//==========================================================================; // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY // KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR // PURPOSE. // // Copyright (c) 1992 - 1997 Microsoft Corporation. All Rights Reserved. // //--------------------------------------------------------------------------; // Base class hierachy for streams architecture, December 1994 //===================================================================== //===================================================================== // The following classes are declared in this header: // // // CBaseMediaFilter Basic IMediaFilter support (abstract class) // CBaseFilter Support for IBaseFilter (incl. IMediaFilter) // CEnumPins Enumerate input and output pins // CEnumMediaTypes Enumerate the preferred pin formats // CBasePin Abstract base class for IPin interface // CBaseOutputPin Adds data provider member functions // CBaseInputPin Implements IMemInputPin interface // CMediaSample Basic transport unit for IMemInputPin // CBaseAllocator<_F> General list guff for most allocators // CMemAllocator Implements memory buffer allocation // //===================================================================== //===================================================================== void WINAPI CopyMediaType(AM_MEDIA_TYPE *pmtTarget, const AM_MEDIA_TYPE *pmtSource) { *pmtTarget = *pmtSource; if (pmtSource->cbFormat != 0) { _ASSERTE(pmtSource->pbFormat != NULL); pmtTarget->pbFormat = (PBYTE)CoTaskMemAlloc(pmtSource->cbFormat); if (pmtTarget->pbFormat == NULL) { pmtTarget->cbFormat = 0; } else { CopyMemory((PVOID)pmtTarget->pbFormat, (PVOID)pmtSource->pbFormat, pmtTarget->cbFormat); } } if (pmtTarget->pUnk != NULL) { pmtTarget->pUnk->AddRef(); } } AM_MEDIA_TYPE * WINAPI CreateMediaType(AM_MEDIA_TYPE *pSrc) { _ASSERTE(pSrc); // Allocate a block of memory for the media type AM_MEDIA_TYPE *pMediaType = (AM_MEDIA_TYPE *)CoTaskMemAlloc(sizeof(AM_MEDIA_TYPE)); if (pMediaType == NULL) { return NULL; } // Copy the variable length format block CopyMediaType(pMediaType,pSrc); return pMediaType; } void WINAPI FreeMediaType(AM_MEDIA_TYPE& mt) { if (mt.cbFormat != 0) { CoTaskMemFree((PVOID)mt.pbFormat); // Strictly unnecessary but tidier mt.cbFormat = 0; mt.pbFormat = NULL; } if (mt.pUnk != NULL) { mt.pUnk->Release(); mt.pUnk = NULL; } } void WINAPI DeleteMediaType(AM_MEDIA_TYPE *pmt) { // allow NULL pointers for coding simplicity if (pmt == NULL) { return; } FreeMediaType(*pmt); CoTaskMemFree((PVOID)pmt); } // HACK to make sure the right functions get created for our // concrete objects void MyCreateHackAllocator() { new CComObject; new CComAggObject(NULL); new CAMMediaSample; } #if 0 #define CONNECT_TRACE_LEVEL 3 //===================================================================== //===================================================================== // Implements CBaseMediaFilter //===================================================================== //===================================================================== /* Constructor */ CBaseMediaFilter::CBaseMediaFilter(const TCHAR *pName, LPUNKNOWN pUnk, CCritSec *pLock, REFCLSID clsid) : CUnknown(pName, pUnk), m_pLock(pLock), m_clsid(clsid), m_State(State_Stopped), m_pClock(NULL) { } /* Destructor */ CBaseMediaFilter::~CBaseMediaFilter() { // must be stopped, but can't call Stop here since // our critsec has been destroyed. /* Release any clock we were using */ if (m_pClock) { m_pClock->Release(); m_pClock = NULL; } } /* Override this to say what interfaces we support and where */ STDMETHODIMP CBaseMediaFilter::NonDelegatingQueryInterface( REFIID riid, void ** ppv) { if (riid == IID_IMediaFilter) { return GetInterface((IMediaFilter *) this, ppv); } else if (riid == IID_IPersist) { return GetInterface((IPersist *) this, ppv); } else { return CUnknown::NonDelegatingQueryInterface(riid, ppv); } } /* Return the filter's clsid */ STDMETHODIMP CBaseMediaFilter::GetClassID(CLSID *pClsID) { CheckPointer(pClsID,E_POINTER); ValidateReadWritePtr(pClsID,sizeof(CLSID)); *pClsID = m_clsid; return NOERROR; } /* Override this if your state changes are not done synchronously */ STDMETHODIMP CBaseMediaFilter::GetState(DWORD dwMSecs, FILTER_STATE *State) { UNREFERENCED_PARAMETER(dwMSecs); CheckPointer(State,E_POINTER); ValidateReadWritePtr(State,sizeof(FILTER_STATE)); *State = m_State; return S_OK; } /* Set the clock we will use for synchronisation */ STDMETHODIMP CBaseMediaFilter::SetSyncSource(IReferenceClock *pClock) { CAutoLock cObjectLock(m_pLock); // Ensure the new one does not go away - even if the same as the old if (pClock) { pClock->AddRef(); } // if we have a clock, release it if (m_pClock) { m_pClock->Release(); } // Set the new reference clock (might be NULL) // Should we query it to ensure it is a clock? Consider for a debug build. m_pClock = pClock; return NOERROR; } /* Return the clock we are using for synchronisation */ STDMETHODIMP CBaseMediaFilter::GetSyncSource(IReferenceClock **pClock) { CheckPointer(pClock,E_POINTER); ValidateReadWritePtr(pClock,sizeof(IReferenceClock *)); CAutoLock cObjectLock(m_pLock); if (m_pClock) { // returning an interface... addref it... m_pClock->AddRef(); } *pClock = (IReferenceClock*)m_pClock; return NOERROR; } /* Put the filter into a stopped state */ STDMETHODIMP CBaseMediaFilter::Stop() { CAutoLock cObjectLock(m_pLock); m_State = State_Stopped; return S_OK; } /* Put the filter into a paused state */ STDMETHODIMP CBaseMediaFilter::Pause() { CAutoLock cObjectLock(m_pLock); m_State = State_Paused; return S_OK; } // Put the filter into a running state. // The time parameter is the offset to be added to the samples' // stream time to get the reference time at which they should be presented. // // you can either add these two and compare it against the reference clock, // or you can call CBaseMediaFilter::StreamTime and compare that against // the sample timestamp. STDMETHODIMP CBaseMediaFilter::Run(REFERENCE_TIME tStart) { CAutoLock cObjectLock(m_pLock); // remember the stream time offset m_tStart = tStart; if (m_State == State_Stopped){ HRESULT hr = Pause(); if (FAILED(hr)) { return hr; } } m_State = State_Running; return S_OK; } // // return the current stream time - samples with start timestamps of this // time or before should be rendered by now HRESULT CBaseMediaFilter::StreamTime(CRefTime& rtStream) { // Caller must lock for synchronization // We can't grab the filter lock because we want to be able to call // this from worker threads without deadlocking if (m_pClock == NULL) { return VFW_E_NO_CLOCK; } // get the current reference time HRESULT hr = m_pClock->GetTime((REFERENCE_TIME*)&rtStream); if (FAILED(hr)) { return hr; } // subtract the stream offset to get stream time rtStream -= m_tStart; return S_OK; } //===================================================================== //===================================================================== // Implements CBaseFilter //===================================================================== //===================================================================== /* Override this to say what interfaces we support and where */ STDMETHODIMP CBaseFilter::NonDelegatingQueryInterface(REFIID riid, void **ppv) { /* Do we have this interface */ if (riid == IID_IBaseFilter) { return GetInterface((IBaseFilter *) this, ppv); } else if (riid == IID_IMediaFilter) { return GetInterface((IMediaFilter *) this, ppv); } else if (riid == IID_IPersist) { return GetInterface((IPersist *) this, ppv); } else if (riid == IID_IAMovieSetup) { return GetInterface((IAMovieSetup *) this, ppv); } else { return CUnknown::NonDelegatingQueryInterface(riid, ppv); } } /* Constructor */ CBaseFilter::CBaseFilter(const TCHAR *pName, LPUNKNOWN pUnk, CCritSec *pLock, REFCLSID clsid) : CUnknown( pName, pUnk ), m_pLock(pLock), m_clsid(clsid), m_State(State_Stopped), m_pClock(NULL), m_pGraph(NULL), m_pSink(NULL), m_pName(NULL), m_PinVersion(1) { _ASSERTE(pLock != NULL); } /* Passes in a redundant HRESULT argument */ CBaseFilter::CBaseFilter(TCHAR *pName, LPUNKNOWN pUnk, CCritSec *pLock, REFCLSID clsid, HRESULT *phr) : CUnknown( pName, pUnk ), m_pLock(pLock), m_clsid(clsid), m_State(State_Stopped), m_pClock(NULL), m_pGraph(NULL), m_pSink(NULL), m_pName(NULL), m_PinVersion(1) { _ASSERTE(pLock != NULL); UNREFERENCED_PARAMETER(phr); } /* Destructor */ CBaseFilter::~CBaseFilter() { // NOTE we do NOT hold references on the filtergraph for m_pGraph or m_pSink // When we did we had the circular reference problem. Nothing would go away. if (m_pName) delete[] m_pName; // must be stopped, but can't call Stop here since // our critsec has been destroyed. /* Release any clock we were using */ if (m_pClock) { m_pClock->Release(); m_pClock = NULL; } } /* Return the filter's clsid */ STDMETHODIMP CBaseFilter::GetClassID(CLSID *pClsID) { CheckPointer(pClsID,E_POINTER); ValidateReadWritePtr(pClsID,sizeof(CLSID)); *pClsID = m_clsid; return NOERROR; } /* Override this if your state changes are not done synchronously */ STDMETHODIMP CBaseFilter::GetState(DWORD dwMSecs, FILTER_STATE *State) { UNREFERENCED_PARAMETER(dwMSecs); CheckPointer(State,E_POINTER); ValidateReadWritePtr(State,sizeof(FILTER_STATE)); *State = m_State; return S_OK; } /* Set the clock we will use for synchronisation */ STDMETHODIMP CBaseFilter::SetSyncSource(IReferenceClock *pClock) { CAutoLock cObjectLock(m_pLock); // Ensure the new one does not go away - even if the same as the old if (pClock) { pClock->AddRef(); } // if we have a clock, release it if (m_pClock) { m_pClock->Release(); } // Set the new reference clock (might be NULL) // Should we query it to ensure it is a clock? Consider for a debug build. m_pClock = pClock; return NOERROR; } /* Return the clock we are using for synchronisation */ STDMETHODIMP CBaseFilter::GetSyncSource(IReferenceClock **pClock) { CheckPointer(pClock,E_POINTER); ValidateReadWritePtr(pClock,sizeof(IReferenceClock *)); CAutoLock cObjectLock(m_pLock); if (m_pClock) { // returning an interface... addref it... m_pClock->AddRef(); } *pClock = (IReferenceClock*)m_pClock; return NOERROR; } // override CBaseMediaFilter Stop method, to deactivate any pins this // filter has. STDMETHODIMP CBaseFilter::Stop() { CAutoLock cObjectLock(m_pLock); HRESULT hr = NOERROR; // notify all pins of the state change if (m_State != State_Stopped) { int cPins = GetPinCount(); for (int c = 0; c < cPins; c++) { CBasePin *pPin = GetPin(c); // Disconnected pins are not activated - this saves pins worrying // about this state themselves. We ignore the return code to make // sure everyone is inactivated regardless. The base input pin // class can return an error if it has no allocator but Stop can // be used to resync the graph state after something has gone bad if (pPin->IsConnected()) { HRESULT hrTmp = pPin->Inactive(); if (FAILED(hrTmp) && SUCCEEDED(hr)) { hr = hrTmp; } } } } m_State = State_Stopped; return hr; } // override CBaseMediaFilter Pause method to activate any pins // this filter has (also called from Run) STDMETHODIMP CBaseFilter::Pause() { CAutoLock cObjectLock(m_pLock); // notify all pins of the change to active state if (m_State == State_Stopped) { int cPins = GetPinCount(); for (int c = 0; c < cPins; c++) { CBasePin *pPin = GetPin(c); // Disconnected pins are not activated - this saves pins // worrying about this state themselves if (pPin->IsConnected()) { HRESULT hr = pPin->Active(); if (FAILED(hr)) { return hr; } } } } m_State = State_Paused; return S_OK; } // Put the filter into a running state. // The time parameter is the offset to be added to the samples' // stream time to get the reference time at which they should be presented. // // you can either add these two and compare it against the reference clock, // or you can call CBaseFilter::StreamTime and compare that against // the sample timestamp. STDMETHODIMP CBaseFilter::Run(REFERENCE_TIME tStart) { CAutoLock cObjectLock(m_pLock); // remember the stream time offset m_tStart = tStart; if (m_State == State_Stopped){ HRESULT hr = Pause(); if (FAILED(hr)) { return hr; } } // notify all pins of the change to active state if (m_State != State_Running) { int cPins = GetPinCount(); for (int c = 0; c < cPins; c++) { CBasePin *pPin = GetPin(c); // Disconnected pins are not activated - this saves pins // worrying about this state themselves if (pPin->IsConnected()) { HRESULT hr = pPin->Run(tStart); if (FAILED(hr)) { return hr; } } } } m_State = State_Running; return S_OK; } // // return the current stream time - samples with start timestamps of this // time or before should be rendered by now HRESULT CBaseFilter::StreamTime(CRefTime& rtStream) { // Caller must lock for synchronization // We can't grab the filter lock because we want to be able to call // this from worker threads without deadlocking if (m_pClock == NULL) { return VFW_E_NO_CLOCK; } // get the current reference time HRESULT hr = m_pClock->GetTime((REFERENCE_TIME*)&rtStream); if (FAILED(hr)) { return hr; } // subtract the stream offset to get stream time rtStream -= m_tStart; return S_OK; } /* Create an enumerator for the pins attached to this filter */ STDMETHODIMP CBaseFilter::EnumPins(IEnumPins **ppEnum) { CheckPointer(ppEnum,E_POINTER); ValidateReadWritePtr(ppEnum,sizeof(IEnumPins *)); /* Create a new ref counted enumerator */ *ppEnum = new CEnumPins(this, NULL); return *ppEnum == NULL ? E_OUTOFMEMORY : NOERROR; } // default behaviour of FindPin is to assume pins are named // by their pin names STDMETHODIMP CBaseFilter::FindPin( LPCWSTR Id, IPin ** ppPin ) { CheckPointer(ppPin,E_POINTER); ValidateReadWritePtr(ppPin,sizeof(IPin *)); // We're going to search the pin list so maintain integrity CAutoLock lck(m_pLock); int iCount = GetPinCount(); for (int i = 0; i < iCount; i++) { CBasePin *pPin = GetPin(i); _ASSERTE(pPin != NULL); if (0 == lstrcmpW(pPin->Name(), Id)) { // Found one that matches // // AddRef() and return it *ppPin = pPin; pPin->AddRef(); return S_OK; } } *ppPin = NULL; return VFW_E_NOT_FOUND; } /* Return information about this filter */ STDMETHODIMP CBaseFilter::QueryFilterInfo(FILTER_INFO * pInfo) { CheckPointer(pInfo,E_POINTER); ValidateReadWritePtr(pInfo,sizeof(FILTER_INFO)); if (m_pName) { lstrcpynW(pInfo->achName, m_pName, sizeof(pInfo->achName)/sizeof(WCHAR)); } else { pInfo->achName[0] = L'\0'; } pInfo->pGraph = m_pGraph; if (m_pGraph) m_pGraph->AddRef(); return NOERROR; } /* Provide the filter with a filter graph */ STDMETHODIMP CBaseFilter::JoinFilterGraph( IFilterGraph * pGraph, LPCWSTR pName) { CAutoLock cObjectLock(m_pLock); // NOTE: we no longer hold references on the graph (m_pGraph, m_pSink) m_pGraph = pGraph; if (m_pGraph) { HRESULT hr = m_pGraph->QueryInterface(IID_IMediaEventSink, (void**) &m_pSink); if (FAILED(hr)) { _ASSERTE(m_pSink == NULL); } else m_pSink->Release(); // we do NOT keep a reference on it. } else { // if graph pointer is null, then we should // also release the IMediaEventSink on the same object - we don't // refcount it, so just set it to null m_pSink = NULL; } if (m_pName) { delete[] m_pName; m_pName = NULL; } if (pName) { DWORD nameLen = lstrlenW(pName)+1; m_pName = new WCHAR[nameLen]; if (m_pName) { CopyMemory(m_pName, pName, nameLen*sizeof(WCHAR)); } else { // !!! error here? } } return NOERROR; } // return a Vendor information string. Optional - may return E_NOTIMPL. // memory returned should be freed using CoTaskMemFree // default implementation returns E_NOTIMPL STDMETHODIMP CBaseFilter::QueryVendorInfo( LPWSTR* pVendorInfo) { UNREFERENCED_PARAMETER(pVendorInfo); return E_NOTIMPL; } // send an event notification to the filter graph if we know about it. // returns S_OK if delivered, S_FALSE if the filter graph does not sink // events, or an error otherwise. HRESULT CBaseFilter::NotifyEvent( long EventCode, long EventParam1, long EventParam2) { // Snapshot so we don't have to lock up IMediaEventSink *pSink = m_pSink; if (pSink) { return pSink->Notify(EventCode, EventParam1, EventParam2); } else { return E_NOTIMPL; } } /* This is the same idea as the media type version does for type enumeration on pins but for the list of pins available. So if the list of pins you provide changes dynamically then either override this virtual function to provide the version number, or more simply call IncrementPinVersion */ LONG CBaseFilter::GetPinVersion() { return m_PinVersion; } /* Increment the current pin version cookie */ void CBaseFilter::IncrementPinVersion() { InterlockedIncrement(&m_PinVersion); } /* register filter */ HRESULT CBaseFilter::Register() { // get setup data, if it exists // LPAMOVIESETUP_FILTER psetupdata = GetSetupData(); // check we've got data // if( NULL == psetupdata ) return S_FALSE; // init is ref counted so call just in case // we're being called cold. // HRESULT hr = CoInitialize( (LPVOID)NULL ); _ASSERTE( SUCCEEDED(hr) ); // get hold of IFilterMapper // IFilterMapper *pIFM; hr = CoCreateInstance( CLSID_FilterMapper , NULL , CLSCTX_INPROC_SERVER , IID_IFilterMapper , (void **)&pIFM ); if( SUCCEEDED(hr) ) { // register filter // hr = pIFM->RegisterFilter( *(psetupdata->clsID) , psetupdata->strName , psetupdata->dwMerit ); if( SUCCEEDED(hr) ) { // all its pins // for( UINT m1=0; m1 < psetupdata->nPins; m1++ ) { hr = pIFM->RegisterPin( *(psetupdata->clsID) , psetupdata->lpPin[m1].strName , psetupdata->lpPin[m1].bRendered , psetupdata->lpPin[m1].bOutput , psetupdata->lpPin[m1].bZero , psetupdata->lpPin[m1].bMany , *(psetupdata->lpPin[m1].clsConnectsToFilter) , psetupdata->lpPin[m1].strConnectsToPin ); if( SUCCEEDED(hr) ) { // and each pin's media types // for( UINT m2=0; m2 < psetupdata->lpPin[m1].nMediaTypes; m2++ ) { hr = pIFM->RegisterPinType( *(psetupdata->clsID) , psetupdata->lpPin[m1].strName , *(psetupdata->lpPin[m1].lpMediaType[m2].clsMajorType) , *(psetupdata->lpPin[m1].lpMediaType[m2].clsMinorType) ); if( FAILED(hr) ) break; } if( FAILED(hr) ) break; } if( FAILED(hr) ) break; } } // free server // pIFM->Release(); } // and clear up // CoFreeUnusedLibraries(); CoUninitialize(); return NOERROR; } /* unregister filter */ HRESULT CBaseFilter::Unregister() { // get setup data, if it exists // LPAMOVIESETUP_FILTER psetupdata = GetSetupData(); // check we've got data // if( NULL == psetupdata ) return S_FALSE; // OLE init is ref counted so call // just in case we're being called cold. // HRESULT hr = CoInitialize( (LPVOID)NULL ); _ASSERTE( SUCCEEDED(hr) ); // get hold of IFilterMapper // IFilterMapper *pIFM; hr = CoCreateInstance( CLSID_FilterMapper , NULL , CLSCTX_INPROC_SERVER , IID_IFilterMapper , (void **)&pIFM ); if( SUCCEEDED(hr) ) { // unregister filter // (as pins are subkeys of filter's CLSID key // they do not need to be removed separately). // hr = pIFM->UnregisterFilter( *(psetupdata->clsID) ); // release interface // pIFM->Release(); } // clear up // CoFreeUnusedLibraries(); CoUninitialize(); // handle one acceptable "error" - that // of filter not being registered! // (couldn't find a suitable #define'd // name for the error!) // if( 0x80070002 == hr) return NOERROR; else return hr; } //===================================================================== //===================================================================== // Implements CEnumPins //===================================================================== //===================================================================== /* NOTE The implementation of this class calls the CUnknown constructor with a NULL unknown pointer. This has the effect of making us a self contained class, ie any QueryInterface, AddRef or Release calls will be routed to the class's NonDelegatingUnknown methods. You will typically find that the classes that do this then override one or more of these virtual functions to provide more specialised behaviour. A good example of this is where a class wants to keep the QueryInterface internal but still wants it's lifetime controlled by the external object */ CEnumPins::CEnumPins(CBaseFilter *pFilter, CEnumPins *pEnumPins) : m_Position(0), m_PinCount(0), m_pFilter(pFilter), m_cRef(1) // Already ref counted { #ifdef DEBUG m_dwCookie = DbgRegisterObjectCreation(TEXT("CEnumPins")); #endif /* We must be owned by a filter derived from CBaseFilter */ _ASSERTE(pFilter != NULL); /* Hold a reference count on our filter */ m_pFilter->AddRef(); /* Are we creating a new enumerator */ if (pEnumPins == NULL) { m_Version = m_pFilter->GetPinVersion(); m_PinCount = m_pFilter->GetPinCount(); } else { _ASSERTE(m_Position <= m_PinCount); m_Position = pEnumPins->m_Position; m_PinCount = pEnumPins->m_PinCount; m_Version = pEnumPins->m_Version; } } /* Destructor releases the reference count on our filter NOTE since we hold a reference count on the filter who created us we know it is safe to release it, no access can be made to it afterwards though as we have just caused the last reference count to go and the object to be deleted */ CEnumPins::~CEnumPins() { m_pFilter->Release(); #ifdef DEBUG DbgRegisterObjectDestruction(m_dwCookie); #endif } /* Override this to say what interfaces we support where */ STDMETHODIMP CEnumPins::QueryInterface(REFIID riid,void **ppv) { CheckPointer(ppv, E_POINTER); /* Do we have this interface */ if (riid == IID_IEnumPins || riid == IID_IUnknown) { return GetInterface((IEnumPins *) this, ppv); } else { return E_NOINTERFACE; } } STDMETHODIMP_(ULONG) CEnumPins::AddRef() { return InterlockedIncrement(&m_cRef); } STDMETHODIMP_(ULONG) CEnumPins::Release() { ULONG cRef = InterlockedDecrement(&m_cRef); if (cRef == 0) { delete this; } return cRef; } /* One of an enumerator's basic member functions allows us to create a cloned interface that initially has the same state. Since we are taking a snapshot of an object (current position and all) we must lock access at the start */ STDMETHODIMP CEnumPins::Clone(IEnumPins **ppEnum) { CheckPointer(ppEnum,E_POINTER); ValidateReadWritePtr(ppEnum,sizeof(IEnumPins *)); HRESULT hr = NOERROR; /* Check we are still in sync with the filter */ if (AreWeOutOfSync() == TRUE) { *ppEnum = NULL; hr = VFW_E_ENUM_OUT_OF_SYNC; } else { *ppEnum = new CEnumPins(m_pFilter, this); if (*ppEnum == NULL) { hr = E_OUTOFMEMORY; } } return hr; } /* Return the next pin after the current position */ STDMETHODIMP CEnumPins::Next(ULONG cPins, // place this many pins... IPin **ppPins, // ...in this array ULONG *pcFetched) // actual count passed returned here { CheckPointer(ppPins,E_POINTER); ValidateReadWritePtr(ppPins,cPins * sizeof(IPin *)); _ASSERTE(ppPins); if (pcFetched!=NULL) { ValidateWritePtr(pcFetched, sizeof(ULONG)); *pcFetched = 0; // default unless we succeed } // now check that the parameter is valid else if (cPins>1) { // pcFetched == NULL return E_INVALIDARG; } ULONG cFetched = 0; // increment as we get each one. /* Check we are still in sync with the filter */ if (AreWeOutOfSync() == TRUE) { return VFW_E_ENUM_OUT_OF_SYNC; } /* Calculate the number of available pins */ int cRealPins = min(m_PinCount - m_Position, (int) cPins); if (cRealPins == 0) { return S_FALSE; } /* Return each pin interface NOTE GetPin returns CBasePin * not addrefed so we must QI for the IPin (which increments its reference count) If while we are retrieving a pin from the filter an error occurs we assume that our internal state is stale with respect to the filter (for example someone has deleted a pin) so we return VFW_E_ENUM_OUT_OF_SYNC */ while (cRealPins--) { /* Get the next pin object from the filter */ CBasePin *pPin = m_pFilter->GetPin(m_Position++); if (pPin == NULL) { // If this happend, and it's not the first time through, then we've got a problem, // since we should really go back and release the iPins, which we have previously // AddRef'ed. _ASSERTE( cFetched==0 ); return VFW_E_ENUM_OUT_OF_SYNC; } /* From the object get an IPin interface */ *ppPins = pPin; pPin->AddRef(); cFetched++; ppPins++; } if (pcFetched!