|
|
/*++
Copyright (c) 1993 Microsoft Corporation
Module Name:
vjslip.c
Abstract:
Author:
Thomas J. Dimitri (TommyD)
Environment:
Revision History:
--*/
#include "wan.h"
#define __FILE_SIG__ VJ_FILESIG
#if 0
NPAGED_LOOKASIDE_LIST VJCtxList; // List of free vj context descs
#endif
#define INCR(counter) ++comp->counter;
// A.2 Compression
//
// This routine looks daunting but isn't really. The code splits into four
// approximately equal sized sections: The first quarter manages a
// circularly linked, least-recently-used list of `active' TCP
// connections./47/ The second figures out the sequence/ack/window/urg
// changes and builds the bulk of the compressed packet. The third handles
// the special-case encodings. The last quarter does packet ID and
// connection ID encoding and replaces the original packet header with the
// compressed header.
//
// The arguments to this routine are a pointer to a packet to be
// compressed, a pointer to the compression state data for the serial line,
// and a flag which enables or disables connection id (C bit) compression.
//
// Compression is done `in-place' so, if a compressed packet is created,
// both the start address and length of the incoming packet (the off and
// len fields of m) will be updated to reflect the removal of the original
// header and its replacement by the compressed header. If either a
// compressed or uncompressed packet is created, the compression state is
// updated. This routines returns the packet type for the transmit framer
// (TYPE_IP, TYPE_UNCOMPRESSED_TCP or TYPE_COMPRESSED_TCP).
//
// Because 16 and 32 bit arithmetic is done on various header fields, the
// incoming IP packet must be aligned appropriately (e.g., on a SPARC, the
// IP header is aligned on a 32-bit boundary). Substantial changes would
// have to be made to the code below if this were not true (and it would
// probably be cheaper to byte copy the incoming header to somewhere
// correctly aligned than to make those changes).
//
// Note that the outgoing packet will be aligned arbitrarily (e.g., it
// could easily start on an odd-byte boundary).
//
UCHAR sl_compress_tcp( PUUCHAR UNALIGNED *m_off, // Frame start (points to IP header)
ULONG *m_len, // Length of entire frame
ULONG *precomph_len, // Length of TCP/IP header pre-comp
ULONG *postcomph_len, // Length of TCP/IP header post-comp
struct slcompress *comp, // Compression struct for this link
ULONG compress_cid) { // Compress connection id boolean
struct cstate *cs = comp->last_cs->cs_next; struct ip_v4 UNALIGNED *ip = (struct ip_v4 UNALIGNED *)*m_off; struct ip_v4 UNALIGNED *csip; ULONG hlen = ip->ip_hl & 0x0F; // last 4 bits are the length
struct tcphdr UNALIGNED *oth; /* last TCP header */ struct tcphdr UNALIGNED *th; /* current TCP header */
// ----------------------------
// 47. The two most common operations on the connection list are a `find'
// that terminates at the first entry (a new packet for the most recently
// used connection) and moving the last entry on the list to the head of
// the list (the first packet from a new connection). A circular list
// efficiently handles these two operations.
ULONG deltaS, deltaA; /* general purpose temporaries */ ULONG changes = 0; /* change mask */ UCHAR new_seq[16]; /* changes from last to current */ UCHAR UNALIGNED *cp = new_seq; USHORT ip_len;
/*
* Bail if this is an IP fragment or if the TCP packet isn't * `compressible' (i.e., ACK isn't set or some other control bit is * set). Or if it does not contain the TCP protocol. */ if ((ip->ip_off & 0xff3f) || *m_len < 40 || ip->ip_p != IPPROTO_TCP) return (TYPE_IP);
th = (struct tcphdr UNALIGNED *) & ((ULONG UNALIGNED *) ip)[hlen]; if ((th->th_flags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) != TH_ACK) return (TYPE_IP);
//
// The TCP/IP stack is propagating the padding bytes that it
// is receiving off of the LAN. This shows up here as a
// packet that has a length that is greater than the IP datagram
// length. We will add this work around for now.
