|
|
//Copyright (c) 1998 - 1999 Microsoft Corporation
//
//This file contains wrapper C functions for CGlobal Object
//
#include "precomp.h"
#include "utils.h"
#ifndef TLSPERF
#include "global.h"
extern CGlobal *g_CGlobal; #else
#include "globalPerf.h"
extern CGlobalPerf *g_CGlobal; #endif
#include "assert.h"
// The following table translates an ascii subset to 6 bit values as follows
// (see rfc 1521):
//
// input hex (decimal)
// 'A' --> 0x00 (0)
// 'B' --> 0x01 (1)
// ...
// 'Z' --> 0x19 (25)
// 'a' --> 0x1a (26)
// 'b' --> 0x1b (27)
// ...
// 'z' --> 0x33 (51)
// '0' --> 0x34 (52)
// ...
// '9' --> 0x3d (61)
// '+' --> 0x3e (62)
// '/' --> 0x3f (63)
//
// Encoded lines must be no longer than 76 characters.
// The final "quantum" is handled as follows: The translation output shall
// always consist of 4 characters. 'x', below, means a translated character,
// and '=' means an equal sign. 0, 1 or 2 equal signs padding out a four byte
// translation quantum means decoding the four bytes would result in 3, 2 or 1
// unencoded bytes, respectively.
//
// unencoded size encoded data
// -------------- ------------
// 1 byte "xx=="
// 2 bytes "xxx="
// 3 bytes "xxxx"
#define CB_BASE64LINEMAX 64 // others use 64 -- could be up to 76
// Any other (invalid) input character value translates to 0x40 (64)
const BYTE abDecode[256] = { /* 00: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* 10: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* 20: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 62, 64, 64, 64, 63, /* 30: */ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 64, 64, 64, 64, 64, /* 40: */ 64, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 50: */ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 64, 64, 64, 64, 64, /* 60: */ 64, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /* 70: */ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 64, 64, 64, 64, 64, /* 80: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* 90: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* a0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* b0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* c0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* d0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* e0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, /* f0: */ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, };
const UCHAR abEncode[] = /* 0 thru 25: */ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" /* 26 thru 51: */ "abcdefghijklmnopqrstuvwxyz" /* 52 thru 61: */ "0123456789" /* 62 and 63: */ "+/";
DWORD LSBase64EncodeA( IN BYTE const *pbIn, IN DWORD cbIn, OUT CHAR *pchOut, OUT DWORD *pcchOut) { CHAR *pchOutT; DWORD cchOutEncode;
// Allocate enough memory for full final translation quantum.
cchOutEncode = ((cbIn + 2) / 3) * 4;
// and enough for CR-LF pairs for every CB_BASE64LINEMAX character line.
cchOutEncode += 2 * ((cchOutEncode + CB_BASE64LINEMAX - 1) / CB_BASE64LINEMAX);
pchOutT = pchOut; if (NULL == pchOut) { pchOutT += cchOutEncode; } else { DWORD cCol;
assert(cchOutEncode <= *pcchOut); cCol = 0; while ((long) cbIn > 0) // signed comparison -- cbIn can wrap
{ BYTE ab3[3];
if (cCol == CB_BASE64LINEMAX/4) { cCol = 0; *pchOutT++ = '\r'; *pchOutT++ = '\n'; } cCol++; memset(ab3, 0, sizeof(ab3));
ab3[0] = *pbIn++; if (cbIn > 1) { ab3[1] = *pbIn++; if (cbIn > 2) { ab3[2] = *pbIn++; } }
*pchOutT++ = abEncode[ab3[0] >> 2]; *pchOutT++ = abEncode[((ab3[0] << 4) | (ab3[1] >> 4)) & 0x3f]; *pchOutT++ = (cbIn > 1)? abEncode[((ab3[1] << 2) | (ab3[2] >> 6)) & 0x3f] : '='; *pchOutT++ = (cbIn > 2)? abEncode[ab3[2] & 0x3f] : '=';
cbIn -= 3; } *pchOutT++ = '\r'; *pchOutT++ = '\n'; assert((DWORD) (pchOutT - pchOut) <= cchOutEncode); } *pcchOut = (DWORD)(pchOutT - pchOut); return(ERROR_SUCCESS); }
DWORD LSBase64DecodeA( IN CHAR const *pchIn, IN DWORD cchIn, OUT BYTE *pbOut, OUT DWORD *pcbOut) { DWORD err = ERROR_SUCCESS; DWORD cchInDecode, cbOutDecode; CHAR const *pchInEnd; CHAR const *pchInT; BYTE *pbOutT;
// Count the translatable characters, skipping whitespace & CR-LF chars.