=NULL) { *pcFetched = cFetched; } return (cPins==cFetched ? NOERROR : S_FALSE); } /* Skip over one or more entries in the enumerator */ STDMETHODIMP CEnumPins::Skip(ULONG cPins) { /* Check we are still in sync with the filter */ if (AreWeOutOfSync() == TRUE) { return VFW_E_ENUM_OUT_OF_SYNC; } /* Work out how many pins are left to skip over */ /* We could position at the end if we are asked to skip too many... */ /* ..which would match the base implementation for CEnumMediaTypes::Skip */ ULONG PinsLeft = m_PinCount - m_Position; if (cPins > PinsLeft) { return S_FALSE; } m_Position += cPins; return NOERROR; } /* Set the current position back to the start */ /* Reset has 3 simple steps: * * Set position to head of list * Sync enumerator with object being enumerated * return S_OK */ STDMETHODIMP CEnumPins::Reset() { m_Version = m_pFilter->GetPinVersion(); m_Position = 0; return S_OK; } //===================================================================== //===================================================================== // Implements CEnumMediaTypes //===================================================================== //===================================================================== /* NOTE The implementation of this class calls the CUnknown constructor with a NULL unknown pointer. This has the effect of making us a self contained class, ie any QueryInterface, AddRef or Release calls will be routed to the class's NonDelegatingUnknown methods. You will typically find that the classes that do this then override one or more of these virtual functions to provide more specialised behaviour. A good example of this is where a class wants to keep the QueryInterface internal but still wants it's lifetime controlled by the external object */ CEnumMediaTypes::CEnumMediaTypes(CBasePin *pPin, CEnumMediaTypes *pEnumMediaTypes) : m_Position(0), m_pPin(pPin), m_cRef(1) { #ifdef DEBUG m_dwCookie = DbgRegisterObjectCreation(TEXT("CEnumMediaTypes")); #endif /* We must be owned by a pin derived from CBasePin */ _ASSERTE(pPin != NULL); /* Hold a reference count on our pin */ m_pPin->AddRef(); /* Are we creating a new enumerator */ if (pEnumMediaTypes == NULL) { m_Version = m_pPin->GetMediaTypeVersion(); return; } m_Position = pEnumMediaTypes->m_Position; m_Version = pEnumMediaTypes->m_Version; } /* Destructor releases the reference count on our base pin. NOTE since we hold a reference count on the pin who created us we know it is safe to release it, no access can be made to it afterwards though as we might have just caused the last reference count to go and the object to be deleted */ CEnumMediaTypes::~CEnumMediaTypes() { #ifdef DEBUG DbgRegisterObjectDestruction(m_dwCookie); #endif m_pPin->Release(); } /* Override this to say what interfaces we support where */ STDMETHODIMP CEnumMediaTypes::QueryInterface(REFIID riid,void **ppv) { CheckPointer(ppv, E_POINTER); /* Do we have this interface */ if (riid == IID_IEnumMediaTypes || riid == IID_IUnknown) { return GetInterface((IEnumMediaTypes *) this, ppv); } else { return E_NOINTERFACE; } } STDMETHODIMP_(ULONG) CEnumMediaTypes::AddRef() { return InterlockedIncrement(&m_cRef); } STDMETHODIMP_(ULONG) CEnumMediaTypes::Release() { ULONG cRef = InterlockedDecrement(&m_cRef); if (cRef == 0) { delete this; } return cRef; } /* One of an enumerator's basic member functions allows us to create a cloned interface that initially has the same state. Since we are taking a snapshot of an object (current position and all) we must lock access at the start */ STDMETHODIMP CEnumMediaTypes::Clone(IEnumMediaTypes **ppEnum) { CheckPointer(ppEnum,E_POINTER); ValidateReadWritePtr(ppEnum,sizeof(IEnumMediaTypes *)); HRESULT hr = NOERROR; /* Check we are still in sync with the pin */ if (AreWeOutOfSync() == TRUE) { *ppEnum = NULL; hr = VFW_E_ENUM_OUT_OF_SYNC; } else { *ppEnum = new CEnumMediaTypes(m_pPin, this); if (*ppEnum == NULL) { hr = E_OUTOFMEMORY; } } return hr; } /* Enumerate the next pin(s) after the current position. The client using this interface passes in a pointer to an array of pointers each of which will be filled in with a pointer to a fully initialised media type format Return NOERROR if it all works, S_FALSE if fewer than cMediaTypes were enumerated. VFW_E_ENUM_OUT_OF_SYNC if the enumerator has been broken by state changes in the filter The actual count always correctly reflects the number of types in the array. */ STDMETHODIMP CEnumMediaTypes::Next(ULONG cMediaTypes, // place this many types... AM_MEDIA_TYPE **ppMediaTypes, // ...in this array ULONG *pcFetched) // actual count passed { CheckPointer(ppMediaTypes,E_POINTER); ValidateReadWritePtr(ppMediaTypes,cMediaTypes * sizeof(AM_MEDIA_TYPE *)); /* Check we are still in sync with the pin */ if (AreWeOutOfSync() == TRUE) { return VFW_E_ENUM_OUT_OF_SYNC; } if (pcFetched!=NULL) { ValidateWritePtr(pcFetched, sizeof(ULONG)); *pcFetched = 0; // default unless we succeed } // now check that the parameter is valid else if (cMediaTypes>1) { // pcFetched == NULL return E_INVALIDARG; } ULONG cFetched = 0; // increment as we get each one. /* Return each media type by asking the filter for them in turn - If we have an error code retured to us while we are retrieving a media type we assume that our internal state is stale with respect to the filter (for example the window size changing) so we return VFW_E_ENUM_OUT_OF_SYNC */ while (cMediaTypes) { CMediaType cmt; HRESULT hr = m_pPin->GetMediaType(m_Position++, &cmt); if (S_OK != hr) { break; } /* We now have a CMediaType object that contains the next media type but when we assign it to the array position we CANNOT just assign the AM_MEDIA_TYPE structure because as soon as the object goes out of scope it will delete the memory we have just copied. The function we use is CreateMediaType which allocates a task memory block */ /* Transfer across the format block manually to save an allocate and free on the format block and generally go faster */ *ppMediaTypes = (AM_MEDIA_TYPE *)CoTaskMemAlloc(sizeof(AM_MEDIA_TYPE)); if (*ppMediaTypes == NULL) { break; } /* Do a regular copy */ **ppMediaTypes = (AM_MEDIA_TYPE)cmt; /* Make sure the destructor doesn't free these */ cmt.pbFormat = NULL; cmt.cbFormat = NULL; cmt.pUnk = NULL; ppMediaTypes++; cFetched++; cMediaTypes--; } if (pcFetched!=NULL) { *pcFetched = cFetched; } return ( cMediaTypes==0 ? NOERROR : S_FALSE ); } /* Skip over one or more entries in the enumerator */ STDMETHODIMP CEnumMediaTypes::Skip(ULONG cMediaTypes) { /* Check we are still in sync with the pin */ if (AreWeOutOfSync() == TRUE) { return VFW_E_ENUM_OUT_OF_SYNC; } m_Position += cMediaTypes; /* See if we're over the end */ CMediaType cmt; return S_OK == m_pPin->GetMediaType(m_Position - 1, &cmt) ? S_OK : S_FALSE; } /* Set the current position back to the start */ /* Reset has 3 simple steps: * * set position to head of list * sync enumerator with object being enumerated * return S_OK */ STDMETHODIMP CEnumMediaTypes::Reset() { m_Position = 0; // Bring the enumerator back into step with the current state. This // may be a noop but ensures that the enumerator will be valid on the // next call. m_Version = m_pPin->GetMediaTypeVersion(); return NOERROR; } //===================================================================== //===================================================================== // Implements CBasePin //===================================================================== //===================================================================== /* NOTE The implementation of this class calls the CUnknown constructor with a NULL outer unknown pointer. This has the effect of making us a self contained class, ie any QueryInterface, AddRef or Release calls will be routed to the class's NonDelegatingUnknown methods. You will typically find that the classes that do this then override one or more of these virtual functions to provide more specialised behaviour. A good example of this is where a class wants to keep the QueryInterface internal but still wants its lifetime controlled by the external object */ /* Constructor */ CBasePin::CBasePin(TCHAR *pObjectName, CBaseFilter *pFilter, CCritSec *pLock, HRESULT *phr, LPCWSTR pName, PIN_DIRECTION dir) : CUnknown( pObjectName, NULL ), m_pFilter(pFilter), m_pLock(pLock), m_pName(NULL), m_Connected(NULL), m_dir(dir), m_bRunTimeError(FALSE), m_pQSink(NULL), m_TypeVersion(1), m_tStart(), m_tStop(MAX_TIME), m_dRate(1.0) { /* WARNING - pFilter is often not a properly constituted object at this state (in particular QueryInterface may not work) - this is because its owner is often its containing object and we have been called from the containing object's constructor so the filter's owner has not yet had its CUnknown constructor called */ _ASSERTE(pFilter != NULL); _ASSERTE(pLock != NULL); if (pName) { DWORD nameLen = lstrlenW(pName)+1; m_pName = new WCHAR[nameLen]; if (m_pName) { CopyMemory(m_pName, pName, nameLen*sizeof(WCHAR)); } } #ifdef DEBUG m_cRef = 0; #endif } /* Destructor since a connected pin holds a reference count on us there is no way that we can be deleted unless we are not currently connected */ CBasePin::~CBasePin() { // We don't call disconnect because if the filter is going away // all the pins must have a reference count of zero so they must // have been disconnected anyway - (but check the assumption) _ASSERTE(m_Connected == FALSE); if (m_pName) delete[] m_pName; // check the internal reference count is consistent _ASSERTE(m_cRef == 0); } /* Override this to say what interfaces we support and where */ STDMETHODIMP CBasePin::NonDelegatingQueryInterface(REFIID riid, void ** ppv) { /* Do we have this interface */ if (riid == IID_IPin) { return GetInterface((IPin *) this, ppv); } else if (riid == IID_IQualityControl) { return GetInterface((IQualityControl *) this, ppv); } else { return CUnknown::NonDelegatingQueryInterface(riid, ppv); } } /* Override to increment the owning filter's reference count */ STDMETHODIMP_(ULONG) CBasePin::NonDelegatingAddRef() { _ASSERTE(InterlockedIncrement(&m_cRef) > 0); return m_pFilter->AddRef(); } /* Override to decrement the owning filter's reference count */ STDMETHODIMP_(ULONG) CBasePin::NonDelegatingRelease() { _ASSERTE(InterlockedDecrement(&m_cRef) >= 0); return m_pFilter->Release(); } /* Displays pin connection information */ #ifdef DEBUG void CBasePin::DisplayPinInfo(IPin *pReceivePin) { if (DbgCheckModuleLevel(LOG_TRACE, CONNECT_TRACE_LEVEL)) { PIN_INFO ConnectPinInfo; PIN_INFO ReceivePinInfo; if (FAILED(QueryPinInfo(&ConnectPinInfo))) { lstrcpyW(ConnectPinInfo.achName, L"Bad Pin"); } else { QueryPinInfoReleaseFilter(ConnectPinInfo); } if (FAILED(pReceivePin->QueryPinInfo(&ReceivePinInfo))) { lstrcpyW(ReceivePinInfo.achName, L"Bad Pin"); } else { QueryPinInfoReleaseFilter(ReceivePinInfo); } DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Trying to connect Pins :"))); DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT(" <%ls>"), ConnectPinInfo.achName)); DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT(" <%ls>"), ReceivePinInfo.achName)); } } #endif /* Displays general information on the pin media type */ #ifdef DEBUG void CBasePin::DisplayTypeInfo(IPin *pPin, const CMediaType *pmt) { UNREFERENCED_PARAMETER(pPin); if (DbgCheckModuleLevel(LOG_TRACE, CONNECT_TRACE_LEVEL)) { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Trying media type:"))); DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT(" major type: %s"), GuidNames[*pmt->Type()])); DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT(" sub type : %s"), GuidNames[*pmt->Subtype()])); } } #endif /* Asked to connect to a pin. A pin is always attached to an owning filter object so we always delegate our locking to that object. We first of all retrieve a media type enumerator for the input pin and see if we accept any of the formats that it would ideally like, failing that we retrieve our enumerator and see if it will accept any of our preferred types */ STDMETHODIMP CBasePin::Connect( IPin * pReceivePin, const AM_MEDIA_TYPE *pmt // optional media type ) { CheckPointer(pReceivePin,E_POINTER); ValidateReadPtr(pReceivePin,sizeof(IPin)); CAutoLock cObjectLock(m_pLock); DisplayPinInfo(pReceivePin); /* See if we are already connected */ if (m_Connected) { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Already connected"))); return VFW_E_ALREADY_CONNECTED; } /* See if the filter is active */ if (!IsStopped()) { return VFW_E_NOT_STOPPED; } // Find a mutually agreeable media type - // Pass in the template media type. If this is partially specified, // each of the enumerated media types will need to be checked against // it. If it is non-null and fully specified, we will just try to connect // with this. const CMediaType * ptype = (CMediaType*)pmt; HRESULT hr = AgreeMediaType(pReceivePin, ptype); if (FAILED(hr)) { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Failed to agree type"))); BreakConnect(); return