/*++ Copyright (c) 1993 Microsoft Corporation Module Name: util.c Abstract: ntVdm netWare (Vw) IPX/SPX Functions Vw: The peoples' network Contains various utility routines Contents: GetInternetAddress GetMaxPacketSize RetrieveEcb RetrieveXEcb (AllocateXecb) (DeallocateXecb) ScheduleEvent ScanTimerList CancelTimerEvent CancelTimedEvents CancelAsyncEvent CancelSocketEvent CancelConnectionEvent QueueEcb DequeueEcb CancelSocketQueue CancelConnectionQueue AbortQueue AbortConnectionEvent StartIpxSend GetIoBuffer (ReleaseIoBuffer) GatherData ScatterData IpxReceiveFirst IpxReceiveNext (IpxSendFirst) IpxSendNext (QueueReceiveRequest) (DequeueReceiveRequest) (QueueSendRequest) (DequeueSendRequest) CompleteOrQueueIo CompleteIo CompleteOrQueueEcb CompleteEcb (QueueAsyncCompletion) EsrCallback VWinEsrCallback FifoAddHead FifoAdd FifoRemove FifoNext Author: Richard L Firth (rfirth) 30-Sep-1993 Environment: User-mode Win32 Revision History: 30-Sep-1993 rfirth Created --*/ #include "vw.h" #pragma hdrstop // // private routine prototypes // PRIVATE LPXECB AllocateXecb( VOID ); PRIVATE VOID DeallocateXecb( IN LPXECB pXecb ); PRIVATE VOID ReleaseIoBuffer( IN LPXECB pXecb ); PRIVATE VOID IpxSendFirst( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ); PRIVATE VOID QueueReceiveRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ); PRIVATE LPXECB DequeueReceiveRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ); PRIVATE VOID QueueSendRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ); PRIVATE LPXECB DequeueSendRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ); PRIVATE VOID QueueAsyncCompletion( IN LPXECB pXecb, IN BYTE CompletionCode ); // // private data // // // TimerList - singly-linked list of timed events, in order of duration // PRIVATE LPXECB TimerList = NULL; // // AsyncCompletionQueue - keeps list of completed ECBs awaiting removal via // ESR callback // PRIVATE FIFO AsyncCompletionQueue = {NULL, NULL}; // // sort-of-private data (matches not-really-global data in other modules) // // // SerializationCritSec - grab this when manipulating SOCKET_INFO list // CRITICAL_SECTION SerializationCritSec; // // AsyncCritSec - grab this when manipulating AsyncCompletionQueue // CRITICAL_SECTION AsyncCritSec; // // functions // int GetInternetAddress( IN OUT LPSOCKADDR_IPX InternetAddress ) /*++ Routine Description: Gets the node and net numbers for this station Arguments: InternetAddress - pointer to SOCKADDR_IPX structure to fill with internetwork address for this station Return Value: int Success - 0 Failure - SOCKET_ERROR --*/ { SOCKET s; int rc; int structureLength = sizeof(*InternetAddress); s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX); if (s != INVALID_SOCKET) { // // make dynamic binding (socket number = 0) // ZeroMemory(InternetAddress, structureLength); InternetAddress->sa_family = AF_IPX; rc = bind(s, (LPSOCKADDR)InternetAddress, structureLength); if (rc != SOCKET_ERROR) { rc = getsockname(s, (LPSOCKADDR)InternetAddress, &structureLength); if (rc) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetInternetAddress: getsockname() returns %d\n", WSAGetLastError() )); } } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetInternetAddress: bind() returns %d\n", WSAGetLastError() )); } closesocket(s); } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetInternetAddress: socket() returns %d\n", WSAGetLastError() )); rc = SOCKET_ERROR; } return rc; } int GetMaxPacketSize( OUT LPWORD MaxPacketSize ) /*++ Routine Description: Returns the maximum packet allowed by the underlying transport Arguments: MaxPacketSize - pointer to returned maximum packet size Return Value: int Success - 0 Failure - SOCKET_ERROR --*/ { SOCKET s; int maxLen, maxLenSize = sizeof(maxLen); int rc; SOCKADDR_IPX ipxAddr; s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX); if (s != SOCKET_ERROR) { // // set socket to 0 - causes any applicable address to be bound // ZeroMemory(&ipxAddr, sizeof(ipxAddr)); ipxAddr.sa_family = AF_IPX; rc = bind(s, (LPSOCKADDR)&ipxAddr, sizeof(ipxAddr)); if (rc != SOCKET_ERROR) { rc = getsockopt(s, NSPROTO_IPX, IPX_MAXSIZE, (char FAR*)&maxLen, &maxLenSize ); if (rc != SOCKET_ERROR) { // // IPX_MAXSIZE always returns the amount of data that can be // transmitted in a single frame. 