#include "stdafx.h" #pragma hdrstop /*************************************************************************** * * INTEL Corporation Proprietary Information * * * Copyright (c) 1996 Intel Corporation. * All rights reserved. * *************************************************************************** */ /* * jfdctint.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 2446 /* FIX(0.298631336) */ #define FIX_0_390180644 3196 /* FIX(0.390180644) */ #define FIX_0_541196100 4433 /* FIX(0.541196100) */ #define FIX_0_765366865 6270 /* FIX(0.765366865) */ #define FIX_0_899976223 7373 /* FIX(0.899976223) */ #define FIX_1_175875602 9633 /* FIX(1.175875602) */ #define FIX_1_501321110 12299 /* FIX(1.501321110) */ #define FIX_1_847759065 15137 /* FIX(1.847759065) */ #define FIX_1_961570560 16069 /* FIX(1.961570560) */ #define FIX_2_053119869 16819 /* FIX(2.053119869) */ #define FIX_2_562915447 20995 /* FIX(2.562915447) */ #define FIX_3_072711026 25172 /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif #define DATASIZE 4 #define DCTWIDTH 32 #if _MSC_FULL_VER >= 13008827 && defined(_M_IX86) #pragma warning(push) #pragma warning(disable:4731) // EBP modified with inline asm #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) pfdct8x8llm (DCTELEM * data) { INT32 tmp4, tmp5, tmp6, tmp7; int counter; __asm{ /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ // dataptr = data; mov esi, [data] mov counter, 8 // for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { // tmp0 = dataptr[0] + dataptr[7]; // tmp7 = dataptr[0] - dataptr[7]; // tmp1 = dataptr[1] + dataptr[6]; // tmp6 = dataptr[1] - dataptr[6]; // tmp2 = dataptr[2] + dataptr[5]; // tmp5 = dataptr[2] - dataptr[5]; // tmp3 = dataptr[3] + dataptr[4]; // tmp4 = dataptr[3] - dataptr[4]; StartRow: mov eax, [esi][DATASIZE*0] mov ebx, [esi][DATASIZE*7] mov edx, eax add eax, ebx ; eax = tmp0 sub edx, ebx ; edx = tmp7 mov ebx, [esi][DATASIZE*3] mov ecx, [esi][DATASIZE*4] mov edi, ebx add ebx, ecx ; ebx = tmp3 sub edi, ecx ; edi = tmp4 mov tmp4, edi mov tmp7, edx /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ // tmp10 = tmp0 + tmp3; // tmp13 = tmp0 - tmp3; // tmp11 = tmp1 + tmp2; // tmp12 = tmp1 - tmp2; mov ecx, eax add eax, ebx ; eax = tmp10 sub ecx, ebx ; ecx = tmp13 mov edx, [esi][DATASIZE*1] mov edi, [esi][DATASIZE*6] mov ebx, edx add edx, edi ; edx = tmp1 sub ebx, edi ; ebx = tmp6 mov tmp6, ebx push ebp mov edi, [esi][DATASIZE*2] mov ebp, [esi][DATASIZE*5] mov ebx, edi add edi, ebp ; edi = tmp2 sub ebx, ebp ; ebx = tmp5 mov ebp, edx add edx, edi ; edx = tmp11 sub ebp, edi ; ebp = tmp12 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); mov edi, eax add eax, edx ; eax = tmp10 + tmp11 shl eax, 2 sub edi, edx ; edi = tmp10 - tmp11 shl edi, 2 mov [esi][DATASIZE*0], eax mov [esi][DATASIZE*4], edi mov eax, ebp ; eax = tmp12 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); add ebp, ecx ; eax = tmp12 + tmp13 add esi, 32 imul ebp, FIX_0_541196100 ; ebp = z1 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), // CONST_BITS-PASS1_BITS); imul ecx, FIX_0_765366865 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), // CONST_BITS-PASS1_BITS); imul eax, FIX_1_847759065 add ecx, ebp ; add z1 xor eax, 0xFFFFFFFF add ecx, 1024 ; rounding adj inc eax ; negate the result add eax, ebp ; add z1 pop ebp