|
|
/*
* jdhuff.c * * Copyright (C) 1991-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
/*
* Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */
typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state;
/* This macro is to work around compilers with missing or broken
* structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */
#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src) ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
((dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif
#endif
typedef struct { struct jpeg_entropy_decoder pub; /* public fields */
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; } huff_entropy_decoder;
typedef huff_entropy_decoder * huff_entropy_ptr;
/*
* Initialize for a Huffman-compressed scan. */
METHODDEF void start_pass_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr;
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Make sure requested tables are present */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS || cinfo->dc_huff_tbl_ptrs[dctbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS || cinfo->ac_huff_tbl_ptrs[actbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], & entropy->dc_derived_tbls[dctbl]); jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl], & entropy->ac_derived_tbls[actbl]); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; }
/* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->bitstate.printed_eod = FALSE;
/* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; }
/*
* Compute the derived values for a Huffman table. * Note this is also used by jdphuff.c. */
GLOBAL void jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, d_derived_tbl ** pdtbl) { d_derived_tbl *dtbl; int p, i, l, si; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code;
/* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */
p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++) huffsize[p++] = (char) l; } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } code <<= 1; si++; }
/* Figure F.15: generate decoding tables for bit-sequential decoding */
p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */ dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */ p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
/* Compute lookahead tables to speed up decoding.
* First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; } } } }
/*
* Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */
#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
GLOBAL boolean jpeg_fill_bit_buffer (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; register int c;
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */
while (bits_left < MIN_GET_BITS) { /* Attempt to read a byte */ if (state->unread_marker != 0) goto no_more_data; /* can't advance past a marker */
if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++);
/* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { do { if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); } while (c == 0xFF);
if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. */ /* Better put it back for use later */ state->unread_marker = c;
no_more_data: /* There should be enough bits still left in the data segment; */ /* if so, just break out of the outer while loop. */ if (bits_left >= nbits) break; /* Uh-oh. Report corrupted data to user and stuff zeroes into
* the data stream, so that we can produce some kind of image. * Note that this code will be repeated for each byte demanded * for the rest of the segment. We use a nonvolatile flag to ensure * that only one warning message appears. */ if (! *(state->printed_eod_ptr)) { WARNMS(state->cinfo, JWRN_HIT_MARKER); *(state->printed_eod_ptr) = TRUE; } c = 0; /* insert a zero byte into bit buffer */ } }
/* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; }
/* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left;
return TRUE; }
/*
* Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */
GLOBAL int jpeg_huff_decode (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits) { register int l = min_bits; register INT32 code;
/* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */
CHECK_BIT_BUFFER(*state, l, return -1); code = GET_BITS(l);
/* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */
while (code > htbl->maxcode[l]) { code <<= 1; CHECK_BIT_BUFFER(*state, 1, return -1); code |= GET_BITS(1); l++; }
/* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left;
/* With garbage input we may reach the sentinel value l = 17. */
if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ }
return htbl->pub->huffval[ htbl->valptr[l] + ((int) (code - htbl->mincode[l])) ]; }
/*
* Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */
#ifdef AVOID_TABLES
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
#else
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
#endif /* AVOID_TABLES */
/*
* Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */
LOCAL boolean process_restart (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci;
/* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0;
/* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE;
/* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0;
/* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval;
/* Next segment can get another out-of-data warning */ entropy->bitstate.printed_eod = FALSE;
return TRUE; }
/*
* Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */
METHODDEF boolean decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int s, k, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl * dctbl; d_derived_tbl * actbl; jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; }
/* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); }
/* Shortcut if component's values are not interesting */ if (! compptr->component_needed) goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ (*block)[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */ if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ (*block)[jpeg_natural_order[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } }
} else { skip_ACs:
/* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); DROP_BITS(s); } else { if (r != 15) break; k += 15; } }
} }
/* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state);
/* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--;
return TRUE; }
/*
* Module initialization routine for Huffman entropy decoding. */
GLOBAL void jinit_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy; int i;
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu;
/* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } }
|