cchInDecode = 0; pchInEnd = &pchIn[cchIn]; for (pchInT = pchIn; pchInT < pchInEnd; pchInT++) { if (sizeof(abDecode) < (unsigned) *pchInT || abDecode[*pchInT] > 63) { // skip all whitespace
if (*pchInT == ' ' || *pchInT == '\t' || *pchInT == '\r' || *pchInT == '\n') { continue; }
if (0 != cchInDecode) { if ((cchInDecode % 4) == 0) { break; // ends on quantum boundary
}
// The length calculation may stop in the middle of the last
// translation quantum, because the equal sign padding
// characters are treated as invalid input. If the last
// translation quantum is not 4 bytes long, it must be 2 or 3
// bytes long.
if (*pchInT == '=' && (cchInDecode % 4) != 1) { break; // normal termination
} } err = ERROR_INVALID_DATA; goto error; } cchInDecode++; } assert(pchInT <= pchInEnd); pchInEnd = pchInT; // don't process any trailing stuff again
// We know how many translatable characters are in the input buffer, so now
// set the output buffer size to three bytes for every four (or fraction of
// four) input bytes.
cbOutDecode = ((cchInDecode + 3) / 4) * 3;
pbOutT = pbOut;
if (NULL == pbOut) { pbOutT += cbOutDecode; } else { // Decode one quantum at a time: 4 bytes ==> 3 bytes
assert(cbOutDecode <= *pcbOut); pchInT = pchIn; while (cchInDecode > 0) { DWORD i; BYTE ab4[4];
memset(ab4, 0, sizeof(ab4)); for (i = 0; i < min(sizeof(ab4)/sizeof(ab4[0]), cchInDecode); i++) { while ( sizeof(abDecode) > (unsigned) *pchInT && 63 < abDecode[*pchInT]) { pchInT++; } assert(pchInT < pchInEnd); ab4[i] = (BYTE) *pchInT++; }
// Translate 4 input characters into 6 bits each, and deposit the
// resulting 24 bits into 3 output bytes by shifting as appropriate.
// out[0] = in[0]:in[1] 6:2
// out[1] = in[1]:in[2] 4:4
// out[2] = in[2]:in[3] 2:6
*pbOutT++ = (BYTE) ((abDecode[ab4[0]] << 2) | (abDecode[ab4[1]] >> 4));
if (i > 2) { *pbOutT++ = (BYTE) ((abDecode[ab4[1]] << 4) | (abDecode[ab4[2]] >> 2)); } if (i > 3) { *pbOutT++ = (BYTE) ((abDecode[ab4[2]] << 6) | abDecode[ab4[3]]); } cchInDecode -= i; } assert((DWORD) (pbOutT - pbOut) <= cbOutDecode); } *pcbOut = (DWORD)(pbOutT - pbOut); error: return(err); }
#ifndef TLSPERF
CGlobal * GetGlobalContext(void) #else
CGlobalPerf * GetGlobalContext(void) #endif
{ return g_CGlobal; }
DWORD WINAPI ProcessThread(void *pData) { DWORD dwRetCode = ERROR_SUCCESS;
dwRetCode = ProcessRequest();
/*
DWORD dwTime = 1; HWND *phProgress = (HWND *)pData;
SendMessage(g_hProgressWnd, PBM_SETRANGE, 0, MAKELPARAM(0,PROGRESS_MAX_VAL)); //
// Increment the progress bar every second till you get Progress Event
//
SendMessage(g_hProgressWnd, PBM_SETPOS ,(WPARAM)1, 0); do { SendMessage(g_hProgressWnd, PBM_DELTAPOS ,(WPARAM)PROGRESS_STEP_VAL, 0); } while(WAIT_TIMEOUT == WaitForSingleObject(g_hProgressEvent,PROGRESS_SLEEP_TIME)); SendMessage(g_hProgressWnd, PBM_SETPOS ,(WPARAM)PROGRESS_MAX_VAL, 0);
