Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

856 lines
30 KiB

  1. /*
  2. * jquant1.c
  3. *
  4. * Copyright (C) 1991-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains 1-pass color quantization (color mapping) routines.
  9. * These routines provide mapping to a fixed color map using equally spaced
  10. * color values. Optional Floyd-Steinberg or ordered dithering is available.
  11. */
  12. #define JPEG_INTERNALS
  13. #include "jinclude.h"
  14. #include "jpeglib.h"
  15. #ifdef QUANT_1PASS_SUPPORTED
  16. /*
  17. * The main purpose of 1-pass quantization is to provide a fast, if not very
  18. * high quality, colormapped output capability. A 2-pass quantizer usually
  19. * gives better visual quality; however, for quantized grayscale output this
  20. * quantizer is perfectly adequate. Dithering is highly recommended with this
  21. * quantizer, though you can turn it off if you really want to.
  22. *
  23. * In 1-pass quantization the colormap must be chosen in advance of seeing the
  24. * image. We use a map consisting of all combinations of Ncolors[i] color
  25. * values for the i'th component. The Ncolors[] values are chosen so that
  26. * their product, the total number of colors, is no more than that requested.
  27. * (In most cases, the product will be somewhat less.)
  28. *
  29. * Since the colormap is orthogonal, the representative value for each color
  30. * component can be determined without considering the other components;
  31. * then these indexes can be combined into a colormap index by a standard
  32. * N-dimensional-array-subscript calculation. Most of the arithmetic involved
  33. * can be precalculated and stored in the lookup table colorindex[].
  34. * colorindex[i][j] maps pixel value j in component i to the nearest
  35. * representative value (grid plane) for that component; this index is
  36. * multiplied by the array stride for component i, so that the
  37. * index of the colormap entry closest to a given pixel value is just
  38. * sum( colorindex[component-number][pixel-component-value] )
  39. * Aside from being fast, this scheme allows for variable spacing between
  40. * representative values with no additional lookup cost.
  41. *
  42. * If gamma correction has been applied in color conversion, it might be wise
  43. * to adjust the color grid spacing so that the representative colors are
  44. * equidistant in linear space. At this writing, gamma correction is not
  45. * implemented by jdcolor, so nothing is done here.
  46. */
  47. /* Declarations for ordered dithering.
  48. *
  49. * We use a standard 16x16 ordered dither array. The basic concept of ordered
  50. * dithering is described in many references, for instance Dale Schumacher's
  51. * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  52. * In place of Schumacher's comparisons against a "threshold" value, we add a
  53. * "dither" value to the input pixel and then round the result to the nearest
  54. * output value. The dither value is equivalent to (0.5 - threshold) times
  55. * the distance between output values. For ordered dithering, we assume that
  56. * the output colors are equally spaced; if not, results will probably be
  57. * worse, since the dither may be too much or too little at a given point.
  58. *
  59. * The normal calculation would be to form pixel value + dither, range-limit
  60. * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  61. * We can skip the separate range-limiting step by extending the colorindex
  62. * table in both directions.
  63. */
  64. #define ODITHER_SIZE 16 /* dimension of dither matrix */
  65. /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  66. #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
  67. #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
  68. typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  69. typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
  70. static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  71. /* Bayer's order-4 dither array. Generated by the code given in
  72. * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  73. * The values in this array must range from 0 to ODITHER_CELLS-1.
  74. */
  75. { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
  76. { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
  77. { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
  78. { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
  79. { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
  80. { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
  81. { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
  82. { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
  83. { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
  84. { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
  85. { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
  86. { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
  87. { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
  88. { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
  89. { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
  90. { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
  91. };
  92. /* Declarations for Floyd-Steinberg dithering.
  93. *
  94. * Errors are accumulated into the array fserrors[], at a resolution of
  95. * 1/16th of a pixel count. The error at a given pixel is propagated
  96. * to its not-yet-processed neighbors using the standard F-S fractions,
  97. * ... (here) 7/16
  98. * 3/16 5/16 1/16
  99. * We work left-to-right on even rows, right-to-left on odd rows.
  100. *
  101. * We can get away with a single array (holding one row's worth of errors)
  102. * by using it to store the current row's errors at pixel columns not yet
  103. * processed, but the next row's errors at columns already processed. We
  104. * need only a few extra variables to hold the errors immediately around the
  105. * current column. (If we are lucky, those variables are in registers, but
  106. * even if not, they're probably cheaper to access than array elements are.)