//
if (*m_len > ntohs(ip->ip_len)) { *m_len = ntohs(ip->ip_len); }
/*
* Packet is compressible -- we're going to send either a * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way we need to * locate (or create) the connection state. Special case the most * recently used connection since it's most likely to be used again & * we don't have to do any reordering if it's used. */
//
// Keep stats here
//
INCR(OutPackets);
csip = (struct ip_v4 UNALIGNED*)&cs->cs_ip;
if (ip->ip_src.s_addr != csip->ip_src.s_addr || ip->ip_dst.s_addr != csip->ip_dst.s_addr || *(ULONG UNALIGNED *) th != ((ULONG UNALIGNED *) csip)[csip->ip_hl & 0x0F]) {
/*
* Wasn't the first -- search for it. * * States are kept in a circularly linked list with last_cs * pointing to the end of the list. The list is kept in lru * order by moving a state to the head of the list whenever * it is referenced. Since the list is short and, * empirically, the connection we want is almost always near * the front, we locate states via linear search. If we * don't find a state for the datagram, the oldest state is * (re-)used. */ struct cstate *lcs; struct cstate *lastcs = comp->last_cs;
do { lcs = cs; cs = cs->cs_next; INCR(OutSearches);
csip = (struct ip_v4 UNALIGNED*)&cs->cs_ip;
if (ip->ip_src.s_addr == csip->ip_src.s_addr && ip->ip_dst.s_addr == csip->ip_dst.s_addr && *(ULONG UNALIGNED *) th == ((ULONG UNALIGNED *) csip)[cs->cs_ip.ip_hl & 0x0F])
goto found;
} while (cs != lastcs);
/*
* Didn't find it -- re-use oldest cstate. Send an * uncompressed packet that tells the other side what * connection number we're using for this conversation. Note * that since the state list is circular, the oldest state * points to the newest and we only need to set last_cs to * update the lru linkage. */
INCR(OutMisses);
//
// A miss!
//
comp->last_cs = lcs; hlen += (th->th_off >> 4); hlen <<= 2;
if (hlen > *m_len) { return(TYPE_IP); }
goto uncompressed;
found: /* Found it -- move to the front on the connection list. */ if (cs == lastcs) comp->last_cs = lcs; else { lcs->cs_next = cs->cs_next; cs->cs_next = lastcs->cs_next; lastcs->cs_next = cs; } }
/*
* Make sure that only what we expect to change changed. The first * line of the `if' checks the IP protocol version, header length & * type of service. The 2nd line checks the "Don't fragment" bit. * The 3rd line checks the time-to-live and protocol (the protocol * check is unnecessary but costless). The 4th line checks the TCP * header length. The 5th line checks IP options, if any. The 6th * line checks TCP options, if any. If any of these things are * different between the previous & current datagram, we send the * current datagram `uncompressed'. */ oth = (struct tcphdr UNALIGNED *) & ((ULONG UNALIGNED *) csip)[hlen]; deltaS = hlen; hlen += (th->th_off >> 4); hlen <<= 2;
//
// Bug fix? It's in cslip.tar.Z
//
if (hlen > *m_len) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ,("Bad TCP packet length")); return(TYPE_IP); }
if (((USHORT UNALIGNED *) ip)[0] != ((USHORT UNALIGNED *) csip)[0] || ((USHORT UNALIGNED *) ip)[3] != ((USHORT UNALIGNED *) csip)[3] || ((USHORT UNALIGNED *) ip)[4] != ((USHORT UNALIGNED *) csip)[4] || (th->th_off >> 4) != (oth->th_off >> 4) || (deltaS > 5 && memcmp((UCHAR UNALIGNED *)(ip + 1), (UCHAR UNALIGNED *)(csip + 1), (deltaS - 5) << 2)) || ((th->th_off >> 4) > 5 && memcmp((UCHAR UNALIGNED *)(th + 1), (UCHAR UNALIGNED *)(oth + 1), ((th->th_off >> 4) - 5) << 2))) {
goto uncompressed; }
/*
* Figure out which of the changing fields changed. The receiver * expects changes in the order: urgent, window, ack, seq. */ if (th->th_flags & TH_URG) { deltaS = ntohs(th->th_urp); ENCODEZ(deltaS); changes |= NEW_U; } else if (th->th_urp != oth->th_urp) { /*
* argh! URG not set but urp changed -- a sensible * implementation should never do this but RFC793 doesn't * prohibit the change so we have to deal with it. */ goto uncompressed; }
if (deltaS = (USHORT) (ntohs(th->th_win) - ntohs(oth->th_win))) { ENCODE(deltaS); changes |= NEW_W; } if (deltaA = ntohl(th->th_ack) - ntohl(oth->th_ack)) { if (deltaA > 0xffff) { goto uncompressed; }
ENCODE(deltaA); changes |= NEW_A; } if (deltaS = ntohl(th->th_seq) - ntohl(oth->th_seq)) { if (deltaS > 0xffff) { goto uncompressed; }
ENCODE(deltaS); changes |= NEW_S; }
ip_len = ntohs(csip->ip_len);
/*
* Look for the special-case encodings. */ switch (changes) {
case 0: /*
* Nothing changed. If this packet contains data and the last * one didn't, this is probably a data packet following an * ack (normal on an interactive connection) and we send it * compressed. Otherwise it's probably a retransmit, * retransmitted ack or window probe. Send it uncompressed * in case the other side missed the compressed version. */ if (ip->ip_len != csip->ip_len && ip_len == hlen)
break;
/* (fall through) */
case SPECIAL_I: case SPECIAL_D: /*
* Actual changes match one of our special case encodings -- * send packet uncompressed. */ goto uncompressed;
case NEW_S | NEW_A: if (deltaS == deltaA && deltaS == (ip_len - hlen)) { /* special case for echoed terminal traffic */ changes = SPECIAL_I; cp = new_seq; } break;
case NEW_S: if (deltaS == (ip_len - hlen)) { /* special case for data xfer */ changes = SPECIAL_D; cp = new_seq; } break; }
deltaS = ntohs(ip->ip_id) - ntohs(csip->ip_id);
if (deltaS != 1) { ENCODEZ(deltaS); changes |= NEW_I; }
if (th->th_flags & TH_PUSH) changes |= TCP_PUSH_BIT; /*
* Grab the cksum before we overwrite it below. Then update our * state with this packet's header. */ deltaA = (th->th_sumhi << 8) + th->th_sumlo;
NdisMoveMemory((UCHAR UNALIGNED *)csip, (UCHAR UNALIGNED *)ip, hlen);
/*
* We want to use the original packet as our compressed packet. (cp - * new_seq) is the number of bytes we need for compressed sequence * numbers. In addition we need one byte for the change mask, one * for the connection id and two for the tcp checksum. So, (cp - * new_seq) + 4 bytes of header are needed. hlen is how many bytes * of the original packet to toss so subtract the two to get the new * packet size. */ deltaS = (ULONG)(cp - new_seq); cp = (UCHAR UNALIGNED *) ip; *precomph_len = hlen;
if (compress_cid == 0 || comp->last_xmit != cs->cs_id) { comp->last_xmit = cs->cs_id; hlen -= deltaS + 4; *postcomph_len = deltaS + 4; cp += hlen; *cp++ = (UCHAR)(changes | NEW_C); *cp++ = cs->cs_id; } else { hlen -= deltaS + 3; *postcomph_len = deltaS + 3; cp += hlen; *cp++ = (UCHAR)changes; }
*m_len -= hlen; *m_off += hlen; *cp++ = (UCHAR)(deltaA >> 8); *cp++ = (UCHAR)(deltaA);
NdisMoveMemory((UCHAR UNALIGNED *)cp, (UCHAR UNALIGNED *)new_seq, deltaS);
INCR(OutCompressed); return (TYPE_COMPRESSED_TCP);
uncompressed: /*
* Update connection state cs & send uncompressed packet * ('uncompressed' means a regular ip/tcp packet but with the * 'conversation id' we hope to use on future compressed packets in * the protocol field). */
NdisMoveMemory((UCHAR UNALIGNED *)csip, (UCHAR UNALIGNED *)ip, hlen);
ip->ip_p = cs->cs_id; comp->last_xmit = cs->cs_id; return (TYPE_UNCOMPRESSED_TCP); }
// A.3 Decompression
//
// This routine decompresses a received packet. It is called with a
// pointer to the packet, the packet length and type, and a pointer to the
// compression state structure for the incoming serial line. It returns a
// pointer to the resulting packet or zero if there were errors in the
// incoming packet. If the packet is COMPRESSED_TCP or UNCOMPRESSED_TCP,
// the compression state will be updated.
//
// The new packet will be constructed in-place. That means that there must
// be 128 bytes of free space in front of bufp to allow room for the
// reconstructed IP and TCP headers. The reconstructed packet will be
// aligned on a 32-bit boundary.
//
//LONG
//sl_uncompress_tcp(
// PUUCHAR UNALIGNED *bufp,
// LONG len,
// UCHAR type,
// struct slcompress *comp) {
LONG sl_uncompress_tcp( PUUCHAR UNALIGNED *InBuffer, PLONG InLength, UCHAR UNALIGNED *OutBuffer, PLONG OutLength, UCHAR type, struct slcompress *comp ) { UCHAR UNALIGNED *cp; LONG inlen; LONG hlen, changes; struct tcphdr UNALIGNED *th; struct cstate *cs; struct ip_v4 UNALIGNED *ip;
inlen = *InLength;
switch (type) {
case TYPE_ERROR: default: NdisWanDbgOut(DBG_FAILURE, DBG_VJ, ("Packet transmission error type 0x%.2x",type)); goto bad;
case TYPE_IP: break;
case TYPE_UNCOMPRESSED_TCP: /*
* Locate the saved state for this connection. If the state * index is legal, clear the 'discard' flag. */ ip = (struct ip_v4 UNALIGNED *) *InBuffer; if (ip->ip_p >= comp->MaxStates) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ, ("Max state exceeded %u", ip->ip_p)); goto bad; }
cs = &comp->rstate[comp->last_recv = ip->ip_p]; comp->flags &= ~SLF_TOSS;
/*
* Restore the IP protocol field then save a copy of this * packet header. (The checksum is zeroed in the copy so we * don't have to zero it each time we process a compressed * packet. */ hlen = ip->ip_hl & 0x0F; hlen += ((struct tcphdr UNALIGNED *) & ((ULONG UNALIGNED *) ip)[hlen])->th_off >> 4; hlen <<= 2;
if (hlen > inlen) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ, ("recv'd runt uncompressed packet %d %d", hlen, inlen)); goto bad; }
NdisMoveMemory((PUCHAR)&cs->cs_ip, (PUCHAR)ip, hlen);
cs->cs_ip.ip_p = IPPROTO_TCP;
NdisMoveMemory((PUCHAR)OutBuffer, (PUCHAR)&cs->cs_ip, hlen);
cs->cs_ip.ip_sum = 0; cs->cs_hlen = (USHORT)hlen;
*InBuffer = (PUCHAR)ip + hlen; *InLength = inlen - hlen; *OutLength = hlen;
INCR(InUncompressed); return (inlen);
case TYPE_COMPRESSED_TCP: break; }
/* We've got a compressed packet. */ INCR(InCompressed); cp = *InBuffer; changes = *cp++;
if (changes & NEW_C) { /*
* Make sure the state index is in range, then grab the * state. If we have a good state index, clear the 'discard' * flag. */ if (*cp >= comp->MaxStates) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ, ("MaxState of %u too big", *cp)); goto bad; }
comp->flags &= ~SLF_TOSS; comp->last_recv = *cp++; } else { /*
* This packet has an implicit state index. If we've had a * line error since the last time we got an explicit state * index, we have to toss the packet. */ if (comp->flags & SLF_TOSS) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ,("Packet has state index, have to toss it")); INCR(InTossed); return (0); } }
/*
* Find the state then fill in the TCP checksum and PUSH bit. */
cs = &comp->rstate[comp->last_recv];
//
// If there was a line error and we did not get notified we could
// miss a TYPE_UNCOMPRESSED_TCP which would leave us with an
// un-init'd cs!
