|
|
//-----------------------------------------------------------------------------
// File: node.cpp
//
// Desc: Pipes node array
//
// Copyright (c) 1994-2000 Microsoft Corporation
//-----------------------------------------------------------------------------
#include "stdafx.h"
//-----------------------------------------------------------------------------
// Name: NODE_ARRAY constructor
// Desc:
//-----------------------------------------------------------------------------
NODE_ARRAY::NODE_ARRAY() { m_nodes = NULL; // allocated on Resize
m_numNodes.x = 0; m_numNodes.y = 0; m_numNodes.z = 0; }
//-----------------------------------------------------------------------------
// Name: NODE_ARRAY destructor
// Desc:
//-----------------------------------------------------------------------------
NODE_ARRAY::~NODE_ARRAY( ) { if( m_nodes ) delete m_nodes; }
//-----------------------------------------------------------------------------
// Name: Resize
// Desc:
//-----------------------------------------------------------------------------
void NODE_ARRAY::Resize( IPOINT3D *pNewSize ) { if( (m_numNodes.x == pNewSize->x) && (m_numNodes.y == pNewSize->y) && (m_numNodes.z == pNewSize->z) ) return;
m_numNodes = *pNewSize;
int elemCount = m_numNodes.x * m_numNodes.y * m_numNodes.z;
if( m_nodes ) delete m_nodes;
m_nodes = new Node[elemCount];
assert( m_nodes && "NODE_ARRAY::Resize : can't alloc nodes\n" ); if( m_nodes == NULL ) return;
// Reset the node states to empty
int i; Node *pNode = m_nodes; for( i = 0; i < elemCount; i++, pNode++ ) pNode->MarkAsEmpty();
// precalculate direction offsets between nodes for speed
m_nodeDirInc[PLUS_X] = 1; m_nodeDirInc[MINUS_X] = -1; m_nodeDirInc[PLUS_Y] = m_numNodes.x; m_nodeDirInc[MINUS_Y] = - m_nodeDirInc[PLUS_Y]; m_nodeDirInc[PLUS_Z] = m_numNodes.x * m_numNodes.y; m_nodeDirInc[MINUS_Z] = - m_nodeDirInc[PLUS_Z]; }
//-----------------------------------------------------------------------------
// Name: Reset
// Desc:
//-----------------------------------------------------------------------------
void NODE_ARRAY::Reset( ) { int i; Node* pNode = m_nodes;
// Reset the node states to empty
for( i = 0; i < (m_numNodes.x)*(m_numNodes.y)*(m_numNodes.z); i++, pNode++ ) pNode->MarkAsEmpty(); }
//-----------------------------------------------------------------------------
// Name: GetNodeCount
// Desc:
//-----------------------------------------------------------------------------
void NODE_ARRAY::GetNodeCount( IPOINT3D *count ) { *count = m_numNodes; }
//-----------------------------------------------------------------------------
// Name: ChooseRandomDirection
// Desc: Choose randomnly among the possible directions. The likelyhood of going
// straight is controlled by weighting it.
