Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

202 lines
8.0 KiB

  1. /*
  2. * jdhuff.h
  3. *
  4. * Copyright (C) 1991-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains declarations for Huffman entropy decoding routines
  9. * that are shared between the sequential decoder (jdhuff.c) and the
  10. * progressive decoder (jdphuff.c). No other modules need to see these.
  11. */
  12. /* Short forms of external names for systems with brain-damaged linkers. */
  13. #ifdef NEED_SHORT_EXTERNAL_NAMES
  14. #define jpeg_make_d_derived_tbl jMkDDerived
  15. #define jpeg_fill_bit_buffer jFilBitBuf
  16. #define jpeg_huff_decode jHufDecode
  17. #endif /* NEED_SHORT_EXTERNAL_NAMES */
  18. /* Derived data constructed for each Huffman table */
  19. #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
  20. typedef struct {
  21. /* Basic tables: (element [0] of each array is unused) */
  22. INT32 mincode[17]; /* smallest code of length k */
  23. INT32 maxcode[18]; /* largest code of length k (-1 if none) */
  24. /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
  25. int valptr[17]; /* huffval[] index of 1st symbol of length k */
  26. /* Link to public Huffman table (needed only in jpeg_huff_decode) */
  27. JHUFF_TBL *pub;
  28. /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
  29. * the input data stream. If the next Huffman code is no more
  30. * than HUFF_LOOKAHEAD bits long, we can obtain its length and
  31. * the corresponding symbol directly from these tables.
  32. */
  33. int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
  34. UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
  35. } d_derived_tbl;
  36. /* Expand a Huffman table definition into the derived format */
  37. EXTERN void jpeg_make_d_derived_tbl JPP((j_decompress_ptr cinfo,
  38. JHUFF_TBL * htbl, d_derived_tbl ** pdtbl));
  39. /*
  40. * Fetching the next N bits from the input stream is a time-critical operation
  41. * for the Huffman decoders. We implement it with a combination of inline
  42. * macros and out-of-line subroutines. Note that N (the number of bits
  43. * demanded at one time) never exceeds 15 for JPEG use.
  44. *
  45. * We read source bytes into get_buffer and dole out bits as needed.
  46. * If get_buffer already contains enough bits, they are fetched in-line
  47. * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
  48. * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
  49. * as full as possible (not just to the number of bits needed; this
  50. * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
  51. * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
  52. * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
  53. * at least the requested number of bits --- dummy zeroes are inserted if
  54. * necessary.
  55. */
  56. typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
  57. #define BIT_BUF_SIZE 32 /* size of buffer in bits */
  58. /* If long is > 32 bits on your machine, and shifting/masking longs is
  59. * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
  60. * appropriately should be a win. Unfortunately we can't do this with
  61. * something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
  62. * because not all machines measure sizeof in 8-bit bytes.
  63. */
  64. typedef struct { /* Bitreading state saved across MCUs */
  65. bit_buf_type get_buffer; /* current bit-extraction buffer */
  66. int bits_left; /* # of unused bits in it */
  67. boolean printed_eod; /* flag to suppress multiple warning msgs */
  68. } bitread_perm_state;
  69. typedef struct { /* Bitreading working state within an MCU */
  70. /* current data source state */
  71. const JOCTET * next_input_byte; /* => next byte to read from source */
  72. size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
  73. int unread_marker; /* nonzero if we have hit a marker */
  74. /* bit input buffer --- note these values are kept in register variables,
  75. * not in this struct, inside the inner loops.
  76. */
  77. bit_buf_type get_buffer; /* current bit-extraction buffer */
  78. int bits_left; /* # of unused bits in it */
  79. /* pointers needed by jpeg_fill_bit_buffer */
  80. j_decompress_ptr cinfo; /* back link to decompress master record */
  81. boolean * printed_eod_ptr; /* => flag in permanent state */
  82. } bitread_working_state;
  83. /* Macros to declare and load/save bitread local variables. */
  84. #define BITREAD_STATE_VARS \
  85. register bit_buf_type get_buffer; \
  86. register int bits_left; \
  87. bitread_working_state br_state
  88. #define BITREAD_LOAD_STATE(cinfop,permstate) \
  89. br_state.cinfo = cinfop; \
  90. br_state.next_input_byte = cinfop->src->next_input_byte; \
  91. br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
  92. br_state.unread_marker = cinfop->unread_marker; \
  93. get_buffer = permstate.get_buffer; \
  94. bits_left = permstate.bits_left; \
  95. br_state.printed_eod_ptr = & permstate.printed_eod
  96. #define BITREAD_SAVE_STATE(cinfop,permstate) \
  97. cinfop->src->next_input_byte = br_state.next_input_byte; \
  98. cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
  99. cinfop->unread_marker = br_state.unread_marker; \
  100. permstate.get_buffer = get_buffer; \
  101. permstate.bits_left = bits_left
  102. /*
  103. * These macros provide the in-line portion of bit fetching.
  104. * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
  105. * before using GET_BITS, PEEK_BITS, or DROP_BITS.
  106. * The variables get_buffer and bits_left are assumed to be locals,
  107. * but the state struct might not be (jpeg_huff_decode needs this).
  108. * CHECK_BIT_BUFFER(state,n,action);
  109. * Ensure there are N bits in get_buffer; if suspend, take action.
  110. * val = GET_BITS(n);
  111. * Fetch next N bits.
  112. * val = PEEK_BITS(n);
  113. * Fetch next N bits without removing them from the buffer.
  114. * DROP_BITS(n);
  115. * Discard next N bits.
  116. * The value N should be a simple variable, not an expression, because it
  117. * is evaluated multiple times.
  118. */
  119. #define CHECK_BIT_BUFFER(state,nbits,action) \
  120. { if (bits_left < (nbits)) { \
  121. if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
  122. { action; } \
  123. get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
  124. #define GET_BITS(nbits) \
  125. (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
  126. #define PEEK_BITS(nbits) \
  127. (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
  128. #define DROP_BITS(nbits) \
  129. (bits_left -= (nbits))
  130. /* Load up the bit buffer to a depth of at least nbits */
  131. EXTERN boolean jpeg_fill_bit_buffer JPP((bitread_working_state * state,
  132. register bit_buf_type get_buffer, register int bits_left,
  133. int nbits));
  134. /*
  135. * Code for extracting next Huffman-coded symbol from input bit stream.
  136. * Again, this is time-critical and we make the main paths be macros.
  137. *
  138. * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
  139. * without looping. Usually, more than 95% of the Huffman codes will be 8
  140. * or fewer bits long. The few overlength codes are handled with a loop,
  141. * which need not be inline code.
  142. *
  143. * Notes about the HUFF_DECODE macro:
  144. * 1. Near the end of the data segment, we may fail to get enough bits
  145. * for a lookahead. In that case, we do it the hard way.
  146. * 2. If the lookahead table contains no entry, the next code must be
  147. * more than HUFF_LOOKAHEAD bits long.
  148. * 3. jpeg_huff_decode returns -1 if forced to suspend.
  149. */
  150. #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
  151. { register int nb, look; \
  152. if (bits_left < HUFF_LOOKAHEAD) { \
  153. if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
  154. get_buffer = state.get_buffer; bits_left = state.bits_left; \
  155. if (bits_left < HUFF_LOOKAHEAD) { \
  156. nb = 1; goto slowlabel; \
  157. } \
  158. } \
  159. look = PEEK_BITS(HUFF_LOOKAHEAD); \
  160. if ((nb = htbl->look_nbits[look]) != 0) { \
  161. DROP_BITS(nb); \
  162. result = htbl->look_sym[look]; \
  163. } else { \
  164. nb = HUFF_LOOKAHEAD+1; \
  165. slowlabel: \
  166. if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
  167. { failaction; } \
  168. get_buffer = state.get_buffer; bits_left = state.bits_left; \
  169. } \
  170. }
  171. /* Out-of-line case for Huffman code fetching */
  172. EXTERN int jpeg_huff_decode JPP((bitread_working_state * state,
  173. register bit_buf_type get_buffer, register int bits_left,
  174. d_derived_tbl * htbl, int min_bits));