*/
ExitThread(0);
return 0; }
static DWORD (*g_pfnThread)(void *); static void * g_vpData; LRW_DLG_INT CALLBACK ProgressProc( IN HWND hwnd, IN UINT uMsg, IN WPARAM wParam, IN LPARAM lParam );
DWORD ShowProgressBox(HWND hwnd, DWORD (*pfnThread)(void *vpData), DWORD dwTitle, DWORD dwProgressText, void * vpData) { DWORD dwReturn = ERROR_SUCCESS;
g_pfnThread = pfnThread; g_vpData = vpData;
DialogBox( GetGlobalContext()->GetInstanceHandle(), MAKEINTRESOURCE(IDD_AUTHENTICATE), hwnd, ProgressProc);
return dwReturn; }
LRW_DLG_INT CALLBACK ProgressProc( IN HWND hwnd, IN UINT uMsg, IN WPARAM wParam, IN LPARAM lParam ) { BOOL bStatus = FALSE; static int nCounter; static HWND hProgress; static HANDLE hThread;
if (uMsg == WM_INITDIALOG) { DWORD dwTID = 0;
ShowWindow(hwnd, SW_SHOWNORMAL);
SetTimer(hwnd, 1, 500, NULL);
hProgress = GetDlgItem(hwnd, IDC_PROGRESSBAR); hThread = CreateThread(NULL, 0, g_pfnThread, g_vpData, 0, &dwTID);
//Set the range & the initial position
SendMessage(hProgress, PBM_SETRANGE, 0, MAKELPARAM(0,PROGRESS_MAX_VAL)); SendMessage(hProgress, PBM_SETPOS ,(WPARAM)0, 0);
// Set Title & the Introductory text
// Create thread to process the request
} else if (uMsg == WM_CLOSE) { KillTimer(hwnd, 1); } else if (uMsg == WM_TIMER) { if (WAIT_OBJECT_0 != WaitForSingleObject(hThread, 0)) { nCounter++;
if (nCounter < PROGRESS_MAX_VAL-5) { SendMessage(hProgress, PBM_DELTAPOS ,(WPARAM)PROGRESS_STEP_VAL, 0); } } else { SendMessage(hProgress, PBM_SETPOS ,(WPARAM)PROGRESS_MAX_VAL, 0); CloseHandle(hThread); EndDialog(hwnd, 0); } }
return bStatus; }
void SetInstanceHandle(HINSTANCE hInst) { g_CGlobal->SetInstanceHandle(hInst); }
void SetLSName(LPTSTR lpstrLSName) { g_CGlobal->SetLSName(lpstrLSName); }
HINSTANCE GetInstanceHandle() { return g_CGlobal->GetInstanceHandle(); }
DWORD InitGlobal() { return g_CGlobal->InitGlobal(); }
DWORD CheckRequieredFields() { return g_CGlobal->CheckRequieredFields(); } //
// This function loads the Message Text from the String Table and displays
// the given message
//
int LRMessageBox(HWND hWndParent,DWORD dwMsgId,DWORD dwErrorCode /*=0*/) { return g_CGlobal->LRMessageBox(hWndParent,dwMsgId,dwErrorCode); }
//
// This function tries to connect to the LS using LSAPI and returns TRUE if
// successful to connect else returns FALSE
//
BOOL IsLSRunning() { return g_CGlobal->IsLSRunning(); }
//
// This function gets LS Certs and stores Certs & Cert Extensions in the
// CGlobal object. If no certs , it returns IDS_ERR_NO_CERT
//
//
// This function is used only in ONLINE mode to authenticate LS.
// Assumption - GetLSCertificates should have been called before calling
// this function.