  107. *
  108. * The fserrors[] array is indexed [component#][position].
  109. * We provide (#columns + 2) entries per component; the extra entry at each
  110. * end saves us from special-casing the first and last pixels.
  111. *
  112. * Note: on a wide image, we might not have enough room in a PC's near data
  113. * segment to hold the error array; so it is allocated with alloc_large.
  114. */
  115. #if BITS_IN_JSAMPLE == 8
  116. typedef INT16 FSERROR; /* 16 bits should be enough */
  117. typedef int LOCFSERROR; /* use 'int' for calculation temps */
  118. #else
  119. typedef INT32 FSERROR; /* may need more than 16 bits */
  120. typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
  121. #endif
  122. typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
  123. /* Private subobject */
  124. #define MAX_Q_COMPS 4 /* max components I can handle */
  125. typedef struct {
  126. struct jpeg_color_quantizer pub; /* public fields */
  127. /* Initially allocated colormap is saved here */
  128. JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
  129. int sv_actual; /* number of entries in use */
  130. JSAMPARRAY colorindex; /* Precomputed mapping for speed */
  131. /* colorindex[i][j] = index of color closest to pixel value j in component i,
  132. * premultiplied as described above. Since colormap indexes must fit into
  133. * JSAMPLEs, the entries of this array will too.
  134. */
  135. boolean is_padded; /* is the colorindex padded for odither? */
  136. int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
  137. /* Variables for ordered dithering */
  138. int row_index; /* cur row's vertical index in dither matrix */
  139. ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
  140. /* Variables for Floyd-Steinberg dithering */
  141. FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
  142. boolean on_odd_row; /* flag to remember which row we are on */
  143. } my_cquantizer;
  144. typedef my_cquantizer * my_cquantize_ptr;
  145. /*
  146. * Policy-making subroutines for create_colormap and create_colorindex.
  147. * These routines determine the colormap to be used. The rest of the module
  148. * only assumes that the colormap is orthogonal.
  149. *
  150. * * select_ncolors decides how to divvy up the available colors
  151. * among the components.
  152. * * output_value defines the set of representative values for a component.
  153. * * largest_input_value defines the mapping from input values to
  154. * representative values for a component.
  155. * Note that the latter two routines may impose different policies for
  156. * different components, though this is not currently done.
  157. */
  158. LOCAL int
  159. select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
  160. /* Determine allocation of desired colors to components, */
  161. /* and fill in Ncolors[] array to indicate choice. */
  162. /* Return value is total number of colors (product of Ncolors[] values). */
  163. {
  164. int nc = cinfo->out_color_components; /* number of color components */
  165. int max_colors = cinfo->desired_number_of_colors;
  166. int total_colors, iroot, i, j;
  167. boolean changed;
  168. long temp;
  169. static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
  170. /* We can allocate at least the nc'th root of max_colors per component. */
  171. /* Compute floor(nc'th root of max_colors). */
  172. iroot = 1;
  173. do {
  174. iroot++;
  175. temp = iroot; /* set temp = iroot ** nc */
  176. for (i = 1; i < nc; i++)
  177. temp *= iroot;
  178. } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
  179. iroot--; /* now iroot = floor(root) */
  180. /* Must have at least 2 color values per component */
  181. if (iroot < 2)
  182. ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
  183. /* Initialize to iroot color values for each component */
  184. total_colors = 1;
  185. for (i = 0; i < nc; i++) {
  186. Ncolors[i] = iroot;
  187. total_colors *= iroot;
  188. }
  189. /* We may be able to increment the count for one or more components without
  190. * exceeding max_colors, though we know not all can be incremented.
  191. * Sometimes, the first component can be incremented more than once!
  192. * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
  193. * In RGB colorspace, try to increment G first, then R, then B.
  194. */
  195. do {
  196. changed = FALSE;
  197. for (i = 0; i < nc; i++) {
  198. j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
  199. /* calculate new total_colors if Ncolors[j] is incremented */
  200. temp = total_colors / Ncolors[j];
  201. temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
  202. if (temp > (long) max_colors)
  203. break; /* won't fit, done with this pass */
  204. Ncolors[j]++; /* OK, apply the increment */
  205. total_colors = (int) temp;
  206. changed = TRUE;
  207. }
  208. } while (changed);
  209. return total_colors;
  210. }
  211. LOCAL int
  212. output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  213. /* Return j'th output value, where j will range from 0 to maxj */
  214. /* The output values must fall in 0..MAXJSAMPLE in increasing order */
  215. {
  216. /* We always provide values 0 and MAXJSAMPLE for each component;
  217. * any additional values are equally spaced between these limits.
  218. * (Forcing the upper and lower values to the limits ensures that
  219. * dithering can't produce a color outside the selected gamut.)
  220. */
  221. return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
  222. }
  223. LOCAL int
  224. largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  225. /* Return largest input value that should map to j'th output value */
  226. /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
  227. {
  228. /* Breakpoints are halfway between values returned by output_value */
  229. return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
  230. }
  231. /*
  232. * Create the colormap.
  233. */
  234. LOCAL void
  235. create_colormap (j_decompress_ptr cinfo)
  236. {
  237. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  238. JSAMPARRAY colormap; /* Created colormap */
  239. int total_colors; /* Number of distinct output colors */
  240. int i,j,k, nci, blksize, blkdist, ptr, val;
  241. /* Select number of colors for each component */
  242. total_colors = select_ncolors(cinfo, cquantize->Ncolors);
  243. /* Report selected color counts */
  244. if (cinfo->out_color_components == 3)
  245. TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
  246. total_colors, cquantize->Ncolors[0],
  247. cquantize->Ncolors[1], cquantize->Ncolors[2]);
  248. else
  249. TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
  250. /* Allocate and fill in the colormap. */
  251. /* The colors are ordered in the map in standard row-major order, */
  252. /* i.e. rightmost (highest-indexed) color changes most rapidly. */
  253. colormap = (*cinfo->mem->alloc_sarray)
  254. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  255. (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
  256. /* blksize is number of adjacent repeated entries for a component */
  257. /* blkdist is distance between groups of identical entries for a component */
  258. blkdist = total_colors;
  259. for (i = 0; i < cinfo->out_color_components; i++) {
  260. /* fill in colormap entries for i'th color component */
  261. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  262. blksize = blkdist / nci;
  263. for (j = 0; j < nci; j++) {
  264. /* Compute j'th output value (out of nci) for component */
  265. val = output_value(cinfo, i, j, nci-1);
  266. /* Fill in all colormap entries that have this value of this component */
  267. for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
  268. /* fill in blksize entries beginning at ptr */
  269. for (k = 0; k < blksize; k++)
  270. colormap[i][ptr+k] = (JSAMPLE) val;
  271. }
  272. }
  273. blkdist = blksize; /* blksize of this color is blkdist of next */
  274. }
  275. /* Save the colormap in private storage,
  276. * where it will survive color quantization mode changes.
  277. */
  278. cquantize->sv_colormap = colormap;
  279. cquantize->sv_actual = total_colors;
  280. }
  281. /*
  282. * Create the color index table.
  283. */
  284. LOCAL void
  285. create_colorindex (j_decompress_ptr cinfo)
  286. {
  287. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  288. JSAMPROW indexptr;
  289. int i,j,k, nci, blksize, val, pad;
  290. /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
  291. * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
  292. * This is not necessary in the other dithering modes. However, we
  293. * flag whether it was done in case user changes dithering mode.
  294. */
  295. if (cinfo->dither_mode == JDITHER_ORDERED) {
  296. pad = MAXJSAMPLE*2;
  297. cquantize->is_padded = TRUE;
  298. } else {
  299. pad = 0;
  300. cquantize->is_padded = FALSE;
  301. }
  302. cquantize->colorindex = (*cinfo->mem->alloc_sarray)
  303. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  304. (JDIMENSION) (MAXJSAMPLE+1 + pad),
  305. (JDIMENSION) cinfo->out_color_components);
  306. /* blksize is number of adjacent repeated entries for a component */
  307. blksize = cquantize->sv_actual;
  308. for (i = 0; i < cinfo->out_color_components; i++) {
  309. /* fill in colorindex entries for i'th color component */
  310. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  311. blksize = blksize / nci;
  312. /* adjust colorindex pointers to provide padding at negative indexes. */
  313. if (pad)
  314. cquantize->colorindex[i] += MAXJSAMPLE;
  315. /* in loop, val = index of current output value, */
  316. /* and k = largest j that maps to current val */
  317. indexptr = cquantize->colorindex[i];
  318. val = 0;
  319. k = largest_input_value(cinfo, i, 0, nci-1);
  320. for (j = 0; j <= MAXJSAMPLE; j++) {
  321. while (j > k) /* advance val if past boundary */
  322. k = largest_input_value(cinfo, i, ++val, nci-1);
  323. /* premultiply so that no multiplication needed in main processing */
  324. indexptr[j] = (JSAMPLE) (val * blksize);
  325. }
  326. /* Pad at both ends if necessary */
  327. if (pad)
  328. for (j = 1; j <= MAXJSAMPLE; j++) {
  329. indexptr[-j] = indexptr[0];
  330. indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
  331. }
  332. }
  333. }
  334. /*
  335. * Create an ordered-dither array for a component having ncolors
  336. * distinct output values.
  337. */
  338. LOCAL ODITHER_MATRIX_PTR
  339. make_odither_array (j_decompress_ptr cinfo, int ncolors)
  340. {
  341. ODITHER_MATRIX_PTR odither;
  342. int j,k;
  343. INT32 num,den;
  344. odither = (ODITHER_MATRIX_PTR)
  345. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  346. SIZEOF(ODITHER_MATRIX));
  347. /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
  348. * Hence the dither value for the matrix cell with fill order f
  349. * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
  350. * On 16-bit-int machine, be careful to avoid overflow.
  351. */
  352. den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
  353. for (j = 0; j < ODITHER_SIZE; j++) {
  354. for (k = 0; k < ODITHER_SIZE; k++) {
  355. num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
  356. * MAXJSAMPLE;
  357. /* Ensure round towards zero despite C's lack of consistency
  358. * about rounding negative values in integer division...
  359. */
  360. odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
  361. }
  362. }
  363. return odither;
  364. }
  365. /*
  366. * Create the ordered-dither tables.
  367. * Components having the same number of representative colors may
  368. * share a dither table.
  369. */
  370. LOCAL void
  371. create_odither_tables (j_decompress_ptr cinfo)
  372. {
  373. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  374. ODITHER_MATRIX_PTR odither;
  375. int i, j, nci;
  376. for (i = 0; i < cinfo->out_color_components; i++) {
  377. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  378. odither = NULL; /* search for matching prior component */
  379. for (j = 0; j < i; j++) {
  380. if (nci == cquantize->Ncolors[j]) {
  381. odither = cquantize->odither[j];
  382. break;
  383. }
  384. }
  385. if (odither == NULL) /* need a new table? */
  386. odither = make_odither_array(cinfo, nci);
  387. cquantize->odither[i] = odither;
  388. }
  389. }
  390. /*
  391. * Map some rows of pixels to the output colormapped representation.
  392. */
  393. METHODDEF void
  394. color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  395. JSAMPARRAY output_buf, int num_rows)
  396. /* General case, no dithering */
  397. {
  398. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  399. JSAMPARRAY colorindex = cquantize->colorindex;
  400. register int pixcode, ci;
  401. register JSAMPROW ptrin, ptrout;
  402. int row;
  403. JDIMENSION col;
  404. JDIMENSION width = cinfo->output_width;
  405. register int nc = cinfo->out_color_components;
  406. for (row = 0; row < num_rows; row++) {
  407. ptrin = input_buf[row];
  408. ptrout = output_buf[row];
  409. for (col = width; col > 0; col--) {
  410. pixcode = 0;
  411. for (ci = 0; ci < nc; ci++) {
  412. pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
  413. }
  414. *ptrout++ = (JSAMPLE) pixcode;
  415. }
  416. }
  417. }
  418. METHODDEF void
  419. color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  420. JSAMPARRAY output_buf, int num_rows)
  421. /* Fast path for out_color_components==3, no dithering */
  422. {
  423. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  424. register int pixcode;
  425. register JSAMPROW ptrin, ptrout;
  426. JSAMPROW colorindex0 = cquantize->colorindex[0];
  427. JSAMPROW colorindex1 = cquantize->colorindex[1];
  428. JSAMPROW colorindex2 = cquantize->colorindex[2];
  429. int row;
  430. JDIMENSION col;
  431. JDIMENSION width = cinfo->output_width;
  432. for (row = 0; row < num_rows; row++) {
  433. ptrin = input_buf[row];
  434. ptrout = output_buf[row];
  435. for (col = width; col > 0; col--) {
  436. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
  437. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
  438. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
  439. *ptrout++ = (JSAMPLE) pixcode;
  440. }
  441. }
  442. }
  443. METHODDEF void
  444. quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  445. JSAMPARRAY output_buf, int num_rows)
  446. /* General case, with ordered dithering */
  447. {
  448. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  449. register JSAMPROW input_ptr;
  450. register JSAMPROW output_ptr;
  451. JSAMPROW colorindex_ci;
  452. int * dither; /* points to active row of dither matrix */
  453. int row_index, col_index; /* current indexes into dither matrix */
  454. int nc = cinfo->out_color_components;
  455. int ci;
  456. int row;
  457. JDIMENSION col;
  458. JDIMENSION width = cinfo->output_width;
  459. for (row = 0; row < num_rows; row++) {
  460. /* Initialize output values to 0 so can process components separately */
  461. jzero_far((void FAR *) output_buf[row],
  462. (size_t) (width * SIZEOF(JSAMPLE)));
  463. row_index = cquantize->row_index;
  464. for (ci = 0; ci < nc; ci++) {
  465. input_ptr = input_buf[row] + ci;
  466. output_ptr = output_buf[row];
  467. colorindex_ci = cquantize->colorindex[ci];
  468. dither = cquantize->odither[ci][row_index];
  469. col_index = 0;
  470. for (col = width; col > 0; col--) {
  471. /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
  472. * select output value, accumulate into output code for this pixel.
  473. * Range-limiting need not be done explicitly, as we have extended
  474. * the colorindex table to produce the right answers for out-of-range
  475. * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
  476. * required amount of padding.
  477. */
  478. *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
  479. input_ptr += nc;
  480. output_ptr++;
  481. col_index = (col_index + 1) & ODITHER_MASK;
  482. }
  483. }
  484. /* Advance row index for next row */
  485. row_index = (row_index + 1) & ODITHER_MASK;
  486. cquantize->row_index = row_index;
  487. }
  488. }
  489. METHODDEF void
  490. quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  491. JSAMPARRAY output_buf, int num_rows)
  492. /* Fast path for out_color_components==3, with ordered dithering */
  493. {
  494. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  495. register int pixcode;
  496. register JSAMPROW input_ptr;
  497. register JSAMPROW output_ptr;
  498. JSAMPROW colorindex0 = cquantize->colorindex[0];
  499. JSAMPROW colorindex1 = cquantize->colorindex[1];
  500. JSAMPROW colorindex2 = cquantize->colorindex[2];
  501. int * dither0; /* points to active row of dither matrix */
  502. int * dither1;
  503. int * dither2;
  504. int row_index, col_index; /* current indexes into dither matrix */
  505. int row;
  506. JDIMENSION col;
  507. JDIMENSION width = cinfo->output_width;
  508. for (row = 0; row < num_rows; row++) {
  509. row_index = cquantize->row_index;
  510. input_ptr = input_buf[row];
  511. output_ptr = output_buf[row];
  512. dither0 = cquantize->odither[0][row_index];
  513. dither1 = cquantize->odither[1][row_index];
  514. dither2 = cquantize->odither[2][row_index];
  515. col_index = 0;
  516. for (col = width; col > 0; col--) {
  517. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
  518. dither0[col_index]]);
  519. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
  520. dither1[col_index]]);
  521. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
  522. dither2[col_index]]);
  523. *output_ptr++ = (JSAMPLE) pixcode;
  524. col_index = (col_index + 1) & ODITHER_MASK;
  525. }
  526. row_index = (row_index + 1) & ODITHER_MASK;
  527. cquantize->row_index = row_index;
  528. }
  529. }
  530. METHODDEF void
  531. quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  532. JSAMPARRAY output_buf, int num_rows)
  533. /* General case, with Floyd-Steinberg dithering */
  534. {
  535. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  536. register LOCFSERROR cur; /* current error or pixel value */
  537. LOCFSERROR belowerr; /* error for pixel below cur */
  538. LOCFSERROR bpreverr; /* error for below/prev col */
  539. LOCFSERROR bnexterr; /* error for below/next col */
  540. LOCFSERROR delta;
  541. register FSERRPTR errorptr; /* => fserrors[] at column before current */
  542. register JSAMPROW input_ptr;
  543. register JSAMPROW output_ptr;
  544. JSAMPROW colorindex_ci;
