
Intel DMI Provider User
Documentation

Version 0.3
May 1, 1998
Intel Corporation

Table Of Contents

DMI PROVIDER ..4

SETTING UP THE DMI PROVIDER ...5

MAPPING DMI TO THE CIM SCHEMA ..7

DMI OPERATIONS USING WBEMDMIP.DLL..9

DMITEST CODE SAMPLE...11

USING THE WBEMTEST* APPLICATION TO VIEW DMI DATA...............13

SUBSCRIBING FOR DMI EVENTS AND NOTIFICATIONS..........................13

Introduction
The DMI provider gives (WBEM*) applications the ability to interact with the DMI
2.0 Service Providers running on the local or remote platforms. Wbem applications
will be able to access and control the DMI enabled platforms. For additional
information, see DMI provider.
For additional information on DMI, visit the DMTF website at http://www.dmtf.org.
For additional information on WBEM, visit the WBEM website at
http://www.microsoft.com/management/wbem/default.htm.

Desktop Management Interface (DMI)
Support
The DMI provider is located between CIMOM and the DMI service providers as
illustrated in the following diagram.

CIMOM

 DMI 2.0 Service Provider

DMI Provider DMI 2.0 Service Provider

Network Boundary

CIMOM COM Interface

RPC RPC

CIMOM Management
Application

CIMOM COM Interface

DMI Provider
The WBEM DMI provider is capable of acting as:
•A dynamic class provider that enumerates all classes in the DmiNodes

namespace and generates class definitions.
•An instance provider that enumerates all instances of a particular class in

the DmiNodes namespace.
•An event provider that provides DMI events for the DmiNodes

namespace.

A WBEM namespace must be created for each managed node. Each node's
namespace resides in the \Default\DmiNodes namespace.
The DMI provider manipulates CIM class definitions. Therefore, the DMI
Management Information Format (MIF) Components, Groups, and Attributes map to
CIM classes, instances, and properties, respectively. For more information on how
this mapping is done, see Mapping DMI to the CIM Schema.
With the DMI provider, WBEM applications will be able to perform the following
operations:

• Access all DMI 2.0 Component, Group, and Attribute data.
• Add and Delete DMI Components.
• Add and Delete DMI Groups.
• Add and Delete the Rows of a DMI tablular group.
• Modify the writeable Attribute data.
• Set the language mapping of a DMI Component.
• Add or Delete Languages from a DMI Component.
• Handle DMI Events.

Location of the DMI Provider components
The MOF file and executables for the DMI Provider are in the WBEM directory.

The software components comprising the DMI Provider
• WBEMDMIP.DLL, the main DMI Provider module responsible for schema
translation, communication with WBEM and DMI, and construction of dynamic
classes and instances.
• WBEMDMIP.MOF, the sample MOF file shipped with the DMI Provider
describing the DMI node namespace for the local node and registering the DMI
Provider with WBEM.
• MOTDMIENGINE.OCX, an ActiveX Control used by the DMI Provider to
establish communications and interactions with the DMI Service Providers.
• WCDMI.DLL, WCDMIDCE.DLL, WDMIUTIL.DLL, the DLL modules used
by the MOTDMIENGINE.OCX to handle RPC connection and tear-down with DMI
2.0 Service Providers on the local and remote nodes.

Setting Up the DMI Provider
To set up the DMI provider create a MOF file and perform the following
steps:
1. Create the \DmiNodes namespace. To create a namespace, create an instance of

the __NAMESPACE class. The \DmiNodes namespace must reside in the
\Root namespace:

 #pragma namespace("\\\\.\\root")
 instance of __Namespace
 {
 Name = "DmiNodes";

 };

2. Create a namespace for each managed node under DmiNodes. Each namespace
representing a DMI node must include a class and an instance that describes
the node, as well as instances of the required provider registration class.

#pragma namespace("\\\\.\\root\\DmiNodes")
instance of __NameSpace
{

Name = "ManagedNode1"; // Logical name given to a
// remote node

};

3. Create the class DmiNode. This class must have the qualifier singleton and the
string property called “NetworkAddress”:

 [singleton]
 class DmiNode
 {
 string NetworkAddress;
 };

4. Create an instance of DmiNode. Set the NetworkAddress property to the

network name or address of the managed node:

 instance of DmiNode
 {
 // Network address for ManagedNode1 or its machine name

 NetworkAddress = "206.170.168.35”
 };

5. Create an instance of __Win32Provider to register the DMI provider to handle
class and instance operations for the node created above:

 #pragma namespace("\\\\.\\root\\DmiNodes\\ManagedNode1")
 instance of __Win32Provider As $Provider
 {

