Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

512 lines
20 KiB

  1. /*
  2. * jdmainct.c
  3. *
  4. * Copyright (C) 1994-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains the main buffer controller for decompression.
  9. * The main buffer lies between the JPEG decompressor proper and the
  10. * post-processor; it holds downsampled data in the JPEG colorspace.
  11. *
  12. * Note that this code is bypassed in raw-data mode, since the application
  13. * supplies the equivalent of the main buffer in that case.
  14. */
  15. #define JPEG_INTERNALS
  16. #include "jinclude.h"
  17. #include "jpeglib.h"
  18. /*
  19. * In the current system design, the main buffer need never be a full-image
  20. * buffer; any full-height buffers will be found inside the coefficient or
  21. * postprocessing controllers. Nonetheless, the main controller is not
  22. * trivial. Its responsibility is to provide context rows for upsampling/
  23. * rescaling, and doing this in an efficient fashion is a bit tricky.
  24. *
  25. * Postprocessor input data is counted in "row groups". A row group
  26. * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
  27. * sample rows of each component. (We require DCT_scaled_size values to be
  28. * chosen such that these numbers are integers. In practice DCT_scaled_size
  29. * values will likely be powers of two, so we actually have the stronger
  30. * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
  31. * Upsampling will typically produce max_v_samp_factor pixel rows from each
  32. * row group (times any additional scale factor that the upsampler is
  33. * applying).
  34. *
  35. * The coefficient controller will deliver data to us one iMCU row at a time;
  36. * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
  37. * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
  38. * to one row of MCUs when the image is fully interleaved.) Note that the
  39. * number of sample rows varies across components, but the number of row
  40. * groups does not. Some garbage sample rows may be included in the last iMCU
  41. * row at the bottom of the image.
  42. *
  43. * Depending on the vertical scaling algorithm used, the upsampler may need
  44. * access to the sample row(s) above and below its current input row group.
  45. * The upsampler is required to set need_context_rows TRUE at global selection
  46. * time if so. When need_context_rows is FALSE, this controller can simply
  47. * obtain one iMCU row at a time from the coefficient controller and dole it
  48. * out as row groups to the postprocessor.
  49. *
  50. * When need_context_rows is TRUE, this controller guarantees that the buffer
  51. * passed to postprocessing contains at least one row group's worth of samples
  52. * above and below the row group(s) being processed. Note that the context
  53. * rows "above" the first passed row group appear at negative row offsets in
  54. * the passed buffer. At the top and bottom of the image, the required
  55. * context rows are manufactured by duplicating the first or last real sample
  56. * row; this avoids having special cases in the upsampling inner loops.
  57. *
  58. * The amount of context is fixed at one row group just because that's a
  59. * convenient number for this controller to work with. The existing
  60. * upsamplers really only need one sample row of context. An upsampler
  61. * supporting arbitrary output rescaling might wish for more than one row
  62. * group of context when shrinking the image; tough, we don't handle that.
  63. * (This is justified by the assumption that downsizing will be handled mostly
  64. * by adjusting the DCT_scaled_size values, so that the actual scale factor at
  65. * the upsample step needn't be much less than one.)
  66. *
  67. * To provide the desired context, we have to retain the last two row groups
  68. * of one iMCU row while reading in the next iMCU row. (The last row group
  69. * can't be processed until we have another row group for its below-context,
  70. * and so we have to save the next-to-last group too for its above-context.)
  71. * We could do this most simply by copying data around in our buffer, but
  72. * that'd be very slow. We can avoid copying any data by creating a rather
  73. * strange pointer structure. Here's how it works. We allocate a workspace
  74. * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
  75. * of row groups per iMCU row). We create two sets of redundant pointers to
  76. * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
  77. * pointer lists look like this:
  78. * M+1 M-1
  79. * master pointer --> 0 master pointer --> 0
  80. * 1 1
  81. * ... ...
  82. * M-3 M-3
  83. * M-2 M
  84. * M-1 M+1
  85. * M M-2
  86. * M+1 M-1
  87. * 0 0
  88. * We read alternate iMCU rows using each master pointer; thus the last two
  89. * row groups of the previous iMCU row remain un-overwritten in the workspace.
  90. * The pointer lists are set up so that the required context rows appear to
  91. * be adjacent to the proper places when we pass the pointer lists to the
  92. * upsampler.
  93. *
  94. * The above pictures describe the normal state of the pointer lists.
  95. * At top and bottom of the image, we diddle the pointer lists to duplicate
  96. * the first or last sample row as necessary (this is cheaper than copying
  97. * sample rows around).