//-----------------------------------------------------------------------------
int NODE_ARRAY::ChooseRandomDirection( IPOINT3D *pos, int dir, int weightStraight ) { Node *nNode[NUM_DIRS]; int numEmpty, newDir; int choice; Node *straightNode = NULL; int emptyDirs[NUM_DIRS];
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::ChooseRandomDirection: invalid dir\n" );
// Get the neigbouring nodes
GetNeighbours( pos, nNode );
// Get node in straight direction if necessary
if( weightStraight && nNode[dir] && nNode[dir]->IsEmpty() ) { straightNode = nNode[dir]; // if maximum weight, choose and return
if( weightStraight == MAX_WEIGHT_STRAIGHT ) { straightNode->MarkAsTaken(); return dir; } } else { weightStraight = 0; }
// Get directions of possible turns
numEmpty = GetEmptyTurnNeighbours( nNode, emptyDirs, dir );
// Make a random choice
if( (choice = (weightStraight + numEmpty)) == 0 ) return DIR_NONE; choice = CPipesScreensaver::iRand( choice );
if( choice < weightStraight && straightNode != NULL ) { straightNode->MarkAsTaken(); return dir; } else { // choose one of the turns
newDir = emptyDirs[choice - weightStraight]; nNode[newDir]->MarkAsTaken(); return newDir; } }
//-----------------------------------------------------------------------------
// Name: ChoosePreferredDirection
// Desc: Choose randomnly from one of the supplied preferred directions. If none
// of these are available, then try and choose any empty direction
//-----------------------------------------------------------------------------
int NODE_ARRAY::ChoosePreferredDirection( IPOINT3D *pos, int dir, int *prefDirs, int nPrefDirs ) { Node *nNode[NUM_DIRS]; int numEmpty, newDir; int emptyDirs[NUM_DIRS]; int *pEmptyPrefDirs; int i, j;
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::ChoosePreferredDirection : invalid dir\n" );
// Get the neigbouring nodes
GetNeighbours( pos, nNode );
// Create list of directions that are both preferred and empty
pEmptyPrefDirs = emptyDirs; numEmpty = 0;
for( i = 0, j = 0; (i < NUM_DIRS) && (j < nPrefDirs); i++ ) { if( i == *prefDirs ) { prefDirs++; j++; if( nNode[i] && nNode[i]->IsEmpty() ) { // add it to list
*pEmptyPrefDirs++ = i; numEmpty++; } } }
// if no empty preferred dirs, then any empty dirs become preferred
if( !numEmpty ) { numEmpty = GetEmptyNeighbours( nNode, emptyDirs ); if( numEmpty == 0 ) return DIR_NONE; } // Pick a random dir from the empty set
newDir = emptyDirs[CPipesScreensaver::iRand( numEmpty )]; nNode[newDir]->MarkAsTaken(); return newDir; }
//-----------------------------------------------------------------------------
// Name: FindClearestDirection
// Desc: Finds the direction with the most empty nodes in a line 'searchRadius'
// long. Does not mark any nodes as taken.
//-----------------------------------------------------------------------------
int NODE_ARRAY::FindClearestDirection( IPOINT3D *pos ) { static Node *neighbNode[NUM_DIRS]; static int emptyDirs[NUM_DIRS]; int nEmpty, newDir; int maxEmpty = 0; int searchRadius = 3; int count = 0; int i;
// Get ptrs to neighbour nodes
GetNeighbours( pos, neighbNode );
// find empty nodes in each direction
for( i = 0; i < NUM_DIRS; i ++ ) { if( neighbNode[i] && neighbNode[i]->IsEmpty() ) { // find number of contiguous empty nodes along this direction
nEmpty = GetEmptyNeighboursAlongDir( pos, i, searchRadius ); if( nEmpty > maxEmpty ) { // we have a new winner
count = 0; maxEmpty = nEmpty; emptyDirs[count++] = i; } else if( nEmpty == maxEmpty ) { // tied with current max
emptyDirs[count++] = i; } } }
if( count == 0 ) return DIR_NONE;
// randomnly choose a direction
newDir = emptyDirs[CPipesScreensaver::iRand( count )];
return newDir; }
//-----------------------------------------------------------------------------
// Name: ChooseNewTurnDirection
// Desc: Choose a direction to turn
//
// This requires finding a pair of nodes to turn through. The first node
// is in the direction of the turn from the current node, and the second node
// is at right angles to this at the end position. The prim will not draw
// through the first node, but may sweep close to it, so we have to mark it
// as taken.
// - if next node is free, but there are no turns available, return
// DIR_STRAIGHT, so the caller can decide what to do in this case
// - The turn possibilities are based on the orientation of the current xc, with
// 4 relative directions to seek turns in.
