
// number of entries requested and the start position offset are both valid
// If the number of entries evaluates to zero then we return an S_FALSE code
STDMETHODIMP CBaseControlVideo::GetVideoPaletteEntries(long StartIndex, long Entries, long *pRetrieved, long *pPalette) { CheckPointer(pRetrieved,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); CMediaType MediaType;
// Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; BITMAPINFOHEADER *pHeader = HEADER(pVideoInfo);
// Is the current format palettised
if (PALETTISED(pVideoInfo) == FALSE) { *pRetrieved = 0; return VFW_E_NO_PALETTE_AVAILABLE; }
// Do they just want to know how many are available
if (pPalette == NULL) { *pRetrieved = pHeader->biClrUsed; return NOERROR; }
// Make sure the start position is a valid offset
if (StartIndex >= (LONG) pHeader->biClrUsed || StartIndex < 0) { *pRetrieved = 0; return E_INVALIDARG; }
// Correct the number we can retrieve
LONG Available = (LONG) pHeader->biClrUsed - StartIndex; *pRetrieved = max(0,min(Available,Entries)); if (*pRetrieved == 0) { return S_FALSE; }
// Copy the palette entries to the output buffer
PALETTEENTRY *pEntries = (PALETTEENTRY *) pPalette; RGBQUAD *pColours = COLORS(pVideoInfo) + StartIndex;
for (LONG Count = 0;Count < *pRetrieved;Count++) { pEntries[Count].peRed = pColours[Count].rgbRed; pEntries[Count].peGreen = pColours[Count].rgbGreen; pEntries[Count].peBlue = pColours[Count].rgbBlue; pEntries[Count].peFlags = 0; } return NOERROR; }
// This returns the current video dimensions as a method rather than a number
// of individual property get calls. For the same reasons as said before we
// cannot access the renderer media type directly as the window object thread
// may be updating it since dynamic format changes may change these values
STDMETHODIMP CBaseControlVideo::GetVideoSize(long *pWidth,long *pHeight) { CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock);
// Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; *pWidth = pVideoInfo->bmiHeader.biWidth; *pHeight = pVideoInfo->bmiHeader.biHeight; return NOERROR; }
// Set the source video rectangle as left,top,right and bottom coordinates
// rather than left,top,width and height as per OLE automation interfaces
// Then pass the rectangle on to the window object to set the source
STDMETHODIMP CBaseControlVideo::SetSourcePosition(long Left,long Top,long Width,long Height) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect; SourceRect.left = Left; SourceRect.top = Top; SourceRect.right = Left + Width; SourceRect.bottom = Top + Height;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect); if (FAILED(hr)) { return hr; }
// Now set the source rectangle
hr = SetSourceRect(&SourceRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the source rectangle in left,top,width and height rather than the
// left,top,right and bottom values that RECT uses (and which the window
// object returns through GetSourceRect) which requires a little work
STDMETHODIMP CBaseControlVideo::GetSourcePosition(long *pLeft,long *pTop,long *pWidth,long *pHeight) { // Should check the pointers are non NULL
CheckPointer(pLeft,E_POINTER); CheckPointer(pTop,E_POINTER); CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT SourceRect;
CAutoLock cInterfaceLock(m_pInterfaceLock); GetSourceRect(&SourceRect);
*pLeft = SourceRect.left; *pTop = SourceRect.top; *pWidth = WIDTH(&SourceRect); *pHeight = HEIGHT(&SourceRect);
return NOERROR; }
// Set the video destination as left,top,right and bottom coordinates rather
// than the left,top,width and height uses as per OLE automation interfaces
// Then pass the rectangle on to the window object to set the destination
STDMETHODIMP CBaseControlVideo::SetDestinationPosition(long Left,long Top,long Width,long Height) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect;
DestinationRect.left = Left; DestinationRect.top = Top; DestinationRect.right = Left + Width; DestinationRect.bottom = Top + Height;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; }
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the destination rectangle in left,top,width and height rather than
// the left,top,right and bottom values that RECT uses (and which the window