//
DWORD AuthenticateLS() { return g_CGlobal->AuthenticateLS(); }
DWORD LRGetLastError() { return g_CGlobal->LRGetLastError(); }
TCHAR * GetRegistrationID(void) { return g_CGlobal->GetRegistrationID(); }
TCHAR * GetLicenseServerID(void) { return g_CGlobal->GetLicenseServerID(); }
void SetRequestType(DWORD dwMode) { g_CGlobal->SetRequestType(dwMode); }
int GetRequestType(void) { return g_CGlobal->GetRequestType(); }
BOOL IsOnlineCertRequestCreated() { return g_CGlobal->IsOnlineCertRequestCreated(); }
DWORD SetLRState(DWORD dwState) { return g_CGlobal->SetLRState(dwState); }
DWORD SetCertificatePIN(LPTSTR lpszPIN) { return g_CGlobal->SetCertificatePIN(lpszPIN); }
DWORD PopulateCountryComboBox(HWND hWndCmb) { return g_CGlobal->PopulateCountryComboBox(hWndCmb); }
DWORD GetCountryCode(CString sDesc,LPTSTR szCode) { return g_CGlobal->GetCountryCode(sDesc,szCode); }
DWORD PopulateProductComboBox(HWND hWndCmb) { return g_CGlobal->PopulateProductComboBox(hWndCmb); }
DWORD GetProductCode(CString sDesc,LPTSTR szCode) { return g_CGlobal->GetProductCode(sDesc,szCode); }
DWORD PopulateReasonComboBox(HWND hWndCmb, DWORD dwType) { return g_CGlobal->PopulateReasonComboBox(hWndCmb, dwType); }
DWORD GetReasonCode(CString sDesc,LPTSTR szCode, DWORD dwType) { return g_CGlobal->GetReasonCode(sDesc,szCode, dwType); }
DWORD ProcessRequest() { return g_CGlobal->ProcessRequest(); }
void LRSetLastRetCode(DWORD dwCode) { g_CGlobal->LRSetLastRetCode(dwCode); }
DWORD LRGetLastRetCode() { return g_CGlobal->LRGetLastRetCode(); }
void LRPush(DWORD dwPageId) { g_CGlobal->LRPush(dwPageId); }
DWORD LRPop() { return g_CGlobal->LRPop(); }
BOOL ValidateEmailId(CString sEmailId) { return g_CGlobal->ValidateEmailId(sEmailId); }
BOOL CheckProgramValidity(CString sProgramName) { return g_CGlobal->CheckProgramValidity(sProgramName); }
BOOL ValidateLRString(CString sStr) { return g_CGlobal->ValidateLRString(sStr); }
DWORD PopulateCountryRegionComboBox(HWND hWndCmb) { return g_CGlobal->PopulateCountryRegionComboBox(hWndCmb); }
DWORD SetLSLKP(TCHAR * tcLKP) { return g_CGlobal->SetLSLKP(tcLKP); }
DWORD PingCH(void) { return g_CGlobal->PingCH(); }
DWORD AddRetailSPKToList(HWND hListView, TCHAR * lpszRetailSPK) { return g_CGlobal->AddRetailSPKToList(hListView, lpszRetailSPK); }
void DeleteRetailSPKFromList(TCHAR * lpszRetailSPK) { g_CGlobal->DeleteRetailSPKFromList(lpszRetailSPK);
return; }
void LoadFromList(HWND hListView) { g_CGlobal->LoadFromList(hListView);
return; }
void UpdateSPKStatus(TCHAR * lpszRetailSPK, TCHAR tcStatus) { g_CGlobal->UpdateSPKStatus(lpszRetailSPK, tcStatus);
return; }
DWORD SetConfirmationNumber(TCHAR * tcConf) { return g_CGlobal->SetConfirmationNumber(tcConf); }
DWORD SetLSSPK(TCHAR * tcp) { return g_CGlobal->SetLSSPK(tcp); }
void SetCSRNumber(TCHAR * tcp) { g_CGlobal->SetCSRNumber(tcp);
return; }