sar ecx, 11 add eax, 1024 mov [esi][DATASIZE*2-32], ecx mov edi, tmp4 sar eax, 11 mov ecx, tmp6 mov [esi][DATASIZE*6-32], eax push esi /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ // z1 = tmp4 + tmp7; // z2 = tmp5 + tmp6; // z3 = tmp4 + tmp6; // z4 = tmp5 + tmp7; mov edx, tmp7 mov eax, edi ; edi = eax = tmp4 mov esi, edi ; esi = tmp4 add edi, edx ; edi = z1 add eax, ecx ; eax = z3 add ecx, ebx ; ecx = z2 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ imul edi, FIX_0_899976223 imul ecx, FIX_2_562915447 xor ecx, 0xFFFFFFFF add edx, ebx ; edx = z4 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ imul esi, FIX_0_298631336 imul ebx, FIX_2_053119869 xor edi, 0xFFFFFFFF inc ecx ; ecx = z2 inc edi ; edi = z1 add ebx, ecx ; ebx = z2 + tmp5 add esi, edi ; esi = z1 + tmp4 mov tmp5, ebx // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ mov ebx, eax ; ebx = z3 add eax, edx ; eax = z3 + z4 imul eax, FIX_1_175875602 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ imul ebx, FIX_1_961570560 imul edx, FIX_0_390180644 xor ebx, 0xFFFFFFFF xor edx, 0xFFFFFFFF inc ebx ; ebx = z3 inc edx ; edx = z4 // z3 += z5; // z4 += z5; add ebx, eax ; ebx = z3 add edx, eax ; edx = z4 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ mov eax, tmp6 add ecx, ebx ; ecx = z2 + z3 imul eax, FIX_3_072711026 add ecx, eax ; ecx = tmp6 + z2 + z3 mov eax, tmp7 imul eax, FIX_1_501321110 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); add edi, edx ; edi = z1 + z4 add ecx, 1024 add edi, eax ; edi = tmp7 + z1 + z4 mov eax, tmp5 ; eax = tmp5 + z2 add ebx, esi ; ebx = tmp4 + z1 + z3 add edx, eax ; edx = tmp5 + z2 + z4 sar ecx, 11 add ebx, 1024 sar ebx, 11 pop esi add edx, 1024 add edi, 1024 sar edx, 11 mov [esi][DATASIZE*7-32], ebx sar edi, 11 mov [esi][DATASIZE*3-32], ecx mov [esi][DATASIZE*5-32], edx mov ecx, counter mov [esi][DATASIZE*1-32], edi dec ecx mov counter, ecx jnz StartRow // dataptr += DCTSIZE; /* advance pointer to next row */ // } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ // dataptr = data; mov esi, [data] mov counter, 8 //for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { // tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; // tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; // tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; // tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; // tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; // tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; // tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; // tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; StartCol: mov eax, [esi][DCTWIDTH*0] mov ebx, [esi][DCTWIDTH*7] mov edx, eax add eax, ebx ; eax = tmp0 sub edx, ebx ; edx = tmp7 mov ebx, [esi][DCTWIDTH*3] mov ecx, [esi][DCTWIDTH*4] mov edi, ebx add ebx, ecx ; ebx = tmp3 sub edi, ecx ; edi = tmp4 mov tmp4, edi mov tmp7, edx /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ // tmp10 = tmp0 + tmp3; // tmp13 = tmp0 - tmp3; // tmp11 = tmp1 + tmp2; // tmp12 = tmp1 - tmp2; mov ecx, eax ; ecx = tmp0 add eax, ebx ; eax = tmp10 sub ecx, ebx ; ecx = tmp13 mov edx, [esi][DCTWIDTH*1] mov edi, [esi][DCTWIDTH*6] mov ebx, edx add edx, edi ; edx = tmp1 sub ebx, edi ; ebx = tmp6 mov tmp6, ebx push ebp mov edi, [esi][DCTWIDTH*2] mov ebp, [esi][DCTWIDTH*5] mov ebx, edi