// object returns through GetDestinationRect) which requires a little work
STDMETHODIMP CBaseControlVideo::GetDestinationPosition(long *pLeft,long *pTop,long *pWidth,long *pHeight) { // Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER); CheckPointer(pTop,E_POINTER); CheckPointer(pWidth,E_POINTER); CheckPointer(pHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); RECT DestinationRect;
CAutoLock cInterfaceLock(m_pInterfaceLock); GetTargetRect(&DestinationRect);
*pLeft = DestinationRect.left; *pTop = DestinationRect.top; *pWidth = WIDTH(&DestinationRect); *pHeight = HEIGHT(&DestinationRect);
return NOERROR; }
// Set the source left position, the source rectangle we get back from the
// window object is a true rectangle in left,top,right and bottom positions
// so all we have to do is to update the left position and pass it back. We
// must keep the current width constant when we're updating this property
STDMETHODIMP CBaseControlVideo::put_SourceLeft(long SourceLeft) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect; GetSourceRect(&SourceRect); SourceRect.right = SourceLeft + WIDTH(&SourceRect); SourceRect.left = SourceLeft;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect); if (FAILED(hr)) { return hr; }
// Now set the source rectangle
hr = SetSourceRect(&SourceRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the current left source video position
STDMETHODIMP CBaseControlVideo::get_SourceLeft(long *pSourceLeft) { CheckPointer(pSourceLeft,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect;
GetSourceRect(&SourceRect); *pSourceLeft = SourceRect.left; return NOERROR; }
// Set the source width, we get the current source rectangle and then update
// the right position to be the left position (thereby keeping it constant)
// plus the new source width we are passed in (it expands to the right)
STDMETHODIMP CBaseControlVideo::put_SourceWidth(long SourceWidth) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect; GetSourceRect(&SourceRect); SourceRect.right = SourceRect.left + SourceWidth;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect); if (FAILED(hr)) { return hr; }
// Now set the source rectangle
hr = SetSourceRect(&SourceRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the current source width
STDMETHODIMP CBaseControlVideo::get_SourceWidth(long *pSourceWidth) { CheckPointer(pSourceWidth,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect;
GetSourceRect(&SourceRect); *pSourceWidth = WIDTH(&SourceRect); return NOERROR; }
// Set the source top position - changing this property does not affect the
// current source height. So changing this shunts the source rectangle up and
// down appropriately. Changing the height complements this functionality by
// keeping the top position constant and simply changing the source height
STDMETHODIMP CBaseControlVideo::put_SourceTop(long SourceTop) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect; GetSourceRect(&SourceRect); SourceRect.bottom = SourceTop + HEIGHT(&SourceRect); SourceRect.top = SourceTop;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect); if (FAILED(hr)) { return hr; }
// Now set the source rectangle
hr = SetSourceRect(&SourceRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the current top position
STDMETHODIMP CBaseControlVideo::get_SourceTop(long *pSourceTop) { CheckPointer(pSourceTop,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect;
GetSourceRect(&SourceRect); *pSourceTop = SourceRect.top; return NOERROR; }
// Set the source height
STDMETHODIMP CBaseControlVideo::put_SourceHeight(long SourceHeight) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect; GetSourceRect(&SourceRect); SourceRect.bottom = SourceRect.top + SourceHeight;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect); if (FAILED(hr)) { return hr; }
// Now set the source rectangle
hr = SetSourceRect(&SourceRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the current source height
STDMETHODIMP CBaseControlVideo::get_SourceHeight(long *pSourceHeight) { CheckPointer(pSourceHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT SourceRect;
GetSourceRect(&SourceRect); *pSourceHeight = HEIGHT(&SourceRect); return NOERROR; }
// Set the target left position, the target rectangle we get back from the