TCHAR * GetCSRNumber(void) { return g_CGlobal->GetCSRNumber(); }
void SetWWWSite(TCHAR * tcp) { g_CGlobal->SetWWWSite(tcp);
return; }
TCHAR * GetWWWSite(void) { return g_CGlobal->GetWWWSite(); }
DWORD ResetLSSPK(void) { return g_CGlobal->ResetLSSPK();
}
void SetReFresh(DWORD dw) { g_CGlobal->SetReFresh(dw); }
DWORD GetReFresh(void) { return g_CGlobal->GetReFresh(); }
void SetModifiedRetailSPK(CString sRetailSPK) { g_CGlobal->SetModifiedRetailSPK(sRetailSPK); }
void GetModifiedRetailSPK(CString &sRetailSPK) { g_CGlobal->GetModifiedRetailSPK(sRetailSPK); }
void ModifyRetailSPKFromList(TCHAR * lpszOldSPK,TCHAR * lpszNewSPK) { g_CGlobal->ModifyRetailSPKFromList(lpszOldSPK,lpszNewSPK); }
DWORD ValidateRetailSPK(TCHAR * lpszRetailSPK) { return g_CGlobal->ValidateRetailSPK(lpszRetailSPK); }
DWORD GetCountryDesc(CString sCode,LPTSTR szDesc) { return g_CGlobal->GetCountryDesc(sCode, szDesc); }
DWORD CGlobal::SetEncodedInRegistry(LPCSTR lpszOID, LPCTSTR lpszValue) { HKEY hKey = NULL; DWORD dwDisposition = 0; DWORD dwRetCode = ERROR_SUCCESS; DWORD dwLen = 0; char * cpOut;
HCRYPTPROV hProv = NULL; HCRYPTKEY hCKey = NULL; HCRYPTHASH hHash = NULL;
PBYTE pbKey = NULL; DWORD cbKey = 0;
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { dwRetCode = GetLastError(); goto done; }
if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) { dwRetCode = GetLastError(); goto done; }
if(!CryptHashData(hHash, (BYTE *) lpszValue, lstrlen(lpszValue)*sizeof(TCHAR), 0)) { dwRetCode = GetLastError(); goto done; }
if(!CryptDeriveKey(hProv, CALG_RC4, hHash, CRYPT_EXPORTABLE, &hCKey)) { dwRetCode = GetLastError(); goto done; }
if(!CryptExportKey( hCKey, NULL, PUBLICKEYBLOB, 0, NULL, &cbKey)) { dwRetCode = GetLastError(); if(dwRetCode != ERROR_SUCCESS && dwRetCode != ERROR_MORE_DATA) goto done;
pbKey = (PBYTE)HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,cbKey);
if(!CryptExportKey( hCKey, NULL, PUBLICKEYBLOB, 0, pbKey, &cbKey)) { dwRetCode = GetLastError(); goto done; } }
dwRetCode = ConnectToLSRegistry(); if(dwRetCode != ERROR_SUCCESS) { goto done; }
dwRetCode = RegCreateKeyEx ( m_hLSRegKey, REG_LRWIZ_PARAMS, 0, NULL, REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &hKey, &dwDisposition); if(dwRetCode != ERROR_SUCCESS) { LRSetLastError(dwRetCode); dwRetCode = IDS_ERR_REGCREATE_FAILED; goto done; }
if (_tcslen(lpszValue) != 0) { LSBase64EncodeA ((PBYTE) lpszValue, _tcslen(lpszValue)*sizeof(TCHAR), NULL, &dwLen);
cpOut = new char[dwLen+1]; if (cpOut == NULL) { dwRetCode = IDS_ERR_OUTOFMEM; goto done; }
memset(cpOut, 0, dwLen+1); LSBase64EncodeA ((PBYTE) lpszValue, _tcslen(lpszValue)*sizeof(TCHAR), cpOut, &dwLen); } else { cpOut = new char[2]; memset(cpOut, 0, 2); } RegSetValueExA ( hKey, lpszOID, 0, REG_SZ, (PBYTE) cpOut, dwLen ); delete cpOut;
done: if (hKey != NULL) { RegCloseKey(hKey); }
DisconnectLSRegistry();
return dwRetCode; }
|