16-bit IPX/SPX requires that // the IPX header length be included in the data size // maxLen += IPX_HEADER_LENGTH; } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetMaxPacketSize: getsockopt() returns %d\n", WSAGetLastError() )); } } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetMaxPacketSize: bind() returns %d\n", WSAGetLastError() )); } closesocket(s); } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "GetMaxPacketSize: socket() returns %d\n", WSAGetLastError() )); rc = SOCKET_ERROR; } *MaxPacketSize = (rc != SOCKET_ERROR) ? maxLen : MAXIMUM_IPX_PACKET_LENGTH; return rc; } LPXECB RetrieveEcb( IN BYTE EcbType ) /*++ Routine Description: Returns pointer to 32-bit extended ECB structure which contains flat pointer to IPX or AES ECB in VDM memory We allocate the extended ECB for 3 reasons: 1. Avoids 16-bit app scribbling over our control fields 2. Don't have to make unaligned references to all fields (still need some) 3. Don't have enough space in AES ECB to remember all the stuff we need However, we do update the 16-bit ECB's LinkAddress field. We use this as a pointer to the 32-bit XECB we allocate in this routine. This just saves us having to traverse all the lists looking for the address of the 16-bit ECB (which we could still do as a fall-back) Arguments: EcbType - type of ECB - AES, IPX or SPX Return Value: LPXECB - 32-bit pointer to extended ECB structure --*/ { WORD segment; WORD offset; LPECB pEcb; segment = IPX_GET_ECB_SEGMENT(); offset = IPX_GET_ECB_OFFSET(); pEcb = (LPIPX_ECB)POINTER_FROM_WORDS(segment, offset, sizeof(IPX_ECB)); return RetrieveXEcb(EcbType, pEcb, (ECB_ADDRESS)MAKELONG(offset,segment)); } LPXECB RetrieveXEcb( IN BYTE EcbType, LPECB pEcb, ECB_ADDRESS EcbAddress ) /*++ Routine Description: worker for RetrieveEcb, callable from windows functions (ex DOS parms) Arguments: EcbType - type of ECB - AES, IPX or SPX pEcb - pointer to the 16-bit ECB EcbAddress - address (seg:off in DWORD) of 16-bit ECB Return Value: LPXECB --*/ { LPXECB pXecb; if (pEcb) { // // tommye - MS 30525 // Make sure the pEcb is valid - we'll go ahead // and do this before we alloc the XEcb. // try { BYTE x; // Just deref the ptr to make sure it is okay x = pEcb->InUse; } except(1) { // // bad pointer: bogus ECB // return NULL; } // // allocate and fill-in 32-bit extended ECB structure. If can't allocate // then return NULL // pXecb = AllocateXecb(); if (pXecb) { pXecb->Ecb = pEcb; pXecb->EcbAddress = EcbAddress; pXecb->EsrAddress = pEcb->EsrAddress; // // set flags - IPX/AES, SPX, protect-mode // pXecb->Flags |= (((EcbType == ECB_TYPE_IPX) || (EcbType == ECB_TYPE_SPX)) ? XECB_FLAG_IPX : XECB_FLAG_AES) | ((EcbType == ECB_TYPE_SPX) ? XECB_FLAG_SPX : 0) | ((getMSW() & MSW_PE) ? XECB_FLAG_PROTMODE : 0); // // this XECB is not yet on a queue // pXecb->QueueId = NO_QUEUE; // // mark the 16-bit ECB as being used. We use an undefined value to // make sure it gets set/reset in the right places // pEcb->InUse = ECB_IU_TEMPORARY; // // use the LinkAddress field in the 16-bit ECB to point to the XECB. // We use this when cancelling the ECB // pEcb->LinkAddress = pXecb; // // AES and IPX ECBs have different sizes and different layouts // if ((EcbType == ECB_TYPE_IPX) || (EcbType == ECB_TYPE_SPX)) { pXecb->SocketNumber = pEcb->SocketNumber; } } } else { pXecb = NULL; } return pXecb; } PRIVATE LPXECB AllocateXecb( VOID ) /*++ Routine Description: Allocate an XECB; zero it; set the reference count to 1 Arguments: None. Return Value: LPXECB --*/ { LPXECB pXecb; pXecb = (LPXECB)LocalAlloc(LPTR, sizeof(*pXecb)); if (pXecb) { pXecb->RefCount = 1; } return pXecb; } PRIVATE VOID DeallocateXecb( IN LPXECB pXecb ) /*++ Routine Description: decrement the XECB reference count (while holding SerializationCritSec). If goes to 0 then free the structure (else other thread is also holding pointer to XECB) Arguments: pXecb - XECB to deallocate Return Value: None. --*/ { RequestMutex(); --pXecb->RefCount; if (!pXecb->RefCount) { #if DBG FillMemory(pXecb, sizeof(*pXecb), 0xFF); #endif FREE_OBJECT(pXecb); } ReleaseMutex(); } VOID ScheduleEvent( IN LPXECB pXecb, IN WORD Ticks ) /*++ Routine Description: Adds an ECB to the TimerList, ordered by Ticks. The value of Ticks cannot be zero Assumes 1. Ticks != 0 2. pXecb->Next is already NULL (as result of LocalAlloc(LPTR,...) Arguments: pXecb - pointer to XECB describing IPX or AES ECB to queue Ticks - number of ticks to elapse before ECB is cooked Return Value: None. --*/ { ASSERT(Ticks); ASSERT(pXecb->Next == NULL); RequestMutex(); if (!TimerList) { TimerList = pXecb; } else { if (TimerList->Ticks > Ticks) { TimerList->Ticks -= Ticks; pXecb->Next = TimerList; TimerList = pXecb; } else { LPXECB previous = (LPXECB)TimerList; LPXECB this = previous->Next; Ticks -= TimerList->Ticks; while (this && Ticks > this->Ticks) { Ticks -= this->Ticks; previous = this; this = this->Next; } previous->Next = pXecb; pXecb->Next = this; } } pXecb->Ticks = Ticks; pXecb->QueueId = TIMER_QUEUE; ReleaseMutex(); } VOID ScanTimerList( VOID ) /*++ Routine Description: Called once per tick. Decrements the tick count of the ECB at the head of the list. If it goes to zero, completes the ECB and any subsequent ECBs which whose tick count would go to zero Arguments: None. Return Value: None. --*/ { LPXECB pXecb; RequestMutex(); pXecb = TimerList; if (pXecb) { // // Decrement if not already zero. Can be zero because the ECB at the // front of the list could have been Cancelled. This makes sure we // do not wrap around to 0xFFFF !!! // if (pXecb->Ticks != 0) --pXecb->Ticks; if (!pXecb->Ticks) { // // complete all ECBs that would go to 0 on this tick // while (pXecb->Ticks <= 1) { TimerList = pXecb->Next; IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "ScanTimerList: ECB %04x:%04x is done\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress) )); CompleteOrQueueEcb(pXecb, ECB_CC_SUCCESS); pXecb = TimerList; if (!pXecb) { break; } } } } ReleaseMutex(); } BYTE CancelTimerEvent( IN LPXECB pXecb ) /*++ Routine Description: Cancels a pending event on the timer list Arguments: pXecb - pointer to XECB to cancel Return Value: BYTE Success - IPX_SUCCESS Failure - IPX_ECB_NOT_IN_USE --*/ { LPXECB listptr; LPXECB previous = (LPXECB)&TimerList; BYTE status; RequestMutex(); listptr = TimerList; while (listptr && listptr != pXecb) { previous = listptr; listptr = listptr->Next; } if (listptr) { // // take the XECB out of the list and complete the ECB (in VDM memory). // Does not generate a call-back to the ESR. When CompleteEcb returns, // the XECB has been deallocated // previous->Next = listptr->Next; ASSERT(pXecb->RefCount == 2); --pXecb->RefCount; CompleteEcb(pXecb, ECB_CC_CANCELLED); status = IPX_SUCCESS; } else { status = IPX_ECB_NOT_IN_USE; } ReleaseMutex(); return status; } VOID CancelTimedEvents( IN WORD SocketNumber, IN WORD Owner, IN DWORD TaskId ) /*++ Routine Description: traverses the TimerList cancelling any IPX or AES events owned by any of SocketNumber, Owner or TaskId Assumes valid SocketNumber, Owner or TaskId cannot be 0 Arguments: SocketNumber - owning socket of IPX events to cancel Owner - owning DOS PDB TaskID - owning Windows Task ID Return Value: None. --*/ { LPXECB pXecb; LPXECB prev = (LPXECB)&TimerList; LPXECB next; RequestMutex(); pXecb = TimerList; while (pXecb) { next = pXecb->Next; if ((SocketNumber && (pXecb->SocketNumber == SocketNumber)) || (Owner && !