//-----------------------------------------------------------------------------
int NODE_ARRAY::ChooseNewTurnDirection( IPOINT3D *pos, int dir ) { int turns[NUM_DIRS], nTurns; IPOINT3D nextPos; int newDir; Node *nextNode;
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::ChooseNewTurnDirection : invalid dir\n" );
// First, check if next node along current dir is empty
if( !GetNextNodePos( pos, &nextPos, dir ) ) return DIR_NONE; // node out of bounds or not empty
// Ok, the next node is free - check the 4 possible turns from here
nTurns = GetBestPossibleTurns( &nextPos, dir, turns ); if( nTurns == 0 ) return DIR_STRAIGHT; // nowhere to turn, but could go straight
// randomnly choose one of the possible turns
newDir = turns[ CPipesScreensaver::iRand( nTurns ) ];
assert( (newDir >= 0) && (newDir < NUM_DIRS) && "NODE_ARRAY::ChooseNewTurnDirection : invalid newDir\n" );
// mark taken nodes
nextNode = GetNode( &nextPos ); nextNode->MarkAsTaken();
nextNode = GetNextNode( &nextPos, newDir );
if( nextNode != NULL ) nextNode->MarkAsTaken();
return newDir; }
//-----------------------------------------------------------------------------
// Name: GetBestPossibleTurns
// Desc: From supplied direction and position, figure out which of 4 possible
// directions are best to turn in.
//
// Turns that have the greatest number of empty nodes after the turn are the
// best, since a pipe is less likely to hit a dead end in this case.
// - We only check as far as 'searchRadius' nodes along each dir.
// - Return direction indices of best possible turns in turnDirs, and return
// count of these turns in fuction return value.
//-----------------------------------------------------------------------------
int NODE_ARRAY::GetBestPossibleTurns( IPOINT3D *pos, int dir, int *turnDirs ) { Node *neighbNode[NUM_DIRS]; // ptrs to 6 neighbour nodes
int i, count = 0; BOOL check[NUM_DIRS] = {TRUE, TRUE, TRUE, TRUE, TRUE, TRUE}; int nEmpty, maxEmpty = 0; int searchRadius = 2;
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::GetBestPossibleTurns : invalid dir\n" );
GetNeighbours( pos, neighbNode );
switch( dir ) { case PLUS_X: case MINUS_X: check[PLUS_X] = FALSE; check[MINUS_X] = FALSE; break; case PLUS_Y: case MINUS_Y: check[PLUS_Y] = FALSE; check[MINUS_Y] = FALSE; break; case PLUS_Z: case MINUS_Z: check[PLUS_Z] = FALSE; check[MINUS_Z] = FALSE; break; }
// check approppriate directions
for( i = 0; i < NUM_DIRS; i ++ ) { if( check[i] && neighbNode[i] && neighbNode[i]->IsEmpty() ) { // find number of contiguous empty nodes along this direction
nEmpty = GetEmptyNeighboursAlongDir( pos, i, searchRadius ); if( nEmpty > maxEmpty ) { // we have a new winner
count = 0; maxEmpty = nEmpty; turnDirs[count++] = i; } else if( nEmpty == maxEmpty ) { // tied with current max
turnDirs[count++] = i; } } }
return count; }
//-----------------------------------------------------------------------------
// Name: GetNeighbours
// Desc: Get neigbour nodes relative to supplied position
// - get addresses of the neigbour nodes,
// and put them in supplied matrix
// - boundary hits are returned as NULL
//-----------------------------------------------------------------------------
void NODE_ARRAY::GetNeighbours( IPOINT3D *pos, Node **nNode ) { Node *centerNode = GetNode( pos );
nNode[PLUS_X] = pos->x == (m_numNodes.x - 1) ? NULL : centerNode + m_nodeDirInc[PLUS_X]; nNode[PLUS_Y] = pos->y == (m_numNodes.y - 1) ? NULL : centerNode + m_nodeDirInc[PLUS_Y]; nNode[PLUS_Z] = pos->z == (m_numNodes.z - 1) ? NULL : centerNode + m_nodeDirInc[PLUS_Z];
nNode[MINUS_X] = pos->x == 0 ? NULL : centerNode + m_nodeDirInc[MINUS_X]; nNode[MINUS_Y] = pos->y == 0 ? NULL : centerNode + m_nodeDirInc[MINUS_Y]; nNode[MINUS_Z] = pos->z == 0 ? NULL : centerNode + m_nodeDirInc[MINUS_Z]; }
//-----------------------------------------------------------------------------
// Name: NodeVisited
// Desc: Mark the node as non-empty
//-----------------------------------------------------------------------------