  98. *
  99. * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
  100. * situation each iMCU row provides only one row group so the buffering logic
  101. * must be different (eg, we must read two iMCU rows before we can emit the
  102. * first row group). For now, we simply do not support providing context
  103. * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
  104. * be worth providing --- if someone wants a 1/8th-size preview, they probably
  105. * want it quick and dirty, so a context-free upsampler is sufficient.
  106. */
  107. /* Private buffer controller object */
  108. typedef struct {
  109. struct jpeg_d_main_controller pub; /* public fields */
  110. /* Pointer to allocated workspace (M or M+2 row groups). */
  111. JSAMPARRAY buffer[MAX_COMPONENTS];
  112. boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
  113. JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
  114. /* Remaining fields are only used in the context case. */
  115. /* These are the master pointers to the funny-order pointer lists. */
  116. JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
  117. int whichptr; /* indicates which pointer set is now in use */
  118. int context_state; /* process_data state machine status */
  119. JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
  120. JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
  121. } my_main_controller;
  122. typedef my_main_controller * my_main_ptr;
  123. /* context_state values: */
  124. #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
  125. #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
  126. #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
  127. /* Forward declarations */
  128. METHODDEF void process_data_simple_main
  129. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  130. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  131. METHODDEF void process_data_context_main
  132. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  133. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  134. #ifdef QUANT_2PASS_SUPPORTED
  135. METHODDEF void process_data_crank_post
  136. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  137. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  138. #endif
  139. LOCAL void
  140. alloc_funny_pointers (j_decompress_ptr cinfo)
  141. /* Allocate space for the funny pointer lists.
  142. * This is done only once, not once per pass.
  143. */
  144. {
  145. my_main_ptr main = (my_main_ptr) cinfo->main;
  146. int ci, rgroup;
  147. int M = cinfo->min_DCT_scaled_size;
  148. jpeg_component_info *compptr;
  149. JSAMPARRAY xbuf;
  150. /* Get top-level space for component array pointers.
  151. * We alloc both arrays with one call to save a few cycles.
  152. */
  153. main->xbuffer[0] = (JSAMPIMAGE)
  154. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  155. cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
  156. main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
  157. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  158. ci++, compptr++) {
  159. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  160. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  161. /* Get space for pointer lists --- M+4 row groups in each list.
  162. * We alloc both pointer lists with one call to save a few cycles.
  163. */
  164. xbuf = (JSAMPARRAY)
  165. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  166. 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
  167. xbuf += rgroup; /* want one row group at negative offsets */
  168. main->xbuffer[0][ci] = xbuf;
  169. xbuf += rgroup * (M + 4);
  170. main->xbuffer[1][ci] = xbuf;
  171. }
  172. }
  173. LOCAL void
  174. make_funny_pointers (j_decompress_ptr cinfo)
  175. /* Create the funny pointer lists discussed in the comments above.
  176. * The actual workspace is already allocated (in main->buffer),
  177. * and the space for the pointer lists is allocated too.
  178. * This routine just fills in the curiously ordered lists.
  179. * This will be repeated at the beginning of each pass.
  180. */
  181. {
  182. my_main_ptr main = (my_main_ptr) cinfo->main;
  183. int ci, i, rgroup;
  184. int M = cinfo->min_DCT_scaled_size;
  185. jpeg_component_info *compptr;
  186. JSAMPARRAY buf, xbuf0, xbuf1;
  187. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  188. ci++, compptr++) {
  189. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  190. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  191. xbuf0 = main->xbuffer[0][ci];
  192. xbuf1 = main->xbuffer[1][ci];
  193. /* First copy the workspace pointers as-is */
  194. buf = main->buffer[ci];
  195. for (i = 0; i < rgroup * (M + 2); i++) {
  196. xbuf0[i] = xbuf1[i] = buf[i];
  197. }
  198. /* In the second list, put the last four row groups in swapped order */
  199. for (i = 0; i < rgroup * 2; i++) {
  200. xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
  201. xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
  202. }
  203. /* The wraparound pointers at top and bottom will be filled later
  204. * (see set_wraparound_pointers, below). Initially we want the "above"
  205. * pointers to duplicate the first actual data line. This only needs
  206. * to happen in xbuffer[0].
  207. */
  208. for (i = 0; i < rgroup; i++) {
  209. xbuf0[i - rgroup] = xbuf0[0];
  210. }
  211. }
  212. }
  213. LOCAL void
  214. set_wraparound_pointers (j_decompress_ptr cinfo)
  215. /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
  216. * This changes the pointer list state from top-of-image to the normal state.
  217. */
  218. {
  219. my_main_ptr main = (my_main_ptr) cinfo->main;
  220. int ci, i, rgroup;
  221. int M = cinfo->min_DCT_scaled_size;
  222. jpeg_component_info *compptr;
  223. JSAMPARRAY xbuf0, xbuf1;
  224. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  225. ci++, compptr++) {
  226. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  227. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  228. xbuf0 = main->xbuffer[0][ci];
  229. xbuf1 = main->xbuffer[1][ci];
  230. for (i = 0; i < rgroup; i++) {
  231. xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
  232. xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
  233. xbuf0[rgroup*(M+2) + i] = xbuf0[i];
  234. xbuf1[rgroup*(M+2) + i] = xbuf1[i];
  235. }
  236. }
  237. }
  238. LOCAL void
  239. set_bottom_pointers (j_decompress_ptr cinfo)
  240. /* Change the pointer lists to duplicate the last sample row at the bottom
  241. * of the image. whichptr indicates which xbuffer holds the final iMCU row.
  242. * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
  243. */
  244. {
  245. my_main_ptr main = (my_main_ptr) cinfo->main;
  246. int ci, i, rgroup, iMCUheight, rows_left;
  247. jpeg_component_info *compptr;
  248. JSAMPARRAY xbuf;
  249. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  250. ci++, compptr++) {
  251. /* Count sample rows in one iMCU row and in one row group */
  252. iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
  253. rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
  254. /* Count nondummy sample rows remaining for this component */
  255. rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
  256. if (rows_left == 0) rows_left = iMCUheight;
  257. /* Count nondummy row groups. Should get same answer for each component,
  258. * so we need only do it once.
  259. */
  260. if (ci == 0) {
  261. main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
  262. }
  263. /* Duplicate the last real sample row rgroup*2 times; this pads out the
  264. * last partial rowgroup and ensures at least one full rowgroup of context.
  265. */
  266. xbuf = main->xbuffer[main->whichptr][ci];
  267. for (i = 0; i < rgroup * 2; i++) {
  268. xbuf[rows_left + i] = xbuf[rows_left-1];
  269. }
  270. }
  271. }
  272. /*
  273. * Initialize for a processing pass.
  274. */
  275. METHODDEF void
  276. start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
  277. {
  278. my_main_ptr main = (my_main_ptr) cinfo->main;
  279. switch (pass_mode) {
  280. case JBUF_PASS_THRU:
  281. if (cinfo->upsample->need_context_rows) {
  282. main->pub.process_data = process_data_context_main;
  283. make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
  284. main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
  285. main->context_state = CTX_PREPARE_FOR_IMCU;
  286. main->iMCU_row_ctr = 0;
  287. } else {
  288. /* Simple case with no context needed */
  289. main->pub.process_data = process_data_simple_main;
  290. }
  291. main->buffer_full = FALSE; /* Mark buffer empty */
  292. main->rowgroup_ctr = 0;
  293. break;
  294. #ifdef QUANT_2PASS_SUPPORTED
  295. case JBUF_CRANK_DEST:
  296. /* For last pass of 2-pass quantization, just crank the postprocessor */
  297. main->pub.process_data = process_data_crank_post;
  298. break;
  299. #endif
  300. default:
  301. ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  302. break;
  303. }
  304. }
  305. /*
  306. * Process some data.
  307. * This handles the simple case where no context is required.
  308. */
  309. METHODDEF void
  310. process_data_simple_main (j_decompress_ptr cinfo,
  311. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  312. JDIMENSION out_rows_avail)
  313. {
  314. my_main_ptr main = (my_main_ptr) cinfo->main;
  315. JDIMENSION rowgroups_avail;
  316. /* Read input data if we haven't filled the main buffer yet */
  317. if (! main->buffer_full) {
  318. if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
  319. return; /* suspension forced, can do nothing more */
  320. main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
  321. }
  322. /* There are always min_DCT_scaled_size row groups in an iMCU row. */
  323. rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
  324. /* Note: at the bottom of the image, we may pass extra garbage row groups
  325. * to the postprocessor. The postprocessor has to check for bottom
  326. * of image anyway (at row resolution), so no point in us doing it too.
  327. */
  328. /* Feed the postprocessor */
  329. (*cinfo->post->post_process_data) (cinfo, main->buffer,
  330. &main->rowgroup_ctr, rowgroups_avail,
  331. output_buf, out_row_ctr, out_rows_avail);
  332. /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
  333. if (main->rowgroup_ctr >= rowgroups_avail) {
  334. main->buffer_full = FALSE;
  335. main->rowgroup_ctr = 0;
  336. }
  337. }
  338. /*
  339. * Process some data.
  340. * This handles the case where context rows must be provided.
  341. */
  342. METHODDEF void
  343. process_data_context_main (j_decompress_ptr cinfo,
  344. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  345. JDIMENSION out_rows_avail)
  346. {
  347. my_main_ptr main = (my_main_ptr) cinfo->main;
  348. /* Read input data if we haven't filled the main buffer yet */
  349. if (! main->buffer_full) {
  350. if (! (*cinfo->coef->decompress_data) (cinfo,
  351. main->xbuffer[main->whichptr]))
  352. return; /* suspension forced, can do nothing more */
  353. main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
  354. main->iMCU_row_ctr++; /* count rows received */
  355. }
  356. /* Postprocessor typically will not swallow all the input data it is handed
  357. * in one call (due to filling the output buffer first). Must be prepared
  358. * to exit and restart. This switch lets us keep track of how far we got.
  359. * Note that each case falls through to the next on successful completion.
  360. */
  361. switch (main->context_state) {
  362. case CTX_POSTPONED_ROW:
  363. /* Call postprocessor using previously set pointers for postponed row */
  364. (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  365. &main->rowgroup_ctr, main->rowgroups_avail,
  366. output_buf, out_row_ctr, out_rows_avail);
  367. if (main->rowgroup_ctr < main->rowgroups_avail)
  368. return; /* Need to suspend */
  369. main->context_state = CTX_PREPARE_FOR_IMCU;
  370. if (*out_row_ctr >= out_rows_avail)
  371. return; /* Postprocessor exactly filled output buf */
  372. /*FALLTHROUGH*/
  373. case CTX_PREPARE_FOR_IMCU:
  374. /* Prepare to process first M-1 row groups of this iMCU row */
  375. main->rowgroup_ctr = 0;
  376. main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
  377. /* Check for bottom of image: if so, tweak pointers to "duplicate"
  378. * the last sample row, and adjust rowgroups_avail to ignore padding rows.
  379. */
  380. if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
  381. set_bottom_pointers(cinfo);
  382. main->context_state = CTX_PROCESS_IMCU;
  383. /*FALLTHROUGH*/
  384. case CTX_PROCESS_IMCU:
  385. /* Call postprocessor using previously set pointers */
  386. (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  387. &main->rowgroup_ctr, main->rowgroups_avail,
  388. output_buf, out_row_ctr, out_rows_avail);
  389. if (main->rowgroup_ctr < main->rowgroups_avail)
  390. return; /* Need to suspend */
  391. /* After the first iMCU, change wraparound pointers to normal state */
  392. if (main->iMCU_row_ctr == 1)
  393. set_wraparound_pointers(cinfo);
  394. /* Prepare to load new iMCU row using other xbuffer list */
  395. main->whichptr ^= 1; /* 0=>1 or 1=>0 */
  396. main->buffer_full = FALSE;
  397. /* Still need to process last row group of this iMCU row, */
  398. /* which is saved at index M+1 of the other xbuffer */
  399. main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
  400. main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
  401. main->context_state = CTX_POSTPONED_ROW;
  402. }
  403. }
  404. /*
  405. * Process some data.
  406. * Final pass of two-pass quantization: just call the postprocessor.
  407. * Source data will be the postprocessor controller's internal buffer.
  408. */
  409. #ifdef QUANT_2PASS_SUPPORTED
  410. METHODDEF void
  411. process_data_crank_post (j_decompress_ptr cinfo,
  412. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  413. JDIMENSION out_rows_avail)
  414. {
  415. (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
  416. (JDIMENSION *) NULL, (JDIMENSION) 0,
  417. output_buf, out_row_ctr, out_rows_avail);
  418. }
  419. #endif /* QUANT_2PASS_SUPPORTED */
  420. /*
  421. * Initialize main buffer controller.
  422. */
  423. GLOBAL void
  424. jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
  425. {
  426. my_main_ptr main;
  427. int ci, rgroup, ngroups;
  428. jpeg_component_info *compptr;
  429. main = (my_main_ptr)
  430. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  431. SIZEOF(my_main_controller));
  432. cinfo->main = (struct jpeg_d_main_controller *) main;
  433. main->pub.start_pass = start_pass_main;
  434. if (need_full_buffer) /* shouldn't happen */
  435. ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  436. /* Allocate the workspace.
  437. * ngroups is the number of row groups we need.
  438. */
  439. if (cinfo->upsample->need_context_rows) {
  440. if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
  441. ERREXIT(cinfo, JERR_NOTIMPL);
  442. alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
  443. ngroups = cinfo->min_DCT_scaled_size + 2;
  444. } else {
  445. ngroups = cinfo->min_DCT_scaled_size;
  446. }
  447. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  448. ci++, compptr++) {
  449. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  450. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  451. main->buffer[ci] = (*cinfo->mem->alloc_sarray)
  452. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  453. compptr->width_in_blocks * compptr->DCT_scaled_size,
  454. (JDIMENSION) (rgroup * ngroups));
  455. }
  456. }