|
|
//----------------------------------------------------------------------------
// File trans.c
// Author Timothy David Corrie Jr. ([email protected])
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains sin, cos and tan for rationals
//
//
//----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <ratpak.h>
void scalerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
{ switch ( angletype ) { case ANGLE_RAD: scale2pi( pa ); break; case ANGLE_DEG: scale( pa, rat_360 ); break; case ANGLE_GRAD: scale( pa, rat_400 ); break; } }
//-----------------------------------------------------------------------------
//
// FUNCTION: sinrat, _sinrat
//
// ARGUMENTS: x PRAT representation of number to take the sine of
//
// RETURN: sin of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j+1 j
// \ ] X -1
// \ ---------
// / (2j+1)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] -X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = X ; and stop when thisterm < precision used.
// 0 n
//
//-----------------------------------------------------------------------------
void _sinrat( PRAT *px )
{ CREATETAYLOR();
DUPRAT(pret,*px); DUPRAT(thisterm,*px);
DUPNUM(n2,num_one); xx->pp->sign *= -1;
do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2)); } while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR(); // Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px,rat_one); // Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px,rat_smallest) && rat_ge(*px,rat_negsmallest) ) { DUPRAT(*px,rat_zero); } }
void sinrat( PRAT *px ) { scale2pi(px); _sinrat(px); }
void sinanglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
{ scalerat( pa, angletype ); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180 ) ) { subrat(pa,rat_360); } divrat( pa, rat_180 ); mulrat( pa, pi ); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200 ) ) { subrat(pa,rat_400); } divrat( pa, rat_200 ); mulrat( pa, pi ); break; } _sinrat( pa ); }
//-----------------------------------------------------------------------------
//
// FUNCTION: cosrat, _cosrat
//
// ARGUMENTS: x PRAT representation of number to take the cosine of
//
// RETURN: cosin of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j j
// \ ] X -1
// \ ---------
// / (2j)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] -X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = 1 ; and stop when thisterm < precision used.
// 0 n
//
//-----------------------------------------------------------------------------
void _cosrat( PRAT *px )
{ CREATETAYLOR();
pret->pp=longtonum( 1L, nRadix ); pret->pq=longtonum( 1L, nRadix );
DUPRAT(thisterm,pret)
n2=longtonum(0L, nRadix); xx->pp->sign *= -1;
do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2)); } while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR(); // Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px,rat_one); // Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px,rat_smallest) && rat_ge(*px,rat_negsmallest) ) { DUPRAT(*px,rat_zero); } }
void cosrat( PRAT *px ) { scale2pi(px); _cosrat(px); }
void cosanglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
{ scalerat( pa, angletype ); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180 ) ) { PRAT ptmp=NULL; DUPRAT(ptmp,rat_360); subrat(&ptmp,*pa); destroyrat(*pa); *pa=ptmp; } divrat( pa, rat_180 ); mulrat( pa, pi ); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200 ) ) { PRAT ptmp=NULL; DUPRAT(ptmp,rat_400); subrat(&ptmp,*pa); destroyrat(*pa); *pa=ptmp; } divrat( pa, rat_200 ); mulrat( pa, pi ); break; } _cosrat( pa ); }
//-----------------------------------------------------------------------------
//
// FUNCTION: tanrat, _tanrat
//
// ARGUMENTS: x PRAT representation of number to take the tangent of
//
// RETURN: tan of x in PRAT form.
//
// EXPLANATION: This uses sinrat and cosrat
//
//-----------------------------------------------------------------------------
void _tanrat( PRAT *px )
{ PRAT ptmp=NULL;
DUPRAT(ptmp,*px); _sinrat(px); _cosrat(&ptmp); if ( zerrat( ptmp ) ) { destroyrat(ptmp); throw( CALC_E_DOMAIN ); } divrat(px,ptmp);
destroyrat(ptmp);
}
void tanrat( PRAT *px ) { scale2pi(px); _tanrat(px); }
void tananglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
{ scalerat( pa, angletype ); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180 ) ) { subrat(pa,rat_180); } divrat( pa, rat_180 ); mulrat( pa, pi ); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200 ) ) { subrat(pa,rat_200); } divrat( pa, rat_200 ); mulrat( pa, pi ); break; } _tanrat( pa ); }
|