void NODE_ARRAY::NodeVisited( IPOINT3D *pos ) { (GetNode( pos ))->MarkAsTaken(); }
//-----------------------------------------------------------------------------
// Name: GetNode
// Desc: Get ptr to node from position
//-----------------------------------------------------------------------------
Node* NODE_ARRAY::GetNode( IPOINT3D *pos ) { return m_nodes + pos->x + pos->y * m_numNodes.x + pos->z * m_numNodes.x * m_numNodes.y; }
//-----------------------------------------------------------------------------
// Name: GetNextNode
// Desc: Get ptr to next node from pos and dir
//-----------------------------------------------------------------------------
Node* NODE_ARRAY::GetNextNode( IPOINT3D *pos, int dir ) { Node *curNode = GetNode( pos );
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::GetNextNode : invalid dir\n" );
switch( dir ) { case PLUS_X: return( pos->x == (m_numNodes.x - 1) ? NULL : curNode + m_nodeDirInc[PLUS_X]); break; case MINUS_X: return( pos->x == 0 ? NULL : curNode + m_nodeDirInc[MINUS_X]); break; case PLUS_Y: return( pos->y == (m_numNodes.y - 1) ? NULL : curNode + m_nodeDirInc[PLUS_Y]); break; case MINUS_Y: return( pos->y == 0 ? NULL : curNode + m_nodeDirInc[MINUS_Y]); break; case PLUS_Z: return( pos->z == (m_numNodes.z - 1) ? NULL : curNode + m_nodeDirInc[PLUS_Z]); break; case MINUS_Z: return( pos->z == 0 ? NULL : curNode + m_nodeDirInc[MINUS_Z]); break; default: return NULL; } }
//-----------------------------------------------------------------------------
// Name: GetNextNodePos
// Desc: Get position of next node from curPos and lastDir
// Returns FALSE if boundary hit or node empty
//-----------------------------------------------------------------------------
BOOL NODE_ARRAY::GetNextNodePos( IPOINT3D *curPos, IPOINT3D *nextPos, int dir ) { static Node *neighbNode[NUM_DIRS]; // ptrs to 6 neighbour nodes
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::GetNextNodePos : invalid dir\n" );
//mf: don't need to get all neighbours, just one in next direction
GetNeighbours( curPos, neighbNode );
*nextPos = *curPos;
// bail if boundary hit or node not empty
if( (neighbNode[dir] == NULL) || !neighbNode[dir]->IsEmpty() ) return FALSE;
switch( dir ) { case PLUS_X: nextPos->x = curPos->x + 1; break;
case MINUS_X: nextPos->x = curPos->x - 1; break;
case PLUS_Y: nextPos->y = curPos->y + 1; break;
case MINUS_Y: nextPos->y = curPos->y - 1; break;
case PLUS_Z: nextPos->z = curPos->z + 1; break;
case MINUS_Z: nextPos->z = curPos->z - 1; break; }
return TRUE; }
//-----------------------------------------------------------------------------
// Name: GetEmptyNeighbours()
// Desc: - get list of direction indices of empty node neighbours,
// and put them in supplied matrix
// - return number of empty node neighbours
//-----------------------------------------------------------------------------
int NODE_ARRAY::GetEmptyNeighbours( Node **nNode, int *nEmpty ) { int i, count = 0;
for( i = 0; i < NUM_DIRS; i ++ ) { if( nNode[i] && nNode[i]->IsEmpty() ) nEmpty[count++] = i; }
return count; }
//-----------------------------------------------------------------------------
// Name: GetEmptyTurnNeighbours()
// Desc: - get list of direction indices of empty node neighbours,
// and put them in supplied matrix
// - don't include going straight
// - return number of empty node neighbours
//-----------------------------------------------------------------------------
int NODE_ARRAY::GetEmptyTurnNeighbours( Node** nNode, int* nEmpty, int lastDir ) { int i, count = 0;
for( i = 0; i < NUM_DIRS; i ++ ) { if( nNode[i] && nNode[i]->IsEmpty() ) { if( i == lastDir ) continue; nEmpty[count++] = i; } }
return count; }
//-----------------------------------------------------------------------------
// Name: GetEmptyNeighboursAlongDir
// Desc: Sort of like above, but just gets one neigbour according to supplied dir
// Given a position and direction, find out how many contiguous empty nodes
// there are in that direction.