add edi, ebp ; edi = tmp2 sub ebx, ebp ; ebx = tmp5 mov ebp, edx ; ebp = tmp1 add edx, edi ; edx = tmp11 sub ebp, edi ; ebx = tmp12 // dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); // dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); add eax, 2 ; adj for rounding mov edi, eax add eax, edx ; eax = tmp10 + tmp11 sar eax, 2 sub edi, edx ; edi = tmp10 - tmp11 sar edi, 2 mov [esi][DCTWIDTH*0], eax mov [esi][DCTWIDTH*4], edi mov eax, ebp ; eax = tmp12 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); add ebp, ecx ; eax = tmp12 + tmp13 add esi, 4 imul ebp, FIX_0_541196100 ; ebp = z1 // dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), // CONST_BITS+PASS1_BITS); imul ecx, FIX_0_765366865 // dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), // CONST_BITS+PASS1_BITS); imul eax, FIX_1_847759065 add ecx, ebp ; add z1 xor eax, 0xFFFFFFFF add ecx, 16384 ; rounding adj inc eax ; negate the result add eax, ebp ; add z1 pop ebp sar ecx, 15 add eax, 16384 mov [esi][DCTWIDTH*2-4], ecx mov edi, tmp4 sar eax, 15 mov ecx, tmp6 mov [esi][DCTWIDTH*6-4], eax push esi /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ // z1 = tmp4 + tmp7; // z2 = tmp5 + tmp6; // z3 = tmp4 + tmp6; // z4 = tmp5 + tmp7; mov edx, tmp7 mov eax, edi ; edi = eax = tmp4 mov esi, edi ; esi = tmp4 add edi, edx ; edi = z1 add eax, ecx ; eax = z3 add ecx, ebx ; ecx = z2 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ imul edi, FIX_0_899976223 imul ecx, FIX_2_562915447 xor ecx, 0xFFFFFFFF add edx, ebx ; edx = z4 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ imul esi, FIX_0_298631336 imul ebx, FIX_2_053119869 xor edi, 0xFFFFFFFF inc ecx ; ecx = z2 inc edi ; edi = z1 add ebx, ecx ; ebx = z2 + tmp5 add esi, edi ; esi = z1 + tmp4 mov tmp5, ebx // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ mov ebx, eax ; ebx = z3 add eax, edx ; eax = z3 + z4 imul eax, FIX_1_175875602 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ imul ebx, FIX_1_961570560 imul edx, FIX_0_390180644 xor ebx, 0xFFFFFFFF xor edx, 0xFFFFFFFF inc ebx ; ebx = z3 inc edx ; edx = z4 // z3 += z5; // z4 += z5; add ebx, eax ; ebx = z3 add edx, eax ; edx = z4 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ mov eax, tmp6 add ecx, ebx ; ecx = z2 + z3 imul eax, FIX_3_072711026 add ecx, eax ; ecx = tmp6 + z2 + z3 mov eax, tmp7 imul eax, FIX_1_501321110 // dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, // CONST_BITS+PASS1_BITS); // dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, // CONST_BITS+PASS1_BITS); // dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, // CONST_BITS+PASS1_BITS); // dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, // CONST_BITS+PASS1_BITS); add edi, edx ; edi = z1 + z4 add ecx, 16384 add edi, eax ; edi = tmp7 + z1 + z4 mov eax, tmp5 ; eax = tmp5 + z2 add ebx, esi ; ebx = tmp4 + z1 + z3 add edx, eax ; edx = tmp5 + z2 + z4 sar ecx, 15 add ebx, 16384 sar ebx, 15 pop esi add edx, 16384 add edi, 16384 sar edx, 15 mov [esi][DCTWIDTH*7-4], ebx sar edi, 15 mov [esi][DCTWIDTH*3-4], ecx mov [esi][DCTWIDTH*5-4], edx mov ecx, counter mov [esi][DCTWIDTH*1-4], edi dec ecx mov counter, ecx jnz StartCol } //end asm // dataptr++; /* advance pointer to next column */ // } } #if _MSC_FULL_VER >= 13008827 #pragma warning(pop) #endif #endif /* DCT_ISLOW_SUPPORTED */