|
|
#include <windows.h>
#include <stdlib.h>
#include "scicalc.h"
#include "unifunc.h"
#include "..\ratpak\debug.h"
/**************************************************************************\
* * * * * * * # # ##### * * # # # # # * * # # # # # # # * * # ### ### # # * * # # ### # # # ### # # ### ##### # ### ### ### * * # ## # # # ## # # # # # # ## # # # * * # # # # # # # # # ##### # # ##### # * * # # # # # # # # # # # # # # ## * * # # # # # # # # # ### # # ### ### ## * * * * * * Infinte Precision Production Version * * * \**************************************************************************/ //
// RETAIL version of NUMOBJ math that uses Infinite Precision
//
// History
//
// 16-Nov-1996 JonPa Wrote it
// whenever-97 ToddB Rewrote it using improved ratpak model
//
/*****************************************************************\
* * Generic Math Package support routines and variables * * History: * 01-Dec-1996 JonPa Wrote them * whenever-97 ToddB Rewrote them * \*****************************************************************/
//
// Worker for NumObjRecalcConstants
//
// Returns the nearest power of two
//
int QuickLog2( int iNum ) { int iRes = 0;
// while first digit is a zero
while ( !(iNum & 1) ) { iRes++; iNum >>= 1; }
// if our number isn't a perfect square
if ( iNum = iNum >> 1 ) { // find the largest digit
while ( iNum = iNum >> 1 ) ++iRes;
// and then add two
iRes += 2; }
return iRes; }
////////////////////////////////////////////////////////////////////////
//
// UpdateMaxIntDigits
//
// determine the maximum number of digits needed for the current precision,
// word size, and base. This number is conservative towards the small side
// such that there may be some extra bits left over. The number of extra
// bits is returned. For example, base 8 requires 3 bits per digit. A word
// size of 32 bits allows for 10 digits with a remainder of two bits. Bases
// that require variable numnber of bits (non-power-of-two bases) are approximated
// by the next highest power-of-two base (again, to be conservative and gaurentee
// there will be no over flow verse the current word size for numbers entered).
// Base 10 is a special case and always uses the base 10 precision (nPrecision).
void UpdateMaxIntDigits() { extern int gcIntDigits; int iRemainderBits;
if ( nRadix == 10 ) { gcIntDigits = nPrecision; iRemainderBits = 0; } else { int log2;
log2 = QuickLog2( nRadix );
ASSERT( 0 != log2 ); // same as ASSERT( nRadix != 1 )
gcIntDigits = dwWordBitWidth / log2; iRemainderBits = dwWordBitWidth % log2; } }
void BaseOrPrecisionChanged( void ) { extern LONG dwWordBitWidth; extern int gcIntDigits;
UpdateMaxIntDigits(); if ( 10 == nRadix ) { // to prevent unwanted rounded digits from showing up in the
// gcIntDigits + 1 spot during non-integer mode we don't want
// to add the extra 1 that we ortherwise add
ChangeConstants( nRadix, gcIntDigits ); } else { ChangeConstants( nRadix, gcIntDigits+1 ); } }
/*****************************************************************\
* * Unary functions * * History: * 01-Dec-1996 JonPa Wrote them * whenever-97 ToddB Rewrote them * \*****************************************************************/
void NumObjInvert( PHNUMOBJ phno ) { DECLARE_HNUMOBJ( hno );
NumObjAssign( &hno, HNO_ONE ); divrat( &hno, *phno ); NumObjAssign( phno, hno ); NumObjDestroy( &hno ); }
void NumObjAntiLog10( PHNUMOBJ phno ) { DECLARE_HNUMOBJ( hno );
NumObjSetIntValue( &hno, 10 ); powrat( &hno, *phno ); NumObjAssign( phno, hno ); NumObjDestroy( &hno ); }
void NumObjNot( PHNUMOBJ phno ) { if ( nRadix == 10 ) { intrat( phno ); addrat( phno, HNO_ONE ); NumObjNegate( phno ); } else { ASSERT( (nHexMode >= 0) && (nHexMode <= 3) ); ASSERT( phno ); ASSERT( *phno ); ASSERT( g_ahnoChopNumbers[ nHexMode ] );
xorrat( phno, g_ahnoChopNumbers[ nHexMode ] ); } }
void NumObjSin( PHNUMOBJ phno ) { ASSERT(( nDecMode == ANGLE_DEG ) || ( nDecMode == ANGLE_RAD ) || ( nDecMode == ANGLE_GRAD ));
sinanglerat( (PRAT *)phno, nDecMode ); NumObjCvtEpsilonToZero( phno ); }
void NumObjCos( PHNUMOBJ phno ) { ASSERT(( nDecMode == ANGLE_DEG ) || ( nDecMode == ANGLE_RAD ) || ( nDecMode == ANGLE_GRAD ));
cosanglerat( (PRAT *)phno, nDecMode ); NumObjCvtEpsilonToZero( phno ); }
void NumObjTan( PHNUMOBJ phno ) { ASSERT(( nDecMode == ANGLE_DEG ) || ( nDecMode == ANGLE_RAD ) || ( nDecMode == ANGLE_GRAD ));
tananglerat( (PRAT *)phno, nDecMode ); NumObjCvtEpsilonToZero( phno ); }
/******************************************************************\
* * Number format conversion routines * * History: * 06-Dec-1996 JonPa wrote them \******************************************************************/ void NumObjSetIntValue( PHNUMOBJ phnol, LONG i ) { PRAT pr = NULL;
pr = longtorat( i ); NumObjAssign( phnol, (HNUMOBJ)pr ); destroyrat(pr); }
void NumObjGetSzValue( LPTSTR *ppszNum, HNUMOBJ hnoNum, INT nRadix, NUMOBJ_FMT fmt ) { LPTSTR psz;
psz = putrat( &hnoNum, nRadix, fmt );
if (psz != NULL) { if (*ppszNum != NULL) { NumObjFreeMem( *ppszNum ); } *ppszNum = psz; } }
|