(pXecb->Flags & XECB_FLAG_IPX) && (pXecb->Owner == Owner)) || (TaskId && (pXecb->TaskId == TaskId))) { prev->Next = next; IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "CancelTimedEvents: cancelling ECB %08x (%04x:%04x)\n", pXecb, HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress) )); CompleteEcb(pXecb, ECB_CC_CANCELLED); } else { prev = pXecb ; } pXecb = next; } ReleaseMutex(); } BYTE CancelAsyncEvent( IN LPXECB pXecb ) /*++ Routine Description: Called to cancel an event currently on the async completion list. We don't cancel these events - just return 0xF9 (ECB cannot be cancelled). It is a race to see who gets there first - us with the cancel, or the ESR callback. In this case it is fairly immaterial Arguments: pXecb - pointer to XECB to cancel (ignored) Return Value: BYTE - IPX_CANNOT_CANCEL --*/ { // // we call DeallocateXecb to reduce the reference count. If the other thread // really tried to deallocate it in the short time we've been looking at it // on the cancel path, the call will finish up what the other thread started // DeallocateXecb(pXecb); return IPX_CANNOT_CANCEL; } BYTE CancelSocketEvent( IN LPXECB pXecb ) /*++ Routine Description: Called to cancel a pending send or listen from a socket queue. Request can be IPX or SPX. If IPX event, then the ECB is on either the SendQueue or ListenQueue. If SPX, it may be on a CONNECTION_INFO ConnectQueue, AcceptQueue, SendQueue or ListenQueue, or if it is an SPXListenForSequencedPacket request that is still in the pool then it may be on the owning SOCKET_INFO ListenQueue Arguments: pXecb - pointer to XECB describing ECB to cancel Return Value: BYTE - IPX_SUCCESS --*/ { LPXECB ptr; LPVOID pObject; RequestMutex(); pObject = pXecb->OwningObject; switch (pXecb->QueueId) { case SOCKET_LISTEN_QUEUE: if (pXecb->Flags & XECB_FLAG_SPX) { ptr = DequeueEcb(pXecb, &((LPSOCKET_INFO)pObject)->ListenQueue); } else { ptr = DequeueReceiveRequest(pXecb, (LPSOCKET_INFO)pObject); } break; case SOCKET_SEND_QUEUE: if (pXecb->Flags & XECB_FLAG_SPX) { ptr = DequeueEcb(pXecb, &((LPSOCKET_INFO)pObject)->SendQueue); } else { ptr = DequeueSendRequest(pXecb, (LPSOCKET_INFO)pObject); } break; case SOCKET_HEADER_QUEUE: // SPX only if (pXecb->Flags & XECB_FLAG_SPX) { ptr = DequeueEcb(pXecb, &((LPSOCKET_INFO)pObject)->HeaderQueue); } else { ASSERT(FALSE); } break; } ReleaseMutex(); if (ptr) { CompleteIo(ptr, ECB_CC_CANCELLED); } return IPX_SUCCESS; } BYTE CancelConnectionEvent( IN LPXECB pXecb ) /*++ Routine Description: Cancels a pending SPXListenForConnection or SPXListenForSequencedPacket, the only cancellable SPX requests Arguments: pXecb - pointer to SPX XECB to cancel Return Value: BYTE - IPX_SUCCESS --*/ { LPXECB ptr; LPVOID pObject; LPXECB_QUEUE pQueue; RequestMutex(); pObject = pXecb->OwningObject; switch (pXecb->QueueId) { case CONNECTION_ACCEPT_QUEUE: pQueue = &((LPCONNECTION_INFO)pObject)->AcceptQueue; break; case CONNECTION_LISTEN_QUEUE: pQueue = &((LPCONNECTION_INFO)pObject)->ListenQueue; break; } ptr = DequeueEcb(pXecb, pQueue); ReleaseMutex(); if (ptr) { CompleteIo(ptr, ECB_CC_CANCELLED); } return IPX_SUCCESS; } VOID QueueEcb( IN LPXECB pXecb, IN LPXECB_QUEUE Queue, IN QUEUE_ID QueueId ) /*++ Routine Description: Adds an XECB to a queue and sets the queue identifier in the XECB. Arguments: pXecb - pointer to XECB to queue Queue - pointer to queue to add XECB to (at tail) QueueId - identifies Queue Return Value: None. --*/ { LPVOID owningObject = NULL; #define CONTAINER_STRUCTURE(p, t, f) (LPVOID)(((LPBYTE)(p)) - (UINT_PTR)(&((t)0)->f)) pXecb->QueueId = QueueId; switch (QueueId) { case SOCKET_LISTEN_QUEUE: if (Queue->Tail && (Queue->Tail->Length < pXecb->Length)) { FifoAddHead((LPFIFO)Queue, (LPFIFO)pXecb); } else { FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); } owningObject = CONTAINER_STRUCTURE(Queue, LPSOCKET_INFO, ListenQueue); break; case SOCKET_SEND_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPSOCKET_INFO, SendQueue); break; case SOCKET_HEADER_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPSOCKET_INFO, HeaderQueue); break; case CONNECTION_CONNECT_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPCONNECTION_INFO, ConnectQueue); break; case CONNECTION_ACCEPT_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPCONNECTION_INFO, AcceptQueue); break; case CONNECTION_SEND_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPCONNECTION_INFO, SendQueue); break; case CONNECTION_LISTEN_QUEUE: FifoAdd((LPