/*** *exp.c - exponential * * Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved. * *Purpose: * Compute exp(x) * *Revision History: * 8-15-91 GDP written * 12-21-91 GDP support IEEE exceptions * 02-03-92 GDP added _exphlp for use by exp, sinh, and cosh * 02-06-95 JWM Mac merge * 10-07-97 RDL Added IA64. * *******************************************************************************/ #include #include #if defined(_M_IA64) #pragma function(exp) #endif double _exphlp(double, int *); /* * Thresholds for over/underflow that results in an adjusted value * too big/small to be represented as a double. * OVFX: ln(XMAX * 2^IEEE_ADJ) * UFLX: ln(XIN * 2^(-IEEE_ADJ) */ static _dbl const ovfx = {SET_DBL(0x40862e42, 0xfefa39f8)}; /* 709.782712893385 */ static _dbl const uflx = {SET_DBL(0xc086232b, 0xdd7abcda)}; /* -708.396418532265 */ #define OVFX ovfx.dbl #define UFLX uflx.dbl static double const EPS = 5.16987882845642297e-26; /* 2^(-53) / 2 */ static double const LN2INV = 1.442695040889634074; /* 1/ln(2) */ static double const C1 = 0.693359375000000000; static double const C2 = -2.1219444005469058277e-4; /* constants for the rational approximation */ static double const p0 = 0.249999999999999993e+0; static double const p1 = 0.694360001511792852e-2; static double const p2 = 0.165203300268279130e-4; static double const q0 = 0.500000000000000000e+0; static double const q1 = 0.555538666969001188e-1; static double const q2 = 0.495862884905441294e-3; #define P(z) ( (p2 * (z) + p1) * (z) + p0 ) #define Q(z) ( (q2 * (z) + q1) * (z) + q0 ) /*** *double exp(double x) - exponential * *Purpose: * Compute the exponential of a number. * The algorithm (reduction / rational approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: O, U, P, I * *******************************************************************************/ double exp (double x) { uintptr_t savedcw; int newexp; double result; /* save user fp control word */ savedcw = _maskfp(); if (IS_D_SPECIAL(x)){ switch (_sptype(x)) { case T_PINF: RETURN(savedcw,x); case T_NINF: RETURN(savedcw,0.0); case T_QNAN: return _handle_qnan1(OP_EXP, x, savedcw); default: //T_SNAN return _except1(FP_I, OP_EXP, x, _s2qnan(x), savedcw); } } if (x == 0.0) { RETURN(savedcw, 1.0); } if (x > OVFX) { // even after scaling the exponent of the result, // it is still too large. // Deliver infinity to the trap handler return _except1(FP_O | FP_P, OP_EXP, x, D_INF, savedcw); } if (x < UFLX) { // even after scaling the exponent of the result, // it is still too small. // Deliver 0 to the trap handler return _except1(FP_U | FP_P, OP_EXP, x, 0.0, savedcw); } if (ABS(x) < EPS) { result = 1.0; } else { result = _exphlp(x, &newexp); if (newexp > MAXEXP) { result = _set_exp(result, newexp-IEEE_ADJUST); return _except1(FP_O | FP_P, OP_EXP, x, result, savedcw); } else if (newexp < MINEXP) { result = _set_exp(result, newexp+IEEE_ADJUST); return _except1(FP_U | FP_P, OP_EXP, x, result, savedcw); } else result = _set_exp(result, newexp); } RETURN_INEXACT1(OP_EXP, x, result, savedcw); } /*** *double _exphlp(double x, int * pnewexp) - exp helper routine * *Purpose: * Provide the mantissa and the exponent of e^x * *Entry: * x : a (non special) double precision number * *Exit: * *newexp: the exponent of e^x * return value: the mantissa m of e^x scaled by a factor * (the value of this factor has no significance. * The mantissa can be obtained with _set_exp(m, 0). * * _set_exp(m, *pnewexp) may be used for constructing the final * result, if it is within the representable range. * *Exceptions: * No exceptions are raised by this function * *******************************************************************************/ double _exphlp(double x, int * pnewexp) { double xn; double g,z,gpz,qz,rg; int n; xn = _frnd(x * LN2INV); n = (int) xn; /* assume guard digit is present */ g = (x - xn * C1) - xn * C2; z = g*g; gpz = g * P(z); qz = Q(z); rg = 0.5 + gpz/(qz-gpz); n++; *pnewexp = _get_exp(rg) + n; return rg; }