 Name = "WbemDmip" ;// Provider DLL nameClsId =
"{DE065A70-19B5-11D1-B30C-00609778D668}" ;

 };

6. Create an instance of __InstanceProviderRegistration to tell the Common

Information Model Object Manager (CIMOM*) that the provider supports
instance operations:

 {
 Provider = $Provider; SupportsGet = TRUE; SupportsPut =

TRUE; SupportsDelete = TRUE; SupportsEnumeration = TRUE;};

7. Create an instance of __MethodProviderRegistration to tell CIMOM that the

provider handles methods:
 instance of __MethodProviderRegistration{ Provider = $Provider;};

8. Create an instance of __ClassProviderRegistration to tell CIMOM that the
provider supports class operations:

 instance of __ClassProviderRegistration{ Provider = $Provider;
 SupportsGet = TRUE;
 SupportsPut = FALSE;
 SupportsDelete = TRUE;
 SupportsEnumeration = TRUE;

 QuerySupportLevels = NULL ; ResultSetQueries = { "Select *
From meta_class Where __this isa \"DmiComponent\"" ,"Select *
From meta_class Where __this isa \"DmiGroupRoot\"",
 "Select * From meta_class Where __this isa \"DmiBindingRoot\""
,
 "Select * From meta_class Where __this isa \"DmiNodeData\"" ,
 "Select * From meta_class Where __this isa \"DmiLanguage\"" ,
 "Select * From meta_class Where __this isa \"DmiEvent\"" ,
 "Select * From meta_class Where __this isa
"DmiAddMethodParams\""
 "Select * From meta_class Where __this isa
\"DmiGetEnumParams\"",
 "Select * From meta_class Where __this isa
\"DmiLanguageMethodsParams\""

 } ;
 };

9. Create an instance of __Win32Provider to tell CIMOM that the provider
supports events:

 instance of __Win32Provider as $EventProv{ Name =
"WbemDmiEventp" ; ClsId = "{B21FBFA0-1B39-11d1-B317-
00609778D668}" ;};
10. Create an instance of __EventProviderRegistration to tell CIMOM the types

of events that the provider can handle:
 Instance of __EventProviderRegistration
 {
 Provider = "WbemDmiEventp";
 EventQueryList = {
 "select * from DmiEvent",

 "select * from __InstanceCreationEvent where TargetInstance
is a \"DmiComponent\"",
 "select * from __InstanceDeletionEvent where TargetInstance
is a \"DmiComponent\"",
 "select * from __InstanceCreationEvent where TargetInstance
is a \"DmiLanguage\"",
 "select * from __InstanceDeletionEvent where TargetInstance
is a \"DmiLanguage\""

 };
 };

 Alternately, you can use the WBEM Developer Studio to create namespaces and the
required class and instance definitions. For instructions, see the WBEM SDK
Applications Guide for instructions. See the sample MOF file, WBEMDMIP.MOF
included with the WBEM SDK.

11. After you create a MOF for a managed node, you must submit the file to
WBEM's MOF compiler.
mofcomp <MOF-file>

Mapping DMI To The CIM Schema
The WBEM DMI Provider uses the following schema to represent the MIF
component group attribute information:

DmiNode
Static class defined in MOF. Used to establish the network address of the
managed node.

DmiNodeData
Dynamic singleton class with a dynamic instance. Contains DmiGetConfig data.
Has methods that allow you to add and delete components, and set the default
language.

DmiComponent
A dynamic class with dynamic instances. Contains component and component
ID group data. Has methods that allow you to add a group, add and delete a
language, and extract the component ID group attribute enumeration.

DmiLanguage
A dymanic class with dynamic instances. Contains language data.

DmiGroupRoot
This is an abstract class that does not have any instances. All dynamic group
classes are derived from this class.

Dynamic DmiGroup Classes
A dynamic class is created for each group on the managed node. Each dynamic
group class is given a name in the form:

 Component<Component Id>__Group<Group Id>__<Class String>.

A dynamic instance is created for each row of a tabular group. For a scalar
group, only one instance is created.

DmiBindingRoot
This is an abstract class from which all bindings in the namespace are derived.
The classes derived from DmiBindingRoot are used to bind a DmiComponent
class to a DmiNode class; a DmiGroup class to a DmiComponent class, etc.

DmiLanguageBinding
Instances of this dynamic class bind DmiLanguage instances to instances of
DmiComponent.

Dynamic DmiGroupBinding Classes
A dynamic group binding class is created for each group on the managed node.
Each dynamic group binding class is given a name in the form:

Component<Component Id>__Group<Group Id>__<Class String>__Binding.