// - Can limit search with searchRadius parameter
// - Return contiguous empty node count
//-----------------------------------------------------------------------------
int NODE_ARRAY::GetEmptyNeighboursAlongDir( IPOINT3D *pos, int dir, int searchRadius ) { Node *curNode = GetNode( pos ); int nodeStride; int maxSearch; int count = 0;
assert( (dir >= 0) && (dir < NUM_DIRS) && "NODE_ARRAY::GetEmptyNeighboursAlongDir : invalid dir\n" );
nodeStride = m_nodeDirInc[dir];
switch( dir ) { case PLUS_X: maxSearch = m_numNodes.x - pos->x - 1; break; case MINUS_X: maxSearch = pos->x; break; case PLUS_Y: maxSearch = m_numNodes.y - pos->y - 1; break; case MINUS_Y: maxSearch = pos->y; break; case PLUS_Z: maxSearch = m_numNodes.z - pos->z - 1; break; case MINUS_Z: maxSearch = pos->z; break; } if( searchRadius > maxSearch ) searchRadius = maxSearch;
if( !searchRadius ) return 0;
while( searchRadius-- ) { curNode += nodeStride; if( ! curNode->IsEmpty() ) return count; count++; } return count; }
//-----------------------------------------------------------------------------
// Name: FindRandomEmptyNode
// Desc: - Search for an empty node to start drawing
// - Return position of empty node in supplied pos ptr
// - Returns FALSE if couldn't find a node
// - Marks node as taken (mf: renam fn to ChooseEmptyNode ?
// If random search takes longer than twice the total number
// of nodes, give up the random search. There may not be any
// empty nodes.
//-----------------------------------------------------------------------------
#define INFINITE_LOOP (2 * NUM_NODE * NUM_NODE * NUM_NODE)
BOOL NODE_ARRAY::FindRandomEmptyNode( IPOINT3D *pos ) { int infLoopDetect = 0;
while( TRUE ) { // Pick a random node.
pos->x = CPipesScreensaver::iRand( m_numNodes.x ); pos->y = CPipesScreensaver::iRand( m_numNodes.y ); pos->z = CPipesScreensaver::iRand( m_numNodes.z );
// If its empty, we're done.
if( GetNode(pos)->IsEmpty() ) { NodeVisited( pos ); return TRUE; } else { // Watch out for infinite loops! After trying for
// awhile, give up on the random search and look
// for the first empty node.
if ( infLoopDetect++ > INFINITE_LOOP ) { // Search for first empty node.
for ( pos->x = 0; pos->x < m_numNodes.x; pos->x++ ) { for ( pos->y = 0; pos->y < m_numNodes.y; pos->y++ ) { for ( pos->z = 0; pos->z < m_numNodes.z; pos->z++ ) { if( GetNode(pos)->IsEmpty() ) { NodeVisited( pos ); return TRUE; } } } }
// There are no more empty nodes.
// Reset the pipes and exit.
return FALSE; } } } }
//-----------------------------------------------------------------------------
// Name: FindRandomEmptyNode2D
// Desc: - Like FindRandomEmptyNode, but limits search to a 2d plane of the supplied
// box.