  545. JSAMPROW colormap_ci;
  546. int pixcode;
  547. int nc = cinfo->out_color_components;
  548. int dir; /* 1 for left-to-right, -1 for right-to-left */
  549. int dirnc; /* dir * nc */
  550. int ci;
  551. int row;
  552. JDIMENSION col;
  553. JDIMENSION width = cinfo->output_width;
  554. JSAMPLE *range_limit = cinfo->sample_range_limit;
  555. SHIFT_TEMPS
  556. for (row = 0; row < num_rows; row++) {
  557. /* Initialize output values to 0 so can process components separately */
  558. jzero_far((void FAR *) output_buf[row],
  559. (size_t) (width * SIZEOF(JSAMPLE)));
  560. for (ci = 0; ci < nc; ci++) {
  561. input_ptr = input_buf[row] + ci;
  562. output_ptr = output_buf[row];
  563. if (cquantize->on_odd_row) {
  564. /* work right to left in this row */
  565. input_ptr += (width-1) * nc; /* so point to rightmost pixel */
  566. output_ptr += width-1;
  567. dir = -1;
  568. dirnc = -nc;
  569. errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
  570. } else {
  571. /* work left to right in this row */
  572. dir = 1;
  573. dirnc = nc;
  574. errorptr = cquantize->fserrors[ci]; /* => entry before first column */
  575. }
  576. colorindex_ci = cquantize->colorindex[ci];
  577. colormap_ci = cquantize->sv_colormap[ci];
  578. /* Preset error values: no error propagated to first pixel from left */
  579. cur = 0;
  580. /* and no error propagated to row below yet */
  581. belowerr = bpreverr = 0;
  582. for (col = width; col > 0; col--) {
  583. /* cur holds the error propagated from the previous pixel on the
  584. * current line. Add the error propagated from the previous line
  585. * to form the complete error correction term for this pixel, and
  586. * round the error term (which is expressed * 16) to an integer.
  587. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  588. * for either sign of the error value.
  589. * Note: errorptr points to *previous* column's array entry.
  590. */
  591. cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
  592. /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  593. * The maximum error is +- MAXJSAMPLE; this sets the required size
  594. * of the range_limit array.
  595. */
  596. cur += GETJSAMPLE(*input_ptr);
  597. cur = GETJSAMPLE(range_limit[cur]);
  598. /* Select output value, accumulate into output code for this pixel */
  599. pixcode = GETJSAMPLE(colorindex_ci[cur]);
  600. *output_ptr += (JSAMPLE) pixcode;
  601. /* Compute actual representation error at this pixel */
  602. /* Note: we can do this even though we don't have the final */
  603. /* pixel code, because the colormap is orthogonal. */
  604. cur -= GETJSAMPLE(colormap_ci[pixcode]);
  605. /* Compute error fractions to be propagated to adjacent pixels.
  606. * Add these into the running sums, and simultaneously shift the
  607. * next-line error sums left by 1 column.
  608. */
  609. bnexterr = cur;
  610. delta = cur * 2;
  611. cur += delta; /* form error * 3 */
  612. errorptr[0] = (FSERROR) (bpreverr + cur);
  613. cur += delta; /* form error * 5 */
  614. bpreverr = belowerr + cur;
  615. belowerr = bnexterr;
  616. cur += delta; /* form error * 7 */
  617. /* At this point cur contains the 7/16 error value to be propagated
  618. * to the next pixel on the current line, and all the errors for the
  619. * next line have been shifted over. We are therefore ready to move on.
  620. */
  621. input_ptr += dirnc; /* advance input ptr to next column */
  622. output_ptr += dir; /* advance output ptr to next column */
  623. errorptr += dir; /* advance errorptr to current column */
  624. }
  625. /* Post-loop cleanup: we must unload the final error value into the
  626. * final fserrors[] entry. Note we need not unload belowerr because
  627. * it is for the dummy column before or after the actual array.
  628. */
  629. errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
  630. }
  631. cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
  632. }
  633. }
  634. /*
  635. * Allocate workspace for Floyd-Steinberg errors.