Dynamic instances of these classes are created for each row of a tabular group.
For a scalar group, only one instance is created. An instance of a dynamic group
binding class binds an instance of a dynamic group class to an instance of a
DmiComponent.

DmiAddMethodParams
Instances of this dynamic class contain the parameters required by the add
language, add group, and delete language methods.

DmiGetEnumParams
Instances of this dynamic class contain the parameters required by the get
attribute enumeration method.

DmiEnum class
A dynamic class created for attribute enumeration. Instances of this class
contain the value string pair of a DMI attribute's enumeration.

DmiLanguageMethodParams
Instances of this dynamic class are used in setting the default language.

DmiEvent
Instances of this dynamic class are generated when a DMI event is generated.

DMI Operations using Wbemdmip.dll
This section briefly describes the WBEM methods used for common DMI
management tasks. See the DMITEST sample application included in this package
for an example of how to use the DMI access methods.

DmiGetVersion
Use IWbemServices::CreateInstanceEnum with the class set to the singleton
instance of DmiNodeData.

DmiGetConfig
Use IWbemServices::GetObject with the path for the singleton instance of
DmiNodeData.

DmiSetConfig
Use the IWbemServices::ExecMethod with the path for the singleton instance
of DmiNodeData, the method SetDefaultLanguage, and the instance of
DmiLanguageMethodParams with the Language property set to the desired
language string.

DmiListComponents
Use the IWbemServices::CreateInstanceEnum method with the class set to
DmiComponent.

DmiListLanguages

Use the IWbemServices::CreateInstanceEnum method with the class set to
DmiLanguage.

DmiListGroups
Use the IWbemServices::CreateClassEnum method with the superclass set to
DmiGroupRoot.

DmiListAttributes
Use the IWbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

DmiGetAttribute
Use the IWbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

Note:
This gives you all the attributes in the group. There is no way to access just one
attribute. Once you get the object that contains all the attributes, you can
perform the Get operations on the object to get the class property representing a
given DMI attribute.

DmiSetAttribute
Use the IWbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class. Use the WBEM’s PUT method on
the object to modify the instance returned, then use
IWbemServices::PutInstance.

DmiGetMultiple
Use the IWbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

Note:
This gives you all the attributes in the group.

DmiSetMultiple
Use the IWbemServices::GetObject method with the path set to the desired instance
of the desired dynamic group class. Modify the instance returned. Then use
IWbemServices::PutInstance.
DmiAddRow
Use the IWbemServices::GetObject method with the path set to the desired instance
of the desired dynamic group class. Modify the instance returned then use
IWbemServices::PutInstance.
Note:

The RowId property must be changed to a nonexistent RowId.

DmiDeleteRow

Use the IWbemServices::DeleteInstance with the path set to the desired
dynamic instance of the dynamic class.

DmiAddComponent
Use the IWbemServices::ExecMethod with the path for the singleton instance
of DmiNodeData, the method of AddComponent, and the MifFile property of
the instance of the DmiAddMethodParams set to the desired MIF file path.

DmiAddLanguage
Use the IWbemServices::ExecMethod with the path to the instance of the
component to which the language is to be added. Set the method to
AddLanguage, and the MifFile property of the instance of the
DmiAddMethodParams set to the desired MIF file path.

DmiAddGroup
Use the IWbemServices::ExecMethod with the path to the instance of the
component to which the language is to be added. Set the method to AddGroup,
and the MifFile property of the instance of the DmiAddMethodParams set to
the desired MIF file path.

DmiDeleteComponent
Use IWbemServices::DeleteInstance with the path set to the desired dynamic
instance of the DmiComponent class.

DmiDeleteLanguage
Use the IWbemServices::ExecMethod with the path to the instance of
component to which the language is going to be deleted. Set the method to
DeleteLanguage, and the Language property of the instance of the
DmiLanguageMethodParams set to the language string to be deleted.

DmiDeleteGroup
Use IWbemServices::DeleteClass with the path set to the desired dynamic
group class.

DMITEST Code Sample
This section describes the dmitest code sample (DMITEST.EXE), a Win32 console
application that uses the WBEM API to access and manipulate a DMI 2.0 enabled
Win32 platform. The sample includes examples of DMI 2.0 MIF files that will be
used to install components in the DMI database.
The same code reads input data from a script file, dmitest.scr, processes the
command script, and makes appropriate WBEM API calls to access the DMI
database. The application then will store the output data into a file called
dmitest.out.

The dmitest application relies on the user to ensure that the DMI 2.0 Service Provider
is already running on the system and that the WBEMDMIP.MOF file has already
been compiled and installed into the CIMOM’s repository to enable DMI operations.

The dmitest code sample was developed using Microsoft Visual C++ version 5.0.