//
if (cs->cs_hlen == 0) { NdisWanDbgOut(DBG_FAILURE, DBG_VJ,("Un-Init'd state!")); goto bad; }
hlen = (cs->cs_ip.ip_hl & 0x0F) << 2; th = (struct tcphdr UNALIGNED *) & ((UCHAR UNALIGNED *) &cs->cs_ip)[hlen];
th->th_sumhi = cp[0]; th->th_sumlo = cp[1];
cp += 2; if (changes & TCP_PUSH_BIT) th->th_flags |= TH_PUSH; else th->th_flags &= ~TH_PUSH;
/*
* Fix up the state's ack, seq, urg and win fields based on the * changemask. */ switch (changes & SPECIALS_MASK) { case SPECIAL_I: { UCHAR UNALIGNED * piplen=(UCHAR UNALIGNED *)&(cs->cs_ip.ip_len); UCHAR UNALIGNED * ptcplen; ULONG tcplen; ULONG i;
i = ((piplen[0] << 8) + piplen[1]) - cs->cs_hlen;
// th->th_ack = htonl(ntohl(th->th_ack) + i);
ptcplen=(UCHAR UNALIGNED *)&(th->th_ack); tcplen=(ptcplen[0] << 24) + (ptcplen[1] << 16) + (ptcplen[2] << 8) + ptcplen[3] + i; ptcplen[3]=(UCHAR)(tcplen); ptcplen[2]=(UCHAR)(tcplen >> 8); ptcplen[1]=(UCHAR)(tcplen >> 16); ptcplen[0]=(UCHAR)(tcplen >> 24);
// th->th_seq = htonl(ntohl(th->th_seq) + i);
ptcplen=(UCHAR UNALIGNED *)&(th->th_seq); tcplen=(ptcplen[0] << 24) + (ptcplen[1] << 16) + (ptcplen[2] << 8) + ptcplen[3] + i; ptcplen[3]=(UCHAR)(tcplen); ptcplen[2]=(UCHAR)(tcplen >> 8); ptcplen[1]=(UCHAR)(tcplen >> 16); ptcplen[0]=(UCHAR)(tcplen >> 24);
} break;
case SPECIAL_D: { // th->th_seq = htonl(ntohl(th->th_seq) + ntohs(cs->cs_ip.ip_len)
// - cs->cs_hlen);
UCHAR UNALIGNED *piplen=(UCHAR UNALIGNED *)&(cs->cs_ip.ip_len); UCHAR UNALIGNED *ptcplen; ULONG tcplen; ULONG i;
i = ((piplen[0] << 8) + piplen[1]) - cs->cs_hlen;
ptcplen=(UCHAR UNALIGNED *)&(th->th_seq); tcplen=(ptcplen[0] << 24) + (ptcplen[1] << 16) + (ptcplen[2] << 8) + ptcplen[3] + i;
ptcplen[3]=(UCHAR)(tcplen); ptcplen[2]=(UCHAR)(tcplen >> 8); ptcplen[1]=(UCHAR)(tcplen >> 16); ptcplen[0]=(UCHAR)(tcplen >> 24);
}
break;
default: if (changes & NEW_U) { th->th_flags |= TH_URG; DECODEU(th->th_urp) } else th->th_flags &= ~TH_URG;
if (changes & NEW_W) DECODES(th->th_win); if (changes & NEW_A) DECODEL(th->th_ack) if (changes & NEW_S) DECODEL(th->th_seq)
break; } /* Update the IP ID */ if (changes & NEW_I) { DECODES(cs->cs_ip.ip_id)
} else {
USHORT id; UCHAR UNALIGNED *pid = (UCHAR UNALIGNED *)&(cs->cs_ip.ip_id);
// cs->cs_ip.ip_id = htons(ntohs(cs->cs_ip.ip_id) + 1);
id=(pid[0] << 8) + pid[1] + 1; pid[0]=(UCHAR)(id >> 8); pid[1]=(UCHAR)(id); }
/*
* At this point, cp points to the first byte of data in the packet. * If we're not aligned on a 4-byte boundary, copy the data down so * the IP & TCP headers will be aligned. Then back up cp by the * TCP/IP header length to make room for the reconstructed header (we * assume the packet we were handed has enough space to prepend 128 * bytes of header). Adjust the lenth to account for the new header * & fill in the IP total length. */ // len -= (cp - *bufp);
inlen -= (ULONG)(cp - *InBuffer);
if (inlen < 0) { /*
* we must have dropped some characters (crc should detect * this but the old slip framing won't) */ NdisWanDbgOut(DBG_FAILURE, DBG_VJ,("len has dropped below 0!")); goto bad; } //
// Who Cares about 4 byte alignement! It's just a useless big copy!