//-----------------------------------------------------------------------------
#define INFINITE_LOOP (2 * NUM_NODE * NUM_NODE * NUM_NODE)
#define MIN_VAL 1
#define MAX_VAL 0
BOOL NODE_ARRAY::FindRandomEmptyNode2D( IPOINT3D *pos, int plane, int *box ) { int *newx, *newy; int *xDim, *yDim;
switch( plane ) { case PLUS_X: case MINUS_X: pos->x = box[plane]; newx = &pos->z; newy = &pos->y; xDim = &box[PLUS_Z]; yDim = &box[PLUS_Y]; break; case PLUS_Y: case MINUS_Y: pos->y = box[plane]; newx = &pos->x; newy = &pos->z; xDim = &box[PLUS_X]; yDim = &box[PLUS_Z]; break; case PLUS_Z: case MINUS_Z: newx = &pos->x; newy = &pos->y; pos->z = box[plane]; xDim = &box[PLUS_X]; yDim = &box[PLUS_Y]; break; }
int infLoop = 2 * (xDim[MAX_VAL] - xDim[MIN_VAL] + 1) * (yDim[MAX_VAL] - yDim[MIN_VAL] + 1); int infLoopDetect = 0;
while( TRUE ) { // Pick a random node.
*newx = CPipesScreensaver::iRand2( xDim[MIN_VAL], xDim[MAX_VAL] ); *newy = CPipesScreensaver::iRand2( yDim[MIN_VAL], yDim[MAX_VAL] );
// If its empty, we're done.
if( GetNode(pos)->IsEmpty() ) { NodeVisited( pos ); return TRUE; } else { // Watch out for infinite loops! After trying for
// awhile, give up on the random search and look
// for the first empty node.
if ( ++infLoopDetect > infLoop ) {
// Do linear search for first empty node.
for ( *newx = xDim[MIN_VAL]; *newx <= xDim[MAX_VAL]; (*newx)++ ) { for ( *newy = yDim[MIN_VAL]; *newy <= yDim[MAX_VAL]; (*newy)++ ) { if( GetNode(pos)->IsEmpty() ) { NodeVisited( pos ); return TRUE; } } }
// There are no empty nodes in this plane.
return FALSE; } } } }
//-----------------------------------------------------------------------------
// Name: TakeClosestEmptyNode
// Desc: - Search for an empty node closest to supplied node position
// - Returns FALSE if couldn't find a node
// - Marks node as taken
// - mf: not completely opimized - if when dilating the box, a side gets
// clamped against the node array, this side will continue to be searched
//-----------------------------------------------------------------------------
static void DilateBox( int *box, IPOINT3D *bounds );
BOOL NODE_ARRAY::TakeClosestEmptyNode( IPOINT3D *newPos, IPOINT3D *pos ) { static int searchRadius = SS_MAX( m_numNodes.x, m_numNodes.y ) / 3;
// easy out
if( GetNode(pos)->IsEmpty() ) { NodeVisited( pos ); *newPos = *pos; return TRUE; }
int box[NUM_DIRS] = {pos->x, pos->x, pos->y, pos->y, pos->z, pos->z}; int clip[NUM_DIRS] = {0};
// do a random search on successively larger search boxes
for( int i = 0; i < searchRadius; i++ ) { // Increase box size
DilateBox( box, &m_numNodes ); // start looking in random 2D face of the box
int dir = CPipesScreensaver::iRand( NUM_DIRS ); for( int j = 0; j < NUM_DIRS; j++, dir = (++dir == NUM_DIRS) ? 0 : dir ) { if( FindRandomEmptyNode2D( newPos, dir, box ) ) return TRUE; } }
// nothing nearby - grab a random one
return FindRandomEmptyNode( newPos ); }
//-----------------------------------------------------------------------------
// Name: DilateBox
// Desc: - Increase box radius without exceeding bounds
//-----------------------------------------------------------------------------
static void DilateBox( int *box, IPOINT3D *bounds ) { int *min = (int *) &box[MINUS_X]; int *max = (int *) &box[PLUS_X]; int *boundMax = (int *) bounds; // boundMin always 0
for( int i = 0; i < 3; i ++, min+=2, max+=2, boundMax++ ) { if( *min > 0 ) (*min)--; if( *max < (*boundMax - 1) ) (*max)++; } }
|