The DMITEST’ s MIF data
The application uses two MIF files dbtypes1.mif and tempcom1.mif to install three
components in the DMI database and access them through the DMI provider. The
dbtypes1.mif is installed twice. The DMITEST.SCR script uses hard coded path of
C:\TESTMIFS for the location of the above two MIF files. To access the MIF files
from a different directory, change the DMITEST.SCR file to look for the correct
path.

Location of the Dmitest Code sample
The source files and executables for the Dmitest Code sample are in the subdirectory

\WBEM\SDK\COM\DMITEST

The files included in this sample
• DMITEST.CPP, the main source file for the DMITEST application responsible

for reading and processing command scripts from the DMITEST.SCR input file
and submitting DMI requests to WBEM.

• DMITEST.H, the header file for DMITEST.CPP module.
• DMITEST.SCR, the file containing the DMI command scripts processed by the

DMITEST application.
• DMITEST.OUT, the DMITEST application generated output file containing the

results from executing the DMI service requests.
• DATATYPES.CPP, a module that contains code for manipulating the OLE data

types used by the DMITEST.CPP module.
• DATATYPES.H, the header file for DATATYPES.CPP module.
• DEFINES.H, a header file containing definitions used to turn off some sections

of the WINDOWS.H header file that are not used by the application.
• WBEMSVC.H, the header file containing the CIMOM interface definitions.
• DBTYPES1.MIF, the MIF file used to install a DMI component called “First

Database Types MIF”
• TEMPCOM1.MIF, a MIF file used to install a DMI component called “Test

System Temporary Component”
• DMITEST.DSP, DMITEST.DSW, the Visual C++ 5.0 project file used to build

the DMITEST.EXE executable.

Building and using the DMITEST Code sample with Visual
C++ * v5.0 IDE

To build the Dmitest module, perform these steps:
1. Run the Microsoft Visual C++ 5.0 Development Studio program.
2. Load the DMITEST.DSP project file.
3. From the BUILD menu, select SETTINGS. Choose the Preprocessor option from

the C/C++ Tabbed dialog box. Set the Additional Include Directory entry to the
INCLUDE directory of the WBEM SDK installed on your system.

4. Replace the WBEMUUID.LIB module in the project files list with the one in the
LIB directory of the WBEM SDK installed on your system. To build this library,
run the “nmake” program from the \wbem\include subdirectory.

5. From the BUILD menu, select UPDATE ALL DEPENDENCIES.
6. Rebuild the project to generate the DMITEST.EXE module.
7. Verify that DMITEST.SCR file is in the same directory as the DMITEST.EXE

module.
8. Run the DMITEST application and view DMITEST.OUT file for the results after

the program terminates.

9. Open the DMITEST.CPP module and set breakpoints on the ProcessScriptFile()
function, run the DMITEST application again, and observe how the application
accesses DMI information through WBEM.

Using The WBEMTEST* Application To View DMI
Data
To view the DMI data on the local or remote node, connect to the machines residing
in the DMINODES namespace. For example, to view the DMI data on the local
machine, use the following connect string:

Root\dminodes\local
After you establish connection, you can query and view the DMI classes specified
earlier in this document. For example, to view a list of the DMI components
installed in the DMI database, click on the “EnumInstances” button, and enter
“dmicomponent” without quotes for the class name. To view a list of the DMI
groups, click “EnumClasses” button, and enter “dmigrouproot” without quotes for the
class name.

Subscribing For DMI Events and Notifications
You can use the WBEMTEST application to subscribe for DMI events and
notifications. To subscribe for events, enable the “Execute asynchronously” check
box, click on the “Notification Query” button and enter the appropriate event
subscription queries. The following example shows how to subscribe for a
“DmiComponent Added” notification:

Select * from __InstanceCreationEvent Where TargetInstance isa “DmiComponent”
The following example shows how to subscribe for a “DmiComponent Added”
notification:

Select * from __InstanceDeletionEvent Where TargetInstance isa “DmiComponent”

The “DmiGroup Added/Deleted” notifications map to ClassCreation and
ClassDeletion events in CIMOM. Since CIMOM does not support the
ClassCreation and ClassDeletion events, the DMI provider does not
support the above DMI group notifications.

The following example shows how to subscribe for all kinds of DMI extrinsic events
including the extrinsic DMI events:

Select * from DmiEvent

Copyright c 1998 Intel Corporation. All rights reserved.

*Other products and corporate names may be trademarks of other companies and are
used only for explanation and to the owners' benefit, without intent to infringe.

Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497. Intel
Corporation assumes no responsibility for errors or omissions in this document; nor does
Intel make any commitment to update the information contained herein.