// window object is a true rectangle in left,top,right and bottom positions
// so all we have to do is to update the left position and pass it back. We
// must keep the current width constant when we're updating this property
STDMETHODIMP CBaseControlVideo::put_DestinationLeft(long DestinationLeft) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect; GetTargetRect(&DestinationRect); DestinationRect.right = DestinationLeft + WIDTH(&DestinationRect); DestinationRect.left = DestinationLeft;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; }
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the left position for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationLeft(long *pDestinationLeft) { CheckPointer(pDestinationLeft,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect;
GetTargetRect(&DestinationRect); *pDestinationLeft = DestinationRect.left; return NOERROR; }
// Set the destination width
STDMETHODIMP CBaseControlVideo::put_DestinationWidth(long DestinationWidth) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect; GetTargetRect(&DestinationRect); DestinationRect.right = DestinationRect.left + DestinationWidth;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; }
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the width for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationWidth(long *pDestinationWidth) { CheckPointer(pDestinationWidth,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect;
GetTargetRect(&DestinationRect); *pDestinationWidth = WIDTH(&DestinationRect); return NOERROR; }
// Set the target top position - changing this property does not affect the
// current target height. So changing this shunts the target rectangle up and
// down appropriately. Changing the height complements this functionality by
// keeping the top position constant and simply changing the target height
STDMETHODIMP CBaseControlVideo::put_DestinationTop(long DestinationTop) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect; GetTargetRect(&DestinationRect); DestinationRect.bottom = DestinationTop + HEIGHT(&DestinationRect); DestinationRect.top = DestinationTop;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; }
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the top position for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationTop(long *pDestinationTop) { CheckPointer(pDestinationTop,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect;
GetTargetRect(&DestinationRect); *pDestinationTop = DestinationRect.top; return NOERROR; }
// Set the destination height
STDMETHODIMP CBaseControlVideo::put_DestinationHeight(long DestinationHeight) { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect; GetTargetRect(&DestinationRect); DestinationRect.bottom = DestinationRect.top + DestinationHeight;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; }
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return the height for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationHeight(long *pDestinationHeight) { CheckPointer(pDestinationHeight,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); RECT DestinationRect;
GetTargetRect(&DestinationRect); *pDestinationHeight = HEIGHT(&DestinationRect); return NOERROR; }
// Reset the source rectangle to the full video dimensions
STDMETHODIMP CBaseControlVideo::SetDefaultSourcePosition() { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); HRESULT hr = SetDefaultSourceRect(); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return S_OK if we're using the default source otherwise S_FALSE
STDMETHODIMP CBaseControlVideo::IsUsingDefaultSource() { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); return IsDefaultSourceRect(); }
// Reset the video renderer to use the entire playback area
STDMETHODIMP CBaseControlVideo::SetDefaultDestinationPosition() { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); HRESULT hr = SetDefaultTargetRect(); if (FAILED(hr)) { return hr; } return OnUpdateRectangles(); }
// Return S_OK if we're using the default target otherwise S_FALSE
STDMETHODIMP CBaseControlVideo::IsUsingDefaultDestination() { CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); return IsDefaultTargetRect(); }