hr; } DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Connection succeeded"))); return NOERROR; } // given a specific media type, attempt a connection (includes // checking that the type is acceptable to this pin) HRESULT CBasePin::AttemptConnection( IPin* pReceivePin, // connect to this pin const CMediaType* pmt // using this type ) { // Check that the connection is valid -- need to do this for every // connect attempt since BreakConnect will undo it. HRESULT hr = CheckConnect(pReceivePin); if (FAILED(hr)) { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("CheckConnect failed"))); BreakConnect(); return hr; } DisplayTypeInfo(pReceivePin, pmt); /* Check we will accept this media type */ hr = CheckMediaType(pmt); if (hr == NOERROR) { /* Make ourselves look connected otherwise ReceiveConnection may not be able to complete the connection */ m_Connected = pReceivePin; m_Connected->AddRef(); SetMediaType(pmt); /* See if the other pin will accept this type */ hr = pReceivePin->ReceiveConnection((IPin *)this, pmt); if (SUCCEEDED(hr)) { /* Complete the connection */ hr = CompleteConnect(pReceivePin); if (SUCCEEDED(hr)) { return hr; } else { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Failed to complete connection"))); pReceivePin->Disconnect(); } } } else { // we cannot use this media type // return a specific media type error if there is one // or map a general failure code to something more helpful // (in particular S_FALSE gets changed to an error code) if (SUCCEEDED(hr) || (hr == E_FAIL) || (hr == E_INVALIDARG)) { hr = VFW_E_TYPE_NOT_ACCEPTED; } } // BreakConnect and release any connection here in case CheckMediaType // failed, or if we set anything up during a call back during // ReceiveConnection. BreakConnect(); /* If failed then undo our state */ if (m_Connected) { m_Connected->Release(); m_Connected = NULL; } return hr; } /* Given an enumerator we cycle through all the media types it proposes and firstly suggest them to our derived pin class and if that succeeds try them with the pin in a ReceiveConnection call. This means that if our pin proposes a media type we still check in here that we can support it. This is deliberate so that in simple cases the enumerator can hold all of the media types even if some of them are not really currently available */ HRESULT CBasePin::TryMediaTypes( IPin *pReceivePin, const CMediaType *pmt, IEnumMediaTypes *pEnum) { /* Reset the current enumerator position */ HRESULT hr = pEnum->Reset(); if (FAILED(hr)) { return hr; } CMediaType *pMediaType = NULL; ULONG ulMediaCount = 0; // attempt to remember a specific error code if there is one HRESULT hrFailure = S_OK; for (;;) { /* Retrieve the next media type NOTE each time round the loop the enumerator interface will allocate another AM_MEDIA_TYPE structure If we are successful then we copy it into our output object, if not then we must delete the memory allocated before returning */ hr = pEnum->Next(1, (AM_MEDIA_TYPE**)&pMediaType,&ulMediaCount); if (hr != S_OK) { if (S_OK == hrFailure) { hrFailure = VFW_E_NO_ACCEPTABLE_TYPES; } return hrFailure; } _ASSERTE(ulMediaCount == 1); _ASSERTE(pMediaType); // check that this matches the partial type (if any) if ((pmt == NULL) || pMediaType->MatchesPartial(pmt)) { hr = AttemptConnection(pReceivePin, pMediaType); // attempt to remember a specific error code if (FAILED(hr) && SUCCEEDED(hrFailure) && (hr != E_FAIL) && (hr != E_INVALIDARG) && (hr != VFW_E_TYPE_NOT_ACCEPTED)) { hrFailure = hr; } } else { hr = VFW_E_NO_ACCEPTABLE_TYPES; } DeleteMediaType(pMediaType); if (S_OK == hr) { return hr; } } } /* This is called to make the connection, including the taask of finding a media type for the pin connection. pmt is the proposed media type from the Connect call: if this is fully specified, we will try that. Otherwise we enumerate and try all the input pin's types first and if that fails we then enumerate and try all our preferred media types. For each media type we check it against pmt (if non-null and partially specified) as well as checking that both pins will accept it. */ HRESULT CBasePin::AgreeMediaType( IPin *pReceivePin, const CMediaType *pmt) { _ASSERTE(pReceivePin); IEnumMediaTypes *pEnumMediaTypes = NULL; // if the media type is fully specified then use that if ( (pmt != NULL) && (!pmt->IsPartiallySpecified())) { // if this media type fails, then we must fail the connection // since if pmt is nonnull we are only allowed to connect // using a type that matches it. return AttemptConnection(pReceivePin, pmt); } /* Try the other pin's enumerator */ HRESULT hrFailure = VFW_E_NO_ACCEPTABLE_TYPES; HRESULT hr = pReceivePin->EnumMediaTypes(&pEnumMediaTypes); if (SUCCEEDED(hr)) { _ASSERTE(pEnumMediaTypes); hr = TryMediaTypes(pReceivePin,pmt,pEnumMediaTypes); pEnumMediaTypes->Release(); if (SUCCEEDED(hr)) { return NOERROR; } else { // try to remember specific error codes if there are any if ((hr != E_FAIL) && (hr != E_INVALIDARG) && (hr != VFW_E_TYPE_NOT_ACCEPTED)) { hrFailure = hr; } } } /* Having failed with that try our enumerator */ hr = EnumMediaTypes(&pEnumMediaTypes); if (SUCCEEDED(hr)) { _ASSERTE(pEnumMediaTypes); hr = TryMediaTypes(pReceivePin,pmt,pEnumMediaTypes); pEnumMediaTypes->Release(); if (SUCCEEDED(hr)) { return NOERROR; } else { // try to remember specific error codes if there are any if ((hr != E_FAIL) && (hr != E_INVALIDARG) && (hr != VFW_E_TYPE_NOT_ACCEPTED)) { hrFailure = hr; } } } return hrFailure; } /* Called when we want to complete a connection to another filter. Failing this will also fail the connection and disconnect the other pin as well */ HRESULT CBasePin::CompleteConnect(IPin *pReceivePin) { UNREFERENCED_PARAMETER(pReceivePin); return NOERROR; } /* This is called to set the format for a pin connection - CheckMediaType will have been called to check the connection format and if it didn't return an error code then this (virtual) function will be invoked */ HRESULT CBasePin::SetMediaType(const CMediaType *pmt) { m_mt = *pmt; return NOERROR; } /* This is called during Connect() to provide a virtual method that can do any specific check needed for connection such as QueryInterface. This base class method just checks that the pin directions don't match */ HRESULT CBasePin::CheckConnect(IPin * pPin) { /* Check that pin directions DONT match */ PIN_DIRECTION pd; pPin->QueryDirection(&pd); _ASSERTE((pd == PINDIR_OUTPUT) || (pd == PINDIR_INPUT)); _ASSERTE((m_dir == PINDIR_OUTPUT) || (m_dir == PINDIR_INPUT)); // we should allow for non-input and non-output connections? if (pd == m_dir) { return VFW_E_INVALID_DIRECTION; } return NOERROR; } /* This is called when we realise we can't make a connection to the pin and must undo anything we did in CheckConnect - override to release QIs done */ HRESULT CBasePin::BreakConnect() { return NOERROR; } /* Called normally by an output pin on an input pin to try and establish a connection. */ STDMETHODIMP CBasePin::ReceiveConnection( IPin * pConnector, // this is the pin who we will connect to const AM_MEDIA_TYPE *pmt // this is the media type we will exchange ) { CheckPointer(pConnector,E_POINTER); CheckPointer(pmt,E_POINTER); ValidateReadPtr(pConnector,sizeof(IPin)); ValidateReadPtr(pmt,sizeof(AM_MEDIA_TYPE)); CAutoLock cObjectLock(m_pLock); /* Are we already connected */ if (m_Connected) { return VFW_E_ALREADY_CONNECTED; } /* See if the filter is active */ if (!IsStopped()) { return VFW_E_NOT_STOPPED; } HRESULT hr = CheckConnect(pConnector); if (FAILED(hr)) { BreakConnect(); return hr; } /* Ask derived class if this media type is ok */ CMediaType * pcmt = (CMediaType*) pmt; hr = CheckMediaType(pcmt); if (hr != NOERROR) { // no -we don't support this media type BreakConnect(); // return a specific media type error if there is one // or map a general failure code to something more helpful // (in particular S_FALSE gets changed to an error code) if (SUCCEEDED(hr) || (hr == E_FAIL) || (hr == E_INVALIDARG)) { hr = VFW_E_TYPE_NOT_ACCEPTED; } return hr; } /* Complete the connection */ m_Connected = pConnector; m_Connected->AddRef(); SetMediaType(pcmt); hr = CompleteConnect(pConnector); if (FAILED(hr)) { DbgLog((LOG_TRACE, CONNECT_TRACE_LEVEL, TEXT("Failed to complete connection"))); m_Connected->Release(); m_Connected = NULL; BreakConnect(); return hr; } return NOERROR; } /* Called when we want to terminate a pin connection */ STDMETHODIMP CBasePin::Disconnect() { CAutoLock cObjectLock(m_pLock); /* See if the filter is active */ if (!IsStopped()) { return VFW_E_NOT_STOPPED; } if (m_Connected) { BreakConnect(); m_Connected->Release(); m_Connected = NULL; return S_OK; } else { // no connection - not an error return S_FALSE; } } /* Return an AddRef()'d pointer to the connected pin if there is one */ STDMETHODIMP CBasePin::ConnectedTo( IPin **ppPin ) { CheckPointer(ppPin,E_POINTER); ValidateReadWritePtr(ppPin,sizeof(IPin *)); // // It's pointless to lock here. // The caller should ensure integrity. // IPin *pPin = m_Connected; *ppPin = pPin; if (pPin != NULL) { pPin->AddRef(); return S_OK; } else { _ASSERTE(*ppPin == NULL); return VFW_E_NOT_CONNECTED; } } /* Return the media type of the connection */ STDMETHODIMP CBasePin::ConnectionMediaType( AM_MEDIA_TYPE *pmt ) { CheckPointer(pmt,E_POINTER); ValidateReadWritePtr(pmt,sizeof(AM_MEDIA_TYPE)); CAutoLock cObjectLock(m_pLock); /* Copy constructor of m_mt allocates the memory */ if (IsConnected()) { CopyMediaType( pmt, &m_mt ); return S_OK; } else { ((CMediaType *)pmt)->InitMediaType(); return VFW_E_NOT_CONNECTED; } } /* Return information about the filter we are connect to */ STDMETHODIMP CBasePin::QueryPinInfo( PIN_INFO * pInfo ) { CheckPointer(pInfo,E_POINTER); ValidateReadWritePtr(pInfo,sizeof(PIN_INFO)); pInfo->pFilter = m_pFilter; if (m_pFilter) { m_pFilter->AddRef(); } if (m_pName) { lstrcpyW(pInfo->achName, m_pName); } else { pInfo->achName[0] = L'\0'; } pInfo->dir = m_dir; return NOERROR; } STDMETHODIMP CBasePin::QueryDirection( PIN_DIRECTION * pPinDir ) { CheckPointer(pPinDir,E_POINTER); ValidateReadWritePtr(pPinDir,sizeof(PIN_DIRECTION)); *pPinDir = m_dir; return NOERROR; } // Default QueryId to return the pin's name STDMETHODIMP CBasePin::QueryId( LPWSTR * Id ) { // We're not going away because someone's got a pointer to us // so there's no need to lock return AMGetWideString(Name(), Id); } /* Does this pin support this media type WARNING this interface function does not lock the main object as it is meant to be asynchronous by nature - if the media types you support depend on some internal state that is updated dynamically then you will need to implement locking in a derived class */ STDMETHODIMP CBasePin::QueryAccept( const AM_MEDIA_TYPE *pmt ) { CheckPointer(pmt,E_POINTER); ValidateReadPtr(pmt,sizeof(AM_MEDIA_TYPE)); /* The CheckMediaType method is valid to return error codes if the media type is horrible, an example might be E_INVALIDARG. What we do here is map all the error codes into either S_OK or S_FALSE regardless */ HRESULT hr = CheckMediaType((CMediaType*)pmt); if (FAILED(hr)) { return S_FALSE; } // note that the only defined success codes should be S_OK and S_FALSE... return hr; } /* This can be called to return an enumerator for the pin's list of preferred media types. An input pin is not obliged to have any preferred formats although it can do. For example, the window renderer has a preferred type which describes a video image that matches the current window size. All output pins should expose at least one preferred format otherwise it is possible that neither pin has any types and so no connection is possible */ STDMETHODIMP CBasePin::EnumMediaTypes( IEnumMediaTypes **ppEnum ) { CheckPointer(ppEnum,E_POINTER); ValidateReadWritePtr(ppEnum,sizeof(IEnumMediaTypes *)); /* Create a new ref counted enumerator */ *ppEnum = new CEnumMediaTypes(this, NULL); if (*ppEnum == NULL) { return E_OUTOFMEMORY; } return NOERROR; } /* This is a virtual function that returns a media type corresponding with place iPosition in the list. This base class simply returns an error as we support no media types by default but derived classes should override */ HRESULT CBasePin::GetMediaType(int iPosition, CMediaType *pMediaType) { UNREFERENCED_PARAMETER(iPosition); UNREFERENCED_PARAMETER(pMediaType); return E_UNEXPECTED; } /* This is a virtual function that returns the