|
|
//-----------------------------------------------------------------------------
// Package Title ratpak
// File transh.c
// Author Timothy David Corrie Jr. ([email protected])
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains hyperbolic sin, cos, and tan for rationals.
//
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <ratpak.h>
//-----------------------------------------------------------------------------
//
// FUNCTION: sinhrat, _sinhrat
//
// ARGUMENTS: x PRAT representation of number to take the sine hyperbolic
// of
// RETURN: sinh of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j+1
// \ ] X
// \ ---------
// / (2j+1)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = X ; and stop when thisterm < precision used.
// 0 n
//
// if x is bigger than 1.0 (e^x-e^-x)/2 is used.
//
//-----------------------------------------------------------------------------
void _sinhrat( PRAT *px )
{ CREATETAYLOR();
DUPRAT(pret,*px); DUPRAT(thisterm,pret);
DUPNUM(n2,num_one);
do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2)); } while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR(); }
void sinhrat( PRAT *px )
{ PRAT pret=NULL; PRAT tmpx=NULL;
if ( rat_ge( *px, rat_one ) ) { DUPRAT(tmpx,*px); exprat(px); tmpx->pp->sign *= -1; exprat(&tmpx); subrat( px, tmpx ); divrat( px, rat_two ); destroyrat( tmpx ); } else { _sinhrat( px ); } }
//-----------------------------------------------------------------------------
//
// FUNCTION: coshrat
//
// ARGUMENTS: x PRAT representation of number to take the cosine
// hyperbolic of
//
// RETURN: cosh of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j
// \ ] X
// \ ---------
// / (2j)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = 1 ; and stop when thisterm < precision used.
// 0 n
//
// if x is bigger than 1.0 (e^x+e^-x)/2 is used.
//
//-----------------------------------------------------------------------------
void _coshrat( PRAT *px )
{ CREATETAYLOR();
pret->pp=longtonum( 1L, nRadix ); pret->pq=longtonum( 1L, nRadix );
DUPRAT(thisterm,pret)
n2=longtonum(0L, nRadix);
do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2)); } while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR(); }
void coshrat( PRAT *px )
{ PRAT tmpx=NULL;
(*px)->pp->sign = 1; (*px)->pq->sign = 1; if ( rat_ge( *px, rat_one ) ) { DUPRAT(tmpx,*px); exprat(px); tmpx->pp->sign *= -1; exprat(&tmpx); addrat( px, tmpx ); divrat( px, rat_two ); destroyrat( tmpx ); } else { _coshrat( px ); } // Since *px might be epsilon below 1 due to TRIMIT
// we need this trick here.
if ( rat_lt(*px,rat_one) ) { DUPRAT(*px,rat_one); } }
//-----------------------------------------------------------------------------
//
// FUNCTION: tanhrat
//
// ARGUMENTS: x PRAT representation of number to take the tangent
// hyperbolic of
//
// RETURN: tanh of x in PRAT form.
//
// EXPLANATION: This uses sinhrat and coshrat
//
//-----------------------------------------------------------------------------
void tanhrat( PRAT *px )
{ PRAT ptmp=NULL;
DUPRAT(ptmp,*px); sinhrat(px); coshrat(&ptmp); mulnumx(&((*px)->pp),ptmp->pq); mulnumx(&((*px)->pq),ptmp->pp);
destroyrat(ptmp);
}
|