  636. */
  637. LOCAL void
  638. alloc_fs_workspace (j_decompress_ptr cinfo)
  639. {
  640. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  641. size_t arraysize;
  642. int i;
  643. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  644. for (i = 0; i < cinfo->out_color_components; i++) {
  645. cquantize->fserrors[i] = (FSERRPTR)
  646. (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  647. }
  648. }
  649. /*
  650. * Initialize for one-pass color quantization.
  651. */
  652. METHODDEF void
  653. start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  654. {
  655. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  656. size_t arraysize;
  657. int i;
  658. /* Install my colormap. */
  659. cinfo->colormap = cquantize->sv_colormap;
  660. cinfo->actual_number_of_colors = cquantize->sv_actual;
  661. /* Initialize for desired dithering mode. */
  662. switch (cinfo->dither_mode) {
  663. case JDITHER_NONE:
  664. if (cinfo->out_color_components == 3)
  665. cquantize->pub.color_quantize = color_quantize3;
  666. else
  667. cquantize->pub.color_quantize = color_quantize;
  668. break;
  669. case JDITHER_ORDERED:
  670. if (cinfo->out_color_components == 3)
  671. cquantize->pub.color_quantize = quantize3_ord_dither;
  672. else
  673. cquantize->pub.color_quantize = quantize_ord_dither;
  674. cquantize->row_index = 0; /* initialize state for ordered dither */
  675. /* If user changed to ordered dither from another mode,
  676. * we must recreate the color index table with padding.
  677. * This will cost extra space, but probably isn't very likely.
  678. */
  679. if (! cquantize->is_padded)
  680. create_colorindex(cinfo);
  681. /* Create ordered-dither tables if we didn't already. */
  682. if (cquantize->odither[0] == NULL)
  683. create_odither_tables(cinfo);
  684. break;
  685. case JDITHER_FS:
  686. cquantize->pub.color_quantize = quantize_fs_dither;
  687. cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
  688. /* Allocate Floyd-Steinberg workspace if didn't already. */
  689. if (cquantize->fserrors[0] == NULL)
  690. alloc_fs_workspace(cinfo);
  691. /* Initialize the propagated errors to zero. */
  692. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  693. for (i = 0; i < cinfo->out_color_components; i++)
  694. jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
  695. break;
  696. default:
  697. ERREXIT(cinfo, JERR_NOT_COMPILED);
  698. break;
  699. }
  700. }
  701. /*
  702. * Finish up at the end of the pass.
  703. */
  704. METHODDEF void
  705. finish_pass_1_quant (j_decompress_ptr cinfo)
  706. {
  707. /* no work in 1-pass case */
  708. }
  709. /*
  710. * Switch to a new external colormap between output passes.
  711. * Shouldn't get to this module!
  712. */
  713. METHODDEF void
  714. new_color_map_1_quant (j_decompress_ptr cinfo)
  715. {
  716. ERREXIT(cinfo, JERR_MODE_CHANGE);
  717. }
  718. /*
  719. * Module initialization routine for 1-pass color quantization.
  720. */
  721. GLOBAL void
  722. jinit_1pass_quantizer (j_decompress_ptr cinfo)
  723. {
  724. my_cquantize_ptr cquantize;
  725. cquantize = (my_cquantize_ptr)
  726. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  727. SIZEOF(my_cquantizer));
  728. cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  729. cquantize->pub.start_pass = start_pass_1_quant;
  730. cquantize->pub.finish_pass = finish_pass_1_quant;
  731. cquantize->pub.new_color_map = new_color_map_1_quant;
  732. cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
  733. cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
  734. /* Make sure my internal arrays won't overflow */
  735. if (cinfo->out_color_components > MAX_Q_COMPS)
  736. ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
  737. /* Make sure colormap indexes can be represented by JSAMPLEs */
  738. if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
  739. ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
  740. /* Create the colormap and color index table. */
  741. create_colormap(cinfo);
  742. create_colorindex(cinfo);
  743. /* Allocate Floyd-Steinberg workspace now if requested.
  744. * We do this now since it is FAR storage and may affect the memory
  745. * manager's space calculations. If the user changes to FS dither
  746. * mode in a later pass, we will allocate the space then, and will
  747. * possibly overrun the max_memory_to_use setting.
  748. */
  749. if (cinfo->dither_mode == JDITHER_FS)
  750. alloc_fs_workspace(cinfo);
  751. }
  752. #endif /* QUANT_1PASS_SUPPORTED */