current media type version. The base class initialises the media type enumerators with the value 1 By default we always returns that same value. A Derived class may change the list of media types available and after doing so it should increment the version either in a method derived from this, or more simply by just incrementing the m_TypeVersion base pin variable. The type enumerators call this when they want to see if their enumerations are out of date */ LONG CBasePin::GetMediaTypeVersion() { return m_TypeVersion; } /* Increment the cookie representing the current media type version */ void CBasePin::IncrementTypeVersion() { InterlockedIncrement(&m_TypeVersion); } /* Called by IMediaFilter implementation when the state changes from Stopped to either paused or running and in derived classes could do things like commit memory and grab hardware resource (the default is to do nothing) */ HRESULT CBasePin::Active(void) { return NOERROR; } /* Called by IMediaFilter implementation when the state changes from to either paused to running and in derived classes could do things like commit memory and grab hardware resource (the default is to do nothing) */ HRESULT CBasePin::Run(REFERENCE_TIME tStart) { UNREFERENCED_PARAMETER(tStart); return NOERROR; } /* Also called by the IMediaFilter implementation when the state changes to Stopped at which point you should decommit allocators and free hardware resources you grabbed in the Active call (default is also to do nothing) */ HRESULT CBasePin::Inactive(void) { m_bRunTimeError = FALSE; return NOERROR; } // Called when no more data will arrive STDMETHODIMP CBasePin::EndOfStream(void) { return S_FALSE; } STDMETHODIMP CBasePin::SetSink(IQualityControl * piqc) { CAutoLock cObjectLock(m_pLock); if (piqc) ValidateReadPtr(piqc,sizeof(IQualityControl)); m_pQSink = piqc; return NOERROR; } // SetSink STDMETHODIMP CBasePin::Notify(IBaseFilter * pSender, Quality q) { UNREFERENCED_PARAMETER(q); CheckPointer(pSender,E_POINTER); ValidateReadPtr(pSender,sizeof(IBaseFilter)); DbgBreak("IQualityControl::Notify not over-ridden from CBasePin. (IGNORE is OK)"); return E_FAIL; } //Notify // NewSegment notifies of the start/stop/rate applying to the data // about to be received. Default implementation records data and // returns S_OK. // Override this to pass downstream. STDMETHODIMP CBasePin::NewSegment( REFERENCE_TIME tStart, REFERENCE_TIME tStop, double dRate) { m_tStart = tStart; m_tStop = tStop; m_dRate = dRate; return S_OK; } //===================================================================== //===================================================================== // Implements CBaseOutputPin //===================================================================== //===================================================================== CBaseOutputPin::CBaseOutputPin(TCHAR *pObjectName, CBaseFilter *pFilter, CCritSec *pLock, HRESULT *phr, LPCWSTR pName) : CBasePin(pObjectName, pFilter, pLock, phr, pName, PINDIR_OUTPUT), m_pAllocator(NULL), m_pInputPin(NULL) { _ASSERTE(pFilter); } /* Since an input pin connected to us holds a reference count on us we will never be deleted unless all connections have already been terminated */ CBaseOutputPin::~CBaseOutputPin() { } /* This is called after a media type has been proposed Try to complete the connection by agreeing the allocator */ HRESULT CBaseOutputPin::CompleteConnect(IPin *pReceivePin) { UNREFERENCED_PARAMETER(pReceivePin); return DecideAllocator(m_pInputPin, &m_pAllocator); } /* This method is called when the output pin is about to try and connect to an input pin. It is at this point that you should try and grab any extra interfaces that you need, in this case IMemInputPin. Because this is only called if we are not currently connected we do NOT need to call BreakConnect. This also makes it easier to derive classes from us as BreakConnect is only called when we actually have to break a connection (or a partly made connection) and not when we are checking a connection */ /* Overriden from CBasePin */ HRESULT CBaseOutputPin::CheckConnect(IPin * pPin) { HRESULT hr = CBasePin::CheckConnect(pPin); if (FAILED(hr)) { return hr; } // get an input pin and an allocator interface hr = pPin->QueryInterface(IID_IMemInputPin, (void **) &m_pInputPin); if (FAILED(hr)) { return hr; } return NOERROR; } /* Overriden from CBasePin */ HRESULT CBaseOutputPin::BreakConnect() { /* Release any allocator we hold */ if (m_pAllocator) { m_pAllocator->Release(); m_pAllocator = NULL; } /* Release any input pin interface we hold */ if (m_pInputPin) { m_pInputPin->Release(); m_pInputPin = NULL; } return NOERROR; } /* This is called when the input pin didn't give us a valid allocator */ HRESULT CBaseOutputPin::InitAllocator(IMemAllocator **ppAlloc) { HRESULT hr = NOERROR; *ppAlloc = NULL; CMemAllocator *pMemObject = NULL; /* Create a default memory allocator */ pMemObject = new CMemAllocator(NAME("Base memory allocator"),NULL, &hr); if (pMemObject == NULL) { return E_OUTOFMEMORY; } if (FAILED(hr)) { delete pMemObject; return hr; } /* Get a reference counted IID_IMemAllocator interface */ EXECUTE_ASSERT(SUCCEEDED(pMemObject->QueryInterface(IID_IMemAllocator,(void **)ppAlloc))); _ASSERTE(*ppAlloc != NULL); return NOERROR; } /* Decide on an allocator, override this if you want to use your own allocator Override DecideBufferSize to call SetProperties. If the input pin fails the GetAllocator call then this will construct a CMemAllocator and call DecideBufferSize on that, and if that fails then we are completely hosed. If the you succeed the DecideBufferSize call, we will notify the input pin of the selected allocator. NOTE this is called during Connect() which therefore looks after grabbing and locking the object's critical section */ // We query the input pin for its requested properties and pass this to // DecideBufferSize to allow it to fulfill requests that it is happy // with (eg most people don't care about alignment and are thus happy to // use the downstream pin's alignment request). HRESULT CBaseOutputPin::DecideAllocator(IMemInputPin *pPin, IMemAllocator **ppAlloc) { HRESULT hr = NOERROR; *ppAlloc = NULL; // get downstream prop request // the derived class may modify this in DecideBufferSize, but // we assume that he will consistently modify it the same way, // so we only get it once ALLOCATOR_PROPERTIES prop; ZeroMemory(&prop, sizeof(prop)); // whatever he returns, we assume prop is either all zeros // or he has filled it out. pPin->GetAllocatorRequirements(&prop); // if he doesn't care about alignment, then set it to 1 if (prop.cbAlign == 0) { prop.cbAlign = 1; } /* Try the allocator provided by the input pin */ hr = pPin->GetAllocator(ppAlloc); if (SUCCEEDED(hr)) { hr = DecideBufferSize(*ppAlloc, &prop); if (SUCCEEDED(hr)) { hr = pPin->NotifyAllocator(*ppAlloc, FALSE); if (SUCCEEDED(hr)) { return NOERROR; } } } /* If the GetAllocator failed we may not have an interface */ if (*ppAlloc) { (*ppAlloc)->Release(); *ppAlloc = NULL; } /* Try the output pin's allocator by the same method */ hr = InitAllocator(ppAlloc); if (SUCCEEDED(hr)) { // note - the properties passed here are in the same // structure as above and may have been modified by // the previous call to DecideBufferSize hr = DecideBufferSize(*ppAlloc, &prop); if (SUCCEEDED(hr)) { hr = pPin->NotifyAllocator(*ppAlloc, FALSE); if (SUCCEEDED(hr)) { return NOERROR; } } } /* Likewise we may not have an interface to release */ if (*ppAlloc) { (*ppAlloc)->Release(); *ppAlloc = NULL; } return hr; } /* This returns an empty sample buffer from the allocator WARNING the same dangers and restrictions apply here as described below for Deliver() */ HRESULT CBaseOutputPin::GetDeliveryBuffer(IMediaSample ** ppSample, REFERENCE_TIME * pStartTime, REFERENCE_TIME * pEndTime, DWORD dwFlags) { if (m_pAllocator != NULL) { return m_pAllocator->GetBuffer(ppSample,pStartTime,pEndTime,dwFlags); } else { return E_NOINTERFACE; } } /* Deliver a filled-in sample to the connected input pin. NOTE the object must have locked itself before calling us otherwise we may get halfway through executing this method only to find the filter graph has got in and disconnected us from the input pin. If the filter has no worker threads then the lock is best applied on Receive(), otherwise it should be done when the worker thread is ready to deliver. There is a wee snag to worker threads that this shows up. The worker thread must lock the object when it is ready to deliver a sample, but it may have to wait until a state change has completed, but that may never complete because the state change is waiting for the worker thread to complete. The way to handle this is for the state change code to grab the critical section, then set an abort event for the worker thread, then release the critical section and wait for the worker thread to see the event we set and then signal that it has finished (with another event). At which point the state change code can complete */ // note (if you've still got any breath left after reading that) that you // need to release the sample yourself after this call. if the connected // input pin needs to hold onto the sample beyond the call, it will addref // the sample itself. // of course you must release this one and call GetDeliveryBuffer for the // next. You cannot reuse it directly. HRESULT CBaseOutputPin::Deliver(IMediaSample * pSample) { if (m_pInputPin == NULL) { return VFW_E_NOT_CONNECTED; } return m_pInputPin->Receive(pSample); } // called from elsewhere in our filter to pass EOS downstream to // our connected input pin HRESULT CBaseOutputPin::DeliverEndOfStream(void) { // remember this is on IPin not IMemInputPin if (m_Connected == NULL) { return VFW_E_NOT_CONNECTED; } return m_Connected->EndOfStream(); } /* Commit the allocator's memory, this is called through IMediaFilter which is responsible for locking the object before calling us */ HRESULT CBaseOutputPin::Active(void) { if (m_pAllocator == NULL) { return VFW_E_NO_ALLOCATOR; } return m_pAllocator->Commit(); } /* Free up or unprepare allocator's memory, this is called through IMediaFilter which is responsible for locking the object first */ HRESULT CBaseOutputPin::Inactive(void) { m_bRunTimeError = FALSE; if (m_pAllocator == NULL) { return VFW_E_NO_ALLOCATOR; } return m_pAllocator->Decommit(); } // we have a default handling of EndOfStream which is to return // an error, since this should be called on input pins only STDMETHODIMP CBaseOutputPin::EndOfStream(void) { return E_UNEXPECTED; } // BeginFlush should be called on input pins only STDMETHODIMP CBaseOutputPin::BeginFlush(void) { return E_UNEXPECTED; } // EndFlush should be called on input pins only STDMETHODIMP CBaseOutputPin::EndFlush(void) { return E_UNEXPECTED; } // call BeginFlush on the connected input pin HRESULT CBaseOutputPin::DeliverBeginFlush(void) { // remember this is on IPin not IMemInputPin if (m_Connected == NULL) { return VFW_E_NOT_CONNECTED; } return m_Connected->BeginFlush(); } // call EndFlush on the connected input pin HRESULT CBaseOutputPin::DeliverEndFlush(void) { // remember this is on IPin not IMemInputPin if (m_Connected == NULL) { return VFW_E_NOT_CONNECTED; } return m_Connected->EndFlush(); } // deliver NewSegment to connected pin HRESULT CBaseOutputPin::DeliverNewSegment( REFERENCE_TIME tStart, REFERENCE_TIME tStop, double dRate) { if (m_Connected == NULL) { return VFW_E_NOT_CONNECTED; } return m_Connected->NewSegment(tStart, tStop, dRate); } //===================================================================== //===================================================================== // Implements CBaseInputPin //===================================================================== //===================================================================== /* Constructor creates a default allocator object */ CBaseInputPin::CBaseInputPin(TCHAR *pObjectName, CBaseFilter *pFilter, CCritSec *pLock, HRESULT *phr, LPCWSTR pPinName) : CBasePin(pObjectName, pFilter, pLock, phr, pPinName, PINDIR_INPUT), m_pAllocator(NULL), m_bReadOnly(FALSE), m_bFlushing(FALSE) { ZeroMemory(&m_SampleProps, sizeof(m_SampleProps)); } /* Destructor releases it's reference count on the default allocator */ CBaseInputPin::~CBaseInputPin() { if (m_pAllocator != NULL) { m_pAllocator->Release(); m_pAllocator = NULL; } if (m_SampleProps.pMediaType) { DeleteMediaType(m_SampleProps.pMediaType); } } // override this to publicise our interfaces STDMETHODIMP CBaseInputPin::NonDelegatingQueryInterface(REFIID riid, void **ppv) { /* Do we know about this interface */ if (riid == IID_IMemInputPin) { return GetInterface((IMemInputPin *) this, ppv); } else { return CBasePin::NonDelegatingQueryInterface(riid, ppv); } } /* Return the allocator interface that this input pin would like the output pin to use. NOTE subsequent calls to GetAllocator should all return an interface onto the SAME object so we create one object at the start Note: The allocator is Release()'d on disconnect and replaced on NotifyAllocator(). Override this to provide your own allocator. */ STDMETHODIMP CBaseInputPin::GetAllocator( IMemAllocator **ppAllocator) { CheckPointer(ppAllocator,E_POINTER); ValidateReadWritePtr(ppAllocator,sizeof(IMemAllocator *)); CAutoLock cObjectLock(m_pLock); if (m_pAllocator == NULL) { HRESULT hr = S_OK; /* Create the new allocator object */ CMemAllocator *pMemObject = new CMemAllocator(NAME("Default memory allocator"), NULL, &hr); if (pMemObject == NULL) { return E_OUTOFMEMORY; } if (FAILED(hr)) { _ASSERTE(pMemObject); delete pMemObject; return hr; } m_pAllocator = pMemObject; /* We AddRef() our own allocator */ m_pAllocator->AddRef(); } _ASSERTE(m_pAllocator != NULL); *ppAllocator = m_pAllocator; m_pAllocator->AddRef(); return NOERROR; } /* Tell the input pin which allocator the output pin is actually going to use Override this if you care - NOTE the locking we do both here and also in GetAllocator is unnecessary but derived classes that do something useful will undoubtedly have to lock the object so this might help remind people */ STDMETHODIMP CBaseInputPin::NotifyAllocator( IMemAllocator * pAllocator, BOOL bReadOnly) { CheckPointer(pAllocator,E_POINTER); ValidateReadPtr(pAllocator,sizeof(IMemAllocator)); CAutoLock cObjectLock(m_pLock); IMemAllocator *pOldAllocator = m_pAllocator; pAllocator->AddRef(); m_pAllocator = pAllocator; if (pOldAllocator != NULL) { pOldAllocator->Release(); } // the readonly flag indicates whether samples from this allocator should // be regarded as readonly - if true, then inplace transforms will not be // allowed. m_bReadOnly = bReadOnly; return NOERROR; } /* Disconnect */ STDMETHODIMP CBaseInputPin::Disconnect() { CAutoLock cObjectLock(m_pLock); /* Call base class first because it calls Inactive() for us */ HRESULT hr = CBasePin::Disconnect(); if (S_OK == hr) { /* We don't need our allocator any more */ if (m_pAllocator) { m_pAllocator->Release(); m_pAllocator = NULL; } } return hr; } /* Do something with this media sample - this base class checks to see if the format has changed with this media sample and if so checks that the filter will accept it, generating a run time error if not. Once we have raised a run time error we set a flag so that no more samples will be accepted It is important that any filter should override this method and implement synchronization so that samples are not processed when the pin is disconnected etc */ STDMETHODIMP CBaseInputPin::Receive(IMediaSample *pSample) { CheckPointer(pSample,E_POINTER); ValidateReadPtr(pSample,sizeof(IMediaSample)); AM_MEDIA_TYPE *pmt = NULL; _ASSERTE(pSample); HRESULT hr = CheckStreaming(); if (S_OK != hr) { return hr; } /* Check for IMediaSample2 */ if (m_SampleProps.pMediaType) { DeleteMediaType(m_SampleProps.pMediaType); } IMediaSample2 *pSample2; if (SUCCEEDED(pSample->QueryInterface(IID_IMediaSample2, (void **)&pSample2))) { hr = pSample2->GetProperties(sizeof(m_SampleProps), (PBYTE)&m_SampleProps); pSample2->Release(); if (FAILED(hr)) { return hr; } } else { /* Get the properties the hard way */ m_SampleProps.cbData = sizeof(m_SampleProps); m_SampleProps.dwTypeSpecificFlags = 0; m_SampleProps.dwSampleFlags = 0; if (S_OK == pSample->IsDiscontinuity()) { m_SampleProps.dwSampleFlags |= AM_SAMPLE_DATADISCONTINUITY; } if (S_OK == pSample->IsPreroll()) { m_SampleProps.dwSampleFlags |= AM_SAMPLE_PREROLL; } if (S_OK == pSample->IsSyncPoint()) { m_SampleProps.dwSampleFlags |= AM_SAMPLE_SPLICEPOINT; } if (S_OK == pSample->GetTime(&m_SampleProps.tStart, &m_SampleProps.tStop)) { m_SampleProps.dwSampleFlags |= AM_SAMPLE_TIMEVALID | AM_SAMPLE_STOPVALID; } if (S_OK == pSample->GetMediaType(&m_SampleProps.pMediaType)) { m_SampleProps.dwSampleFlags |= AM_SAMPLE_TYPECHANGED; } pSample->GetPointer(&m_SampleProps.pbBuffer); m_SampleProps.lActual = pSample->GetActualDataLength(); m_SampleProps.cbBuffer = pSample->GetSize(); } /* Has the format changed in this sample */ if (!(m_SampleProps.dwSampleFlags & AM_SAMPLE_TYPECHANGED)) { return NOERROR; } /* Check the derived class accepts this format */ /* This shouldn't fail as the source must call QueryAccept first */ hr = CheckMediaType((CMediaType *)m_SampleProps.pMediaType); if (hr == NOERROR) { return NOERROR; } /* Raise a runtime error if we fail the media type */ m_bRunTimeError = TRUE; EndOfStream(); m_pFilter->NotifyEvent(EC_ERRORABORT,VFW_E_TYPE_NOT_ACCEPTED,0); return VFW_E_INVALIDMEDIATYPE; } /* Receive multiple samples */ STDMETHODIMP CBaseInputPin::ReceiveMultiple ( IMediaSample **pSamples, long nSamples, long *nSamplesProcessed) { CheckPointer(pSamples,E_POINTER); ValidateReadPtr(pSamples,nSamples * sizeof(IMediaSample *)); HRESULT hr = S_OK; *nSamplesProcessed = 0; while (nSamples-- > 0) { hr = Receive(pSamples[*nSamplesProcessed]); /* S_FALSE means don't send any more */ if (hr != S_OK) { break; } (*nSamplesProcessed)++; } return hr; } /* See if Receive() might block */ STDMETHODIMP CBaseInputPin::ReceiveCanBlock() { /* Ask all the output pins if they block If there are no output pin assume we do block */ int cPins = m_pFilter->GetPinCount(); int cOutputPins = 0; for (int c = 0; c < cPins; c++) { CBasePin *pPin = m_pFilter->GetPin(c); PIN_DIRECTION pd; HRESULT hr = pPin->QueryDirection(&pd); if (FAILED(hr)) { return hr; } if (pd == PINDIR_OUTPUT) { IPin *pConnected; hr = pPin->ConnectedTo(&pConnected); if (SUCCEEDED(hr)) { _ASSERTE(pConnected != NULL); cOutputPins++; IMemInputPin *pInputPin; hr = pConnected->QueryInterface( IID_IMemInputPin, (void **)&pInputPin); pConnected->Release(); if (SUCCEEDED(hr)) { hr = pInputPin->ReceiveCanBlock(); pInputPin->Release(); if (hr != S_FALSE) { return S_OK; } } else { /* There's a transport we don't understand here */ return S_OK; } } } } return cOutputPins == 0 ? S_OK : S_FALSE; } // Default handling for BeginFlush - call at the beginning // of your implementation (makes sure that all Receive calls // fail). After calling this, you need to free any queued data // and then call downstream. STDMETHODIMP CBaseInputPin::BeginFlush(void) { // BeginFlush is NOT synchronized with streaming but is part of // a control action - hence we synchronize with the filter CAutoLock lck(m_pLock); // if we are already in mid-flush, this is probably a mistake // though not harmful - try to pick it up for now so I can think about it _ASSERTE(!m_bFlushing); // first thing to do is ensure that no further Receive calls succeed m_bFlushing = TRUE; // now discard any data and call downstream - must do that // in derived classes return S_OK; } // default handling for EndFlush - call at end of your implementation // - before calling this, ensure that there is no queued data and no thread // pushing any more without a further receive, then call downstream, // then call this method to clear the m_bFlushing flag and re-enable // receives STDMETHODIMP CBaseInputPin::EndFlush(void) { // Endlush is NOT synchronized with streaming but is part of // a control action - hence we synchronize with the filter CAutoLock lck(m_pLock); // almost certainly a mistake if we are not in mid-flush _ASSERTE(m_bFlushing); // before calling, sync with pushing thread and ensure // no more data is going downstream, then call EndFlush on // downstream pins. // now re-enable Receives m_bFlushing = FALSE; return S_OK; } STDMETHODIMP CBaseInputPin::Notify(IBaseFilter * pSender, Quality q) { UNREFERENCED_PARAMETER(q); CheckPointer(pSender,E_POINTER); ValidateReadPtr(pSender,sizeof(IBaseFilter)); DbgBreak("IQuality::Notify called on an input pin"); return NOERROR; } // Notify /* Free up or unprepare allocator's memory, this is called through IMediaFilter which is responsible for locking the object first */ HRESULT CBaseInputPin::Inactive(void) { m_bRunTimeError = FALSE; if (m_pAllocator == NULL) { return VFW_E_NO_ALLOCATOR; } m_bFlushing = FALSE; return m_pAllocator->Decommit(); } // what requirements do we have of the allocator - override if you want // to support other people's allocators but need a specific alignment // or prefix. STDMETHODIMP CBaseInputPin::GetAllocatorRequirements(ALLOCATOR_PROPERTIES*pProps) { UNREFERENCED_PARAMETER(pProps); return E_NOTIMPL; } // Check if it's OK to process data // HRESULT CBaseInputPin::CheckStreaming() { // Shouldn't be able to get any data if we're not connected! _ASSERTE(IsConnected()); // Don't process stuff in Stopped state if (IsStopped()) { return VFW_E_WRONG_STATE; } if (m_bFlushing) { return S_FALSE; } if (m_bRunTimeError) { return VFW_E_RUNTIME_ERROR; } return S_OK; } #endif //===================================================================== //===================================================================== // Memory allocation class, implements CMediaSampleImpl //===================================================================== //===================================================================== /* NOTE The implementation of this class calls the CUnknown constructor with a NULL outer unknown pointer. This has the effect of making us a self contained class, ie any QueryInterface, AddRef or Release calls will be routed to the class's NonDelegatingUnknown methods. You will typically find that the classes that do this then override one or more of these virtual functions to provide more specialised behaviour. A good example of this is where a class wants to keep the QueryInterface internal but still wants it's lifetime controlled by the external object */ /* The last two parameters have default values of NULL and zero */ template CAMMediaSampleImpl<_S, _A>::CAMMediaSampleImpl() : m_pBuffer(NULL), // Initialise the buffer m_cbBuffer(0), // And it's length m_lActual(0), // By default, actual = length m_pMediaType(NULL), // No media type change m_dwFlags(0), // Nothing set m_cRef(0), // 0 ref count m_pAllocator(NULL) // Allocator { } #if 0 /* Destructor deletes the media type memory */ template CAMMediaSampleImpl<_S, _A>::~CAMMediaSampleImpl() { if (m_pMediaType) { DeleteMediaType(m_pMediaType); } } #endif /* Override this to publicise our interfaces */ template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::QueryInterface(REFIID riid, void **ppv) { if (ppv == NULL) { return E_POINTER; } if (riid == IID_IMediaSample || riid == IID_IMediaSample2 || riid == IID_IUnknown) { *ppv = (IMediaSample *)this; AddRef(); return S_OK; } else { return E_NOINTERFACE; } } template STDMETHODIMP_(ULONG) CAMMediaSampleImpl<_S, _A>::AddRef() { return InterlockedIncrement(&m_cRef); } // -- CMediaSample lifetimes -- // // On final release of this sample buffer it is not deleted but // returned to the freelist of the owning memory allocator // // The allocator may be waiting for the last buffer to be placed on the free // list in order to decommit all the memory, so the ReleaseBuffer() call may // result in this sample being deleted. We also need to hold a refcount on // the allocator to stop that going away until we have finished with this. // However, we cannot release the allocator before the ReleaseBuffer, as the // release may cause us to be deleted. Similarly we can't do it afterwards. // // Thus we must leave it to the allocator to hold an addref on our behalf. // When he issues us in GetBuffer, he addref's himself. When ReleaseBuffer // is called, he releases himself, possibly causing us and him to be deleted. template STDMETHODIMP_(ULONG) CAMMediaSampleImpl<_S, _A>::Release() { /* Decrement our own private reference count */ LONG lRef; if (m_cRef == 1) { lRef = 0; m_cRef = 0; } else { lRef = InterlockedDecrement(&m_cRef); } _ASSERTE(lRef >= 0); //DbgLog((LOG_MEMORY,3,TEXT(" Unknown %X ref-- = %d"), // this, m_cRef)); /* Did we release our final reference count */ if (lRef == 0) { /* Free all resources */ if (m_dwFlags & Sample_TypeChanged) { SetMediaType(NULL); } _ASSERTE(m_pMediaType == NULL); m_dwFlags = 0; /* This may cause us to be deleted */ // Our refcount is reliably 0 thus no-one will mess with us m_pAllocator->ReleaseBuffer(this); } return (ULONG)lRef; } #if 0 // set the buffer pointer and length. Used by allocators that // want variable sized pointers or pointers into already-read data. // This is only available through a CMediaSample* not an IMediaSample* // and so cannot be changed by clients. template HRESULT CAMMediaSampleImpl<_S, _A>::SetPointer(BYTE * ptr, LONG cBytes) { m_pBuffer = ptr; // new buffer area (could be null) m_cbBuffer = cBytes; // length of buffer m_lActual = cBytes; // length of data in buffer (assume full) return S_OK; } #endif // get me a read/write pointer to this buffer's memory. I will actually // want to use sizeUsed bytes. template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::GetPointer(BYTE ** ppBuffer) { //ValidateReadWritePtr(ppBuffer,sizeof(BYTE *)); // creator must have set pointer either during // constructor or by SetPointer _ASSERTE(m_pBuffer); *ppBuffer = m_pBuffer; return NOERROR; } // return the size in bytes of this buffer template STDMETHODIMP_(LONG) CAMMediaSampleImpl<_S, _A>::GetSize(void) { return m_cbBuffer; } // get the stream time at which this sample should start and finish. template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::GetTime( REFERENCE_TIME * pTimeStart, // put time here REFERENCE_TIME * pTimeEnd ) { //ValidateReadWritePtr(pTimeStart,sizeof(REFERENCE_TIME)); //ValidateReadWritePtr(pTimeEnd,sizeof(REFERENCE_TIME)); if (!(m_dwFlags & Sample_TimeValid)) { return VFW_E_SAMPLE_TIME_NOT_SET; } *pTimeStart = m_Start; *pTimeEnd = m_End; return NOERROR; } // Set the stream time at which this sample should start and finish. // NULL pointers means the time is reset template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetTime( REFERENCE_TIME * pTimeStart, REFERENCE_TIME * pTimeEnd ) { if (pTimeStart == NULL) { _ASSERTE(pTimeEnd == NULL); m_dwFlags &= ~(Sample_TimeValid | Sample_StopValid); } else { //ValidateReadPtr(pTimeStart,sizeof(REFERENCE_TIME)); //ValidateReadPtr(pTimeEnd,sizeof(REFERENCE_TIME)); _ASSERTE(*pTimeEnd >= *pTimeStart); m_Start = *pTimeStart; m_End = *pTimeEnd; m_dwFlags |= Sample_TimeValid | Sample_StopValid; } return NOERROR; } // get the media times (eg bytes) for this sample template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::GetMediaTime( LONGLONG * pTimeStart, LONGLONG * pTimeEnd ) { //ValidateReadWritePtr(pTimeStart,sizeof(LONGLONG)); //ValidateReadWritePtr(pTimeEnd,sizeof(LONGLONG)); if (!(m_dwFlags & Sample_MediaTimeValid)) { return VFW_E_MEDIA_TIME_NOT_SET; } *pTimeStart = m_MediaStart; *pTimeEnd = (m_MediaStart + m_MediaEnd); return NOERROR; } // Set the media times for this sample template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetMediaTime( LONGLONG * pTimeStart, LONGLONG * pTimeEnd ) { if (pTimeStart == NULL) { _ASSERTE(pTimeEnd == NULL); m_dwFlags &= ~Sample_MediaTimeValid; } else { //ValidateReadPtr(pTimeStart,sizeof(LONGLONG)); //ValidateReadPtr(pTimeEnd,sizeof(LONGLONG)); _ASSERTE(*pTimeEnd >= *pTimeStart); m_MediaStart = *pTimeStart; m_MediaEnd = (LONG)(*pTimeEnd - *pTimeStart); m_dwFlags |= Sample_MediaTimeValid; } return NOERROR; } template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::IsSyncPoint(void) { if (m_dwFlags & Sample_SyncPoint) { return S_OK; } else { return S_FALSE; } } template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetSyncPoint(BOOL bIsSyncPoint) { if (bIsSyncPoint) { m_dwFlags |= Sample_SyncPoint; } else { m_dwFlags &= ~Sample_SyncPoint; } return NOERROR; } // returns S_OK if there is a discontinuity in the data (this same is // not a continuation of the previous stream of data // - there has been a seek). template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::IsDiscontinuity(void) { if (m_dwFlags & Sample_Discontinuity) { return S_OK; } else { return S_FALSE; } } // set the discontinuity property - TRUE if this sample is not a // continuation, but a new sample after a seek. template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetDiscontinuity(BOOL bDiscont) { // should be TRUE or FALSE if (bDiscont) { m_dwFlags |= Sample_Discontinuity; } else { m_dwFlags &= ~Sample_Discontinuity; } return S_OK; } template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::IsPreroll(void) { if (m_dwFlags & Sample_Preroll) { return S_OK; } else { return S_FALSE; } } template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetPreroll(BOOL bIsPreroll) { if (bIsPreroll) { m_dwFlags |= Sample_Preroll; } else { m_dwFlags &= ~Sample_Preroll; } return NOERROR; } template STDMETHODIMP_(LONG) CAMMediaSampleImpl<_S, _A>::GetActualDataLength(void) { return m_lActual; } template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetActualDataLength(LONG lActual) { if (lActual > m_cbBuffer) { _ASSERTE(lActual <= GetSize()); return VFW_E_BUFFER_OVERFLOW; } m_lActual = lActual; return NOERROR; } /* These allow for limited format changes in band */ template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::GetMediaType(AM_MEDIA_TYPE **ppMediaType) { //ValidateReadWritePtr(ppMediaType,sizeof(AM_MEDIA_TYPE *)); _ASSERTE(ppMediaType); /* Do we have a new media type for them */ if (!(m_dwFlags & Sample_TypeChanged)) { _ASSERTE(m_pMediaType == NULL); *ppMediaType = NULL; return S_FALSE; } _ASSERTE(m_pMediaType); /* Create a copy of our media type */ *ppMediaType = CreateMediaType(m_pMediaType); if (*ppMediaType == NULL) { return E_OUTOFMEMORY; } return NOERROR; } /* Mark this sample as having a different format type */ template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::SetMediaType(AM_MEDIA_TYPE *pMediaType) { /* Delete the current media type */ if (m_pMediaType) { DeleteMediaType(m_pMediaType); m_pMediaType = NULL; } /* Mechanism for resetting the format type */ if (pMediaType == NULL) { m_dwFlags &= ~Sample_TypeChanged; return NOERROR; } _ASSERTE(pMediaType); //ValidateReadPtr(pMediaType,sizeof(AM_MEDIA_TYPE)); /* Take a copy of the media type */ m_pMediaType = CreateMediaType(pMediaType); if (m_pMediaType == NULL) { m_dwFlags &= ~Sample_TypeChanged; return E_OUTOFMEMORY; } m_dwFlags |= Sample_TypeChanged; return NOERROR; } // Set and get properties (IMediaSample2) template STDMETHODIMP CAMMediaSampleImpl<_S, _A>::GetProperties( DWORD cbProperties, BYTE * pbProperties ) { if (0 != cbProperties) { if (pbProperties == NULL) { return E_POINTER; } // Return generic stuff up to the length AM_SAMPLE2_PROPERTIES Props; Props.cbData = min(cbProperties, sizeof(Props)); Props.dwSampleFlags = m_dwFlags & ~Sample_MediaTimeValid; Props.dwTypeSpecificFlags = m_dwTypeSpecificFlags; Props.pbBuffer = m_pBuffer; Props.cbBuffer = m_cbBuffer; Props.lActual = m_lActual; Props.tStart = m_Start; Props.tStop = m_End; if (m_dwFlags & AM_SAMPLE_TYPECHANGED) { Props.pMediaType = m_pMediaType; } else { Props.pMediaType = NULL; } CopyMemory(pbProperties, &Props, Props.cbData); } return S_OK; } #define CONTAINS_FIELD(type, field, offset) \ ((FIELD_OFFSET(type, field) + sizeof(((type *)0)->field)) <= offset) template HRESULT CAMMediaSampleImpl<_S, _A>::SetProperties( DWORD cbProperties, const BYTE * pbProperties ) { /* Generic properties */ AM_MEDIA_TYPE *pMediaType = NULL; if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, cbData, cbProperties)) { if (pbProperties == NULL) { return E_POINTER; } AM_SAMPLE2_PROPERTIES *pProps = (AM_SAMPLE2_PROPERTIES *)pbProperties; /* Don't use more data than is actually there */ if (pProps->cbData < cbProperties) { cbProperties = pProps->cbData; } /* We only handle IMediaSample2 */ if (cbProperties > sizeof(*pProps) || pProps->cbData > sizeof(*pProps)) { return E_INVALIDARG; } /* Do checks first, the assignments (for backout) */ if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, dwSampleFlags, cbProperties)) { /* Check the flags */ if (pProps->dwSampleFlags & (~Sample_ValidFlags | Sample_MediaTimeValid)) { return E_INVALIDARG; } /* Check a flag isn't being set for a property not being provided */ if ((pProps->dwSampleFlags & AM_SAMPLE_TIMEVALID) && !(m_dwFlags & AM_SAMPLE_TIMEVALID) && !CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, tStop, cbProperties)) { return E_INVALIDARG; } } /* NB - can't SET the pointer or size */ if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, pbBuffer, cbProperties)) { /* Check pbBuffer */ if (pProps->pbBuffer != 0 && pProps->pbBuffer != m_pBuffer) { return E_INVALIDARG; } } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, cbBuffer, cbProperties)) { /* Check cbBuffer */ if (pProps->cbBuffer != 0 && pProps->cbBuffer != m_cbBuffer) { return E_INVALIDARG; } } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, cbBuffer, cbProperties) && CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, lActual, cbProperties)) { /* Check lActual */ if (pProps->cbBuffer < pProps->lActual) { return E_INVALIDARG; } } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, pMediaType, cbProperties)) { /* Check pMediaType */ if (pProps->dwSampleFlags & AM_SAMPLE_TYPECHANGED) { if (pProps->pMediaType == NULL) { return E_POINTER; } pMediaType = CreateMediaType(pProps->pMediaType); if (pMediaType == NULL) { return E_OUTOFMEMORY; } } } /* Now do the assignments */ if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, dwSampleFlags, cbProperties)) { /* Set the flags */ m_dwFlags = pProps->dwSampleFlags | (m_dwFlags & Sample_MediaTimeValid); m_dwTypeSpecificFlags = pProps->dwTypeSpecificFlags; } else { if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, dwTypeSpecificFlags, cbProperties)) { m_dwTypeSpecificFlags = pProps->dwTypeSpecificFlags; } } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, lActual, cbProperties)) { /* Set lActual */ m_lActual = pProps->lActual; } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, tStop, cbProperties)) { /* Set the times */ m_End = pProps->tStop; } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, tStart, cbProperties)) { /* Set the times */ m_Start = pProps->tStart; } if (CONTAINS_FIELD(AM_SAMPLE2_PROPERTIES, pMediaType, cbProperties)) { /* Set pMediaType */ if (pProps->dwSampleFlags & AM_SAMPLE_TYPECHANGED) { if (m_pMediaType != NULL) { DeleteMediaType(m_pMediaType); } m_pMediaType = pMediaType; } } } return S_OK; } //===================================================================== //===================================================================== // Implements CAMBaseAllocator //===================================================================== //===================================================================== /* Constructor overrides the default settings for the free list to request that it be alertable (ie the list can be cast to a handle which can be passed to WaitForSingleObject). Both of the allocator lists also ask for object locking, the all list matches the object default settings but I have included them here just so it is obvious what kind of list it is */ template CAMBaseAllocator<_A, _S>::CAMBaseAllocator() : m_lAllocated(0), m_bChanged(FALSE), m_bCommitted(FALSE), m_bDecommitInProgress(FALSE), m_lSize(0), m_lCount(0), m_lAlignment(0), m_lPrefix(0), m_hSem(NULL), m_lWaiting(0) { } template HRESULT CAMBaseAllocator<_A, _S>::FinalConstruct() { HRESULT hr = CComObjectRoot::FinalConstruct(); if (FAILED(hr)) { return hr; } m_hSem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL); if (m_hSem == NULL) { return E_OUTOFMEMORY; } else { return S_OK; } } /* Destructor */ template CAMBaseAllocator<_A, _S>::~CAMBaseAllocator() { // we can't call Decommit here since that would mean a call to a // pure virtual in destructor. // We must assume that the derived class has gone into decommit state in // its destructor. _ASSERTE(!m_bCommitted); if (m_hSem != NULL) { EXECUTE_ASSERT(CloseHandle(m_hSem)); } } /* This sets the size and count of the required samples. The memory isn't actually allocated until Commit() is called, if memory has already been allocated then assuming no samples are outstanding the user may call us to change the buffering, the memory will be released