// Return a copy of the current image in the video renderer
STDMETHODIMP CBaseControlVideo::GetCurrentImage(long *pBufferSize,long *pVideoImage) { CheckPointer(pBufferSize,E_POINTER); CheckConnected(m_pPin,VFW_E_NOT_CONNECTED); CAutoLock cInterfaceLock(m_pInterfaceLock); FILTER_STATE State;
// Make sure we are in a paused state
if (pVideoImage != NULL) { m_pFilter->GetState(0,&State); if (State != State_Paused) { return VFW_E_NOT_PAUSED; } return GetStaticImage(pBufferSize,pVideoImage); }
// Just return the memory required
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; RECT SourceRect; GetSourceRect(&SourceRect); return GetImageSize(pVideoInfo,pBufferSize,&SourceRect); }
// An application has two ways of using GetCurrentImage, one is to pass a real
// buffer which should be filled with the current image. The other is to pass
// a NULL buffer pointer which is interpreted as asking us to return how much
// memory is required for the image. The constraints for when the latter can
// be called are much looser. To calculate the memory required we synthesize
// a VIDEOINFO that takes into account the source rectangle that's being used
HRESULT CBaseControlVideo::GetImageSize(VIDEOINFOHEADER *pVideoInfo, LONG *pBufferSize, RECT *pSourceRect) { NOTE("Entering GetImageSize"); ASSERT(pSourceRect);
// Check we have the correct input parameters
if (pSourceRect == NULL || pVideoInfo == NULL || pBufferSize == NULL) {
return E_UNEXPECTED; }
// Is the data format compatible
if (pVideoInfo->bmiHeader.biCompression != BI_RGB) { if (pVideoInfo->bmiHeader.biCompression != BI_BITFIELDS) { return E_INVALIDARG; } }
ASSERT(IsRectEmpty(pSourceRect) == FALSE);
BITMAPINFOHEADER bih; bih.biWidth = WIDTH(pSourceRect); bih.biHeight = HEIGHT(pSourceRect); bih.biBitCount = pVideoInfo->bmiHeader.biBitCount; LONG Size = DIBSIZE(bih); Size += GetBitmapFormatSize(HEADER(pVideoInfo)) - SIZE_PREHEADER; *pBufferSize = Size;
return NOERROR; }
// Given an IMediaSample containing a linear buffer with an image and a type
// describing the bitmap make a rendering of the image into the output buffer
// This may be called by derived classes who render typical video images to
// handle the IBasicVideo GetCurrentImage method. The pVideoImage pointer may
// be NULL when passed to GetCurrentImage in which case GetImageSize will be
// called instead, which will just do the calculation of the memory required
HRESULT CBaseControlVideo::CopyImage(IMediaSample *pMediaSample, VIDEOINFOHEADER *pVideoInfo, LONG *pBufferSize, BYTE *pVideoImage, RECT *pSourceRect) { NOTE("Entering CopyImage"); ASSERT(pSourceRect); BYTE *pCurrentImage;
// Check we have an image to copy
if (pMediaSample == NULL || pSourceRect == NULL || pVideoInfo == NULL || pVideoImage == NULL || pBufferSize == NULL) {
return E_UNEXPECTED; }
// Is the data format compatible
if (pVideoInfo->bmiHeader.biCompression != BI_RGB) { if (pVideoInfo->bmiHeader.biCompression != BI_BITFIELDS) { return E_INVALIDARG; } }
ASSERT(IsRectEmpty(pSourceRect) == FALSE);
BITMAPINFOHEADER bih; bih.biWidth = WIDTH(pSourceRect); bih.biHeight = HEIGHT(pSourceRect); bih.biBitCount = pVideoInfo->bmiHeader.biBitCount; LONG Size = GetBitmapFormatSize(HEADER(pVideoInfo)) - SIZE_PREHEADER; LONG Total = Size + DIBSIZE(bih);
// Make sure we have a large enough buffer
if (*pBufferSize < Total) { return E_OUTOFMEMORY; }
// Copy the BITMAPINFO
CopyMemory((PVOID)pVideoImage, (PVOID)&pVideoInfo->bmiHeader, Size); ((BITMAPINFOHEADER *)pVideoImage)->biWidth = WIDTH(pSourceRect); ((BITMAPINFOHEADER *)pVideoImage)->biHeight = HEIGHT(pSourceRect); ((BITMAPINFOHEADER *)pVideoImage)->biSizeImage = DIBSIZE(bih); BYTE *pImageData = pVideoImage + Size;
// Get the pointer to it's image data
HRESULT hr = pMediaSample->GetPointer(&pCurrentImage); if (FAILED(hr)) { return hr; }
// Now we are ready to start copying the source scan lines
LONG ScanLine = (pVideoInfo->bmiHeader.biBitCount / 8) * WIDTH(pSourceRect); LONG LinesToSkip = pVideoInfo->bmiHeader.biHeight; LinesToSkip -= pSourceRect->top + HEIGHT(pSourceRect); pCurrentImage += LinesToSkip * DIBWIDTHBYTES(pVideoInfo->bmiHeader); pCurrentImage += pSourceRect->left * (pVideoInfo->bmiHeader.biBitCount / 8);
// Even money on this GP faulting sometime...