//
// if ((ULONG) cp & 3) {
// if (len > 0)
// //
// // BUG BUG we want OVBCOPY..
// //
// NdisMoveMemory(
// (PUCHAR)((ULONG) cp & ~3),
// cp,
// len);
// cp = (PUCHAR) ((ULONG) cp & ~3);
// }
// cp -= cs->cs_hlen;
// len += cs->cs_hlen;
// cs->cs_ip.ip_len = htons(len);
cs->cs_ip.ip_len = htons(inlen + cs->cs_hlen);
// NdisMoveMemory(
// (PUCHAR)cp,
// (PUCHAR)&cs->cs_ip,
// cs->cs_hlen);
NdisMoveMemory((PUCHAR)OutBuffer, (PUCHAR)&cs->cs_ip, cs->cs_hlen);
// *bufp = cp;
*InBuffer = cp; *InLength = inlen; *OutLength = cs->cs_hlen;
/* recompute the ip header checksum */ { // USHORT UNALIGNED * bp = (USHORT UNALIGNED *) cp;
USHORT UNALIGNED * bp = (USHORT UNALIGNED *) OutBuffer;
for (changes = 0; hlen > 0; hlen -= 2) changes += *bp++;
changes = (changes & 0xffff) + (changes >> 16); changes = (changes & 0xffff) + (changes >> 16); // ((struct ip_v4 UNALIGNED *) cp)->ip_sum = (USHORT)~changes;
((struct ip_v4 UNALIGNED *) OutBuffer)->ip_sum = (USHORT)~changes; }
return (inlen + cs->cs_hlen);
bad: comp->flags |= SLF_TOSS; INCR(InErrors); return (0); }
// A.4 Initialization
//
// This routine initializes the state structure for both the transmit and
// receive halves of some serial line. It must be called each time the
// line is brought up.
//
VOID WanInitVJ( VOID ) { #if 0
NdisInitializeNPagedLookasideList(&VJCtxList, NULL, NULL, 0, sizeof(slcompress), VJCTX_TAG, 0); #endif
}
VOID WanDeleteVJ( VOID ) { #if 0
NdisDeleteNPagedLookasideList(&VJCtxList); #endif
}
NDIS_STATUS sl_compress_init( struct slcompress **retcomp, UCHAR MaxStates ) { ULONG i; struct cstate *tstate; // = comp->tstate;
struct slcompress *comp;
comp = *retcomp;
//
// Do we need to allocate memory for this bundle
//
if (comp == NULL) {
NdisWanAllocateMemory(&comp, sizeof(slcompress), VJCOMPRESS_TAG);
//
// If there was no memory to allocate
//
if (comp == NULL) { return(NDIS_STATUS_RESOURCES); } }
tstate = comp->tstate;
/*
* Clean out any junk left from the last time line was used. */ NdisZeroMemory( (PUCHAR) comp, sizeof(*comp));
/*
* Link the transmit states into a circular list. */ for (i = MaxStates - 1; i > 0; --i) { tstate[i].cs_id = (UCHAR)i; tstate[i].cs_next = &tstate[i - 1]; }
tstate[0].cs_next = &tstate[MaxStates - 1]; tstate[0].cs_id = 0; comp->last_cs = &tstate[0];
/*
* Make sure we don't accidentally do CID compression * (assumes MAX_VJ_STATES < 255). */ comp->last_recv = 255; comp->last_xmit = 255; comp->flags = SLF_TOSS; comp->MaxStates=MaxStates;
*retcomp = comp;
return (NDIS_STATUS_SUCCESS); }
VOID sl_compress_terminate( struct slcompress **comp ) { if (*comp != NULL) { NdisWanFreeMemory(*comp); *comp = NULL; } }
// A.5 Berkeley Unix dependencies
//
// Note: The following is of interest only if you are trying to bring the
// sample code up on a system that is not derived from 4BSD (Berkeley
// Unix).