in Commit() */ template STDMETHODIMP CAMBaseAllocator<_A, _S>::SetProperties( ALLOCATOR_PROPERTIES* pRequest, ALLOCATOR_PROPERTIES* pActual) { if (pRequest == NULL || pActual == NULL) { return E_POINTER; } // ValidateReadWritePtr(pActual, sizeof(ALLOCATOR_PROPERTIES)); CAutoLock cObjectLock(&m_Lock); ZeroMemory(pActual, sizeof(ALLOCATOR_PROPERTIES)); _ASSERTE(pRequest->cbBuffer > 0); /* Check the alignment requested */ if (pRequest->cbAlign != 1) { #if 0 // No decent logging macros in ATL DbgLog((LOG_ERROR, 2, TEXT("Alignment requested was 0x%x, not 1"), pRequest->cbAlign)); #endif return VFW_E_BADALIGN; } /* Can't do this if already committed, there is an argument that says we should not reject the SetProperties call if there are buffers still active. However this is called by the source filter, which is the same person who is holding the samples. Therefore it is not unreasonable for them to free all their samples before changing the requirements */ if (m_bCommitted) { return VFW_E_ALREADY_COMMITTED; } /* Must be no outstanding buffers */ if (m_lAllocated != m_lFree.GetCount()) { return VFW_E_BUFFERS_OUTSTANDING; } /* There isn't any real need to check the parameters as they will just be rejected when the user finally calls Commit */ pActual->cbBuffer = m_lSize = pRequest->cbBuffer; pActual->cBuffers = m_lCount = pRequest->cBuffers; pActual->cbAlign = m_lAlignment = pRequest->cbAlign; pActual->cbPrefix = m_lPrefix = pRequest->cbPrefix; m_bChanged = TRUE; return NOERROR; } template STDMETHODIMP CAMBaseAllocator<_A, _S>::GetProperties( ALLOCATOR_PROPERTIES * pActual) { if (pActual == NULL) { return E_POINTER; } // ValidateReadWritePtr(pActual,sizeof(ALLOCATOR_PROPERTIES)); CAutoLock cObjectLock(&m_Lock); pActual->cbBuffer = m_lSize; pActual->cBuffers = m_lCount; pActual->cbAlign = m_lAlignment; pActual->cbPrefix = m_lPrefix; return NOERROR; } // get container for a sample. Blocking, synchronous call to get the // next free buffer (as represented by an IMediaSample interface). // on return, the time etc properties will be invalid, but the buffer // pointer and size will be correct. template HRESULT CAMBaseAllocator<_A, _S>::GetBuffer(IMediaSample **ppBuffer, REFERENCE_TIME *pStartTime, REFERENCE_TIME *pEndTime, DWORD dwFlags ) { UNREFERENCED_PARAMETER(pStartTime); UNREFERENCED_PARAMETER(pEndTime); UNREFERENCED_PARAMETER(dwFlags); _S *pSample; *ppBuffer = NULL; for (;;) { { // scope for lock CAutoLock cObjectLock(&m_Lock); /* Check we are committed */ if (!m_bCommitted) { return VFW_E_NOT_COMMITTED; } pSample = (_S *)m_lFree.RemoveHead(); if (pSample == NULL) { SetWaiting(); } } /* If we didn't get a sample then wait for the list to signal */ if (pSample) { break; } _ASSERTE(m_hSem != NULL); WaitForSingleObject(m_hSem, INFINITE); } /* Addref the buffer up to one. On release back to zero instead of being deleted, it will requeue itself by calling the ReleaseBuffer member function. NOTE the owner of a media sample must always be derived from CAMBaseAllocator */ _ASSERTE(pSample->m_cRef == 0); pSample->m_cRef = 1; *ppBuffer = pSample; return NOERROR; } /* Final release of a CAMMediaSampleImpl will call this */ template STDMETHODIMP CAMBaseAllocator<_A, _S>::ReleaseBuffer(IMediaSample * pSample) { if (pSample == NULL) { return E_POINTER; } //ValidateReadPtr(pSample,sizeof(IMediaSample)); BOOL bRelease = FALSE; { CAutoLock cal(&m_Lock); /* Put back on the free list */ m_lFree.Add((_S *)pSample); if (m_lWaiting != 0) { NotifySample(); } // if there is a pending Decommit, then we need to complete it by // calling Free() when the last buffer is placed on the free list LONG l1 = m_lFree.GetCount(); if (m_bDecommitInProgress && (l1 == m_lAllocated)) { Free(); m_bDecommitInProgress = FALSE; bRelease = TRUE; } } /* For each buffer there is one AddRef, made in GetBuffer and released here. This may cause the allocator and all samples to be deleted */ if (bRelease) { Release(); } return NOERROR; } template void CAMBaseAllocator<_A, _S>::NotifySample() { if (m_lWaiting != 0) { _ASSERTE(m_hSem != NULL); ReleaseSemaphore(m_hSem, m_lWaiting, 0); m_lWaiting = 0; } } template STDMETHODIMP CAMBaseAllocator<_A, _S>::Commit() { /* Check we are not decommitted */ CAutoLock cObjectLock(&m_Lock); // cannot need to alloc or re-alloc if we are committed if (m_bCommitted) { return NOERROR; } /* Allow GetBuffer calls */ m_bCommitted = TRUE; // is there a pending decommit ? if so, just cancel it if (m_bDecommitInProgress) { m_bDecommitInProgress = FALSE; // don't call Alloc at this point. He cannot allow SetProperties // between Decommit and the last free, so the buffer size cannot have // changed. And because some of the buffers are not free yet, he // cannot re-alloc anyway. return NOERROR; } // DbgLog((LOG_MEMORY, 1, TEXT("Allocating: %ldx%ld"), m_lCount, m_lSize)); // actually need to allocate the samples HRESULT hr = Alloc(); if (FAILED(hr)) { m_bCommitted = FALSE; return hr; } AddRef(); return NOERROR; } template STDMETHODIMP CAMBaseAllocator<_A, _S>::Decommit() { BOOL bRelease = FALSE; { /* Check we are not already decommitted */ CAutoLock cObjectLock(&m_Lock); if (m_bCommitted == FALSE) { if (m_bDecommitInProgress == FALSE) { return NOERROR; } } /* No more GetBuffer calls will succeed */ m_bCommitted = FALSE; // are any buffers outstanding? if (m_lFree.GetCount() < m_lAllocated) { // please complete the decommit when last buffer is freed m_bDecommitInProgress = TRUE; } else { m_bDecommitInProgress = FALSE; // need to complete the decommit here as there are no // outstanding buffers Free(); bRelease = TRUE; } // Tell anyone waiting that they can go now so we can // reject their call NotifySample(); } if (bRelease) { Release(); } return NOERROR; } /* Base definition of allocation which checks we are ok to go ahead and do the full allocation. We return S_FALSE if the requirements are the same */ template HRESULT CAMBaseAllocator<_A, _S>::Alloc(void) { /* Error if he hasn't set the size yet */ if (m_lCount <= 0 || m_lSize <= 0 || m_lAlignment <= 0) { return VFW_E_SIZENOTSET; } /* should never get here while buffers outstanding */ _ASSERTE(m_lFree.GetCount() == m_lAllocated); /* If the requirements haven't changed then don't reallocate */ if (m_bChanged == FALSE) { return S_FALSE; } return NOERROR; } /* Implement CAMBaseAllocator::CSampleList::Remove(pSample) Removes pSample from the list */ template void CAMBaseAllocator<_A, _S>::CSampleList::Remove(_S * pSample) { _S **pSearch; for (pSearch = &m_List; *pSearch != NULL; pSearch = &(NextSample(*pSearch))) { if (*pSearch == pSample) { *pSearch = NextSample(pSample); NextSample(pSample) = NULL; m_nOnList--; return; } } DbgBreak("Couldn't find sample in list"); } //===================================================================== //===================================================================== // Implements CMemAllocator //===================================================================== //===================================================================== CAMMemAllocator::CAMMemAllocator() : m_pBuffer(NULL) { } /* This sets the size and count of the required samples. The memory isn't actually allocated until Commit() is called, if memory has already been allocated then assuming no samples are outstanding the user may call us to change the buffering, the memory will be released in Commit() */ STDMETHODIMP CAMMemAllocator::SetProperties( ALLOCATOR_PROPERTIES* pRequest, ALLOCATOR_PROPERTIES* pActual) { if (pActual == NULL) { return E_POINTER; } // ValidateReadWritePtr(pActual,sizeof(ALLOCATOR_PROPERTIES)); CAutoLock cObjectLock(&m_Lock); ZeroMemory(pActual, sizeof(ALLOCATOR_PROPERTIES)); _ASSERTE(pRequest->cbBuffer > 0); SYSTEM_INFO SysInfo; GetSystemInfo(&SysInfo); /* Check the alignment request is a power of 2 */ if ((-pRequest->cbAlign & pRequest->cbAlign) != pRequest->cbAlign) { #if 0 DbgLog((LOG_ERROR, 1, TEXT("Alignment requested 0x%x not a power of 2!"), pRequest->cbAlign)); #endif } /* Check the alignment requested */ if (pRequest->cbAlign == 0 || SysInfo.dwAllocationGranularity & (pRequest->cbAlign - 1) != 0) { #if 0 DbgLog((LOG_ERROR, 1, TEXT("Invalid alignment 0x%x requested - granularity = 0x%x"), pRequest->cbAlign, SysInfo.dwAllocationGranularity)); #endif return VFW_E_BADALIGN; } /* Can't do this if already committed, there is an argument that says we should not reject the SetProperties call if there are buffers still active. However this is called by the source filter, which is the same person who is holding the samples. Therefore it is not unreasonable for them to free all their samples before changing the requirements */ if (m_bCommitted == TRUE) { return VFW_E_ALREADY_COMMITTED; } /* Must be no outstanding buffers */ if (m_lFree.GetCount() < m_lAllocated) { return VFW_E_BUFFERS_OUTSTANDING; } /* There isn't any real need to check the parameters as they will just be rejected when the user finally calls Commit */ // round length up to alignment - remember that prefix is included in // the alignment LONG lSize = pRequest->cbBuffer + pRequest->cbPrefix; LONG lRemainder = lSize % pRequest->cbAlign; if (lRemainder != 0) { lSize = lSize - lRemainder + pRequest->cbAlign; } pActual->cbBuffer = m_lSize = (lSize - pRequest->cbPrefix); pActual->cBuffers = m_lCount = pRequest->cBuffers; pActual->cbAlign = m_lAlignment = pRequest->cbAlign; pActual->cbPrefix = m_lPrefix = pRequest->cbPrefix; m_bChanged = TRUE; return NOERROR; } // override this to allocate our resources when Commit is called. // // note that our resources may be already allocated when this is called, // since we don't free them on Decommit. We will only be called when in // decommit state with all buffers free. // // object locked by caller HRESULT CAMMemAllocator::Alloc(void) { CAutoLock lck(&m_Lock); /* Check he has called SetProperties */ HRESULT hr = _BaseAllocator::Alloc(); if (FAILED(hr)) { return hr; } /* If the requirements haven't changed then don't reallocate */ if (hr == S_FALSE) { _ASSERTE(m_pBuffer); return NOERROR; } _ASSERTE(hr == S_OK); // we use this fact in the loop below /* Free the old resources */ if (m_pBuffer) { ReallyFree(); } /* Create the contiguous memory block for the samples making sure it's properly aligned (64K should be enough!) */ _ASSERTE(m_lAlignment != 0 && (m_lSize + m_lPrefix) % m_lAlignment == 0); m_pBuffer = (PBYTE)VirtualAlloc(NULL, m_lCount * (m_lSize + m_lPrefix), MEM_COMMIT, PAGE_READWRITE); if (m_pBuffer == NULL) { return E_OUTOFMEMORY; } LPBYTE pNext = m_pBuffer; CAMMediaSample *pSample; _ASSERTE(m_lAllocated == 0); // Create the new samples - we have allocated m_lSize bytes for each sample // plus m_lPrefix bytes per sample as a prefix. We set the pointer to // the memory after the prefix - so that GetPointer() will return a pointer // to m_lSize bytes. for (; m_lAllocated < m_lCount; m_lAllocated++, pNext += (m_lSize + m_lPrefix)) { pSample = new CAMMediaSample; _ASSERTE(SUCCEEDED(hr)); if (pSample == NULL) { return E_OUTOFMEMORY; } pSample->Init(this); pSample->SetPointer(pNext + m_lPrefix, m_lSize); // This CANNOT fail m_lFree.Add(pSample); } m_bChanged = FALSE; return NOERROR; } // override this to free up any resources we have allocated. // called from the base class on Decommit when all buffers have been // returned to the free list. // // caller has already locked the object. // in our case, we keep the memory until we are deleted, so // we do nothing here. The memory is deleted in the destructor by // calling ReallyFree() void CAMMemAllocator::Free(void) { return; } // called from the destructor (and from Alloc if changing size/count) to // actually free up the memory void CAMMemAllocator::ReallyFree(void) { /* Should never be deleting this unless all buffers are freed */ _ASSERTE(m_lAllocated == m_lFree.GetCount()); /* Free up all the CAMMediaSamples */ CAMMediaSample *pSample; for (;;) { pSample = m_lFree.RemoveHead(); if (pSample != NULL) { delete pSample; } else { break; } } m_lAllocated = 0; // free the block of buffer memory if (m_pBuffer) { EXECUTE_ASSERT(VirtualFree(m_pBuffer, 0, MEM_RELEASE)); m_pBuffer = NULL; } } /* Destructor frees our memory resources */ CAMMemAllocator::~CAMMemAllocator() { Decommit(); ReallyFree(); } // Remove warnings about unreferenced inline functions #pragma warning(disable:4514)