for (LONG Line = 0;Line < HEIGHT(pSourceRect);Line++) { CopyMemory((PVOID)pImageData, (PVOID)pCurrentImage, ScanLine); pImageData += DIBWIDTHBYTES(*(BITMAPINFOHEADER *)pVideoImage); pCurrentImage += DIBWIDTHBYTES(pVideoInfo->bmiHeader); } return NOERROR; }
// Called when we change media types either during connection or dynamically
// We inform the filter graph and therefore the application that the video
// size may have changed, we don't bother looking to see if it really has as
// we leave that to the application - the dimensions are the event parameters
HRESULT CBaseControlVideo::OnVideoSizeChange() { // Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat(); if (pVideoInfo == NULL) return E_OUTOFMEMORY; WORD Width = (WORD) pVideoInfo->bmiHeader.biWidth; WORD Height = (WORD) pVideoInfo->bmiHeader.biHeight;
return m_pFilter->NotifyEvent(EC_VIDEO_SIZE_CHANGED, MAKELPARAM(Width,Height), MAKEWPARAM(0,0)); }
// Set the video source rectangle. We must check the source rectangle against
// the actual video dimensions otherwise when we come to draw the pictures we
// get access violations as GDI tries to touch data outside of the image data
// Although we store the rectangle in left, top, right and bottom coordinates
// instead of left, top, width and height as OLE uses we do take into account
// that the rectangle is used up to, but not including, the right column and
// bottom row of pixels, see the Win32 documentation on RECT for more details
HRESULT CBaseControlVideo::CheckSourceRect(RECT *pSourceRect) { CheckPointer(pSourceRect,E_POINTER); LONG Width,Height; GetVideoSize(&Width,&Height);
// Check the coordinates are greater than zero
// and that the rectangle is valid (left<right, top<bottom)
if ((pSourceRect->left >= pSourceRect->right) || (pSourceRect->left < 0) || (pSourceRect->top >= pSourceRect->bottom) || (pSourceRect->top < 0)) {
return E_INVALIDARG; }
// Check the coordinates are less than the extents
if ((pSourceRect->right > Width) || (pSourceRect->bottom > Height)) {
return E_INVALIDARG; } return NOERROR; }
// Check the target rectangle has some valid coordinates, which amounts to
// little more than checking the destination rectangle isn't empty. Derived
// classes may call this when they have their SetTargetRect method called to
// check the rectangle validity, we do not update the rectangles passed in
// Although we store the rectangle in left, top, right and bottom coordinates
// instead of left, top, width and height as OLE uses we do take into account
// that the rectangle is used up to, but not including, the right column and
// bottom row of pixels, see the Win32 documentation on RECT for more details
HRESULT CBaseControlVideo::CheckTargetRect(RECT *pTargetRect) { // Check the pointer is valid
if (pTargetRect == NULL) { return E_POINTER; }
// These overflow the WIDTH and HEIGHT checks
if (pTargetRect->left > pTargetRect->right || pTargetRect->top > pTargetRect->bottom) { return E_INVALIDARG; }
// Check the rectangle has valid coordinates
if (WIDTH(pTargetRect) <= 0 || HEIGHT(pTargetRect) <= 0) { return E_INVALIDARG; }
ASSERT(IsRectEmpty(pTargetRect) == FALSE); return NOERROR; }
|