//
// The code uses the normal Berkeley Unix header files (from
// /usr/include/netinet) for definitions of the structure of IP and TCP
// headers. The structure tags tend to follow the protocol RFCs closely
// and should be obvious even if you do not have access to a 4BSD
// system./48/
//
// ----------------------------
// 48. In the event they are not obvious, the header files (and all the
// Berkeley networking code) can be anonymous ftp'd from host
//
//
// The macro BCOPY(src, dst, amt) is invoked to copy amt bytes from src to
// dst. In BSD, it translates into a call to BCOPY. If you have the
// misfortune to be running System-V Unix, it can be translated into a call
// to memcpy. The macro OVBCOPY(src, dst, amt) is used to copy when src
// and dst overlap (i.e., when doing the 4-byte alignment copy). In the
// BSD kernel, it translates into a call to ovbcopy. Since AT&T botched
// the definition of memcpy, this should probably translate into a copy
// loop under System-V.
//
// The macro BCMP(src, dst, amt) is invoked to compare amt bytes of src and
// dst for equality. In BSD, it translates into a call to bcmp. In
// System-V, it can be translated into a call to memcmp or you can write a
// routine to do the compare. The routine should return zero if all bytes
// of src and dst are equal and non-zero otherwise.
//
// The routine ntohl(dat) converts (4 byte) long dat from network byte
// order to host byte order. On a reasonable cpu this can be the no-op
// macro:
// #define ntohl(dat) (dat)
//
// On a Vax or IBM PC (or anything with Intel byte order), you will have to
// define a macro or routine to rearrange bytes.
//
// The routine ntohs(dat) is like ntohl but converts (2 byte) shorts
// instead of longs. The routines htonl(dat) and htons(dat) do the inverse
// transform (host to network byte order) for longs and shorts.
//
// A struct mbuf is used in the call to sl_compress_tcp because that
// routine needs to modify both the start address and length if the
// incoming packet is compressed. In BSD, an mbuf is the kernel's buffer
// management structure. If other systems, the following definition should
// be sufficient:
//
// struct mbuf {
// UCHAR *m_off; /* pointer to start of data */
// int m_len; /* length of data */
// };
//
// #define mtod(m, t) ((t)(m->m_off))
//
//
// B Compatibility with past mistakes
//
//
// When combined with the modern PPP serial line protocol[9], the use of
// header compression is automatic and invisible to the user.
// Unfortunately, many sites have existing users of the SLIP described in
// [12] which doesn't allow for different protocol types to distinguish
// header compressed packets from IP packets or for version numbers or an
// option exchange that could be used to automatically negotiate header
// compression.
//
// The author has used the following tricks to allow header compressed SLIP
// to interoperate with the existing servers and clients. Note that these
// are hacks for compatibility with past mistakes and should be offensive
// to any right thinking person. They are offered solely to ease the pain
// of running SLIP while users wait patiently for vendors to release PPP.
//
//
// B.1 Living without a framing `type' byte
//
// The bizarre packet type numbers in sec. A.1 were chosen to allow a
// `packet type' to be sent on lines where it is undesirable or impossible
// to add an explicit type byte. Note that the first byte of an IP packet
// always contains `4' (the IP protocol version) in the top four bits. And
// that the most significant bit of the first byte of the compressed header
// is ignored. Using the packet types in sec. A.1, the type can be encoded
// in the most significant bits of the outgoing packet using the code
//
// p->dat[0] |= sl_compress_tcp(p, comp);
//
// and decoded on the receive side by
//
// if (p->dat[0] & 0x80)
// type = TYPE_COMPRESSED_TCP;
// else if (p->dat[0] >= 0x70) {
// type = TYPE_UNCOMPRESSED_TCP;
// p->dat[0] &=~ 0x30;
// } else
// type = TYPE_IP;
// status = sl_uncompress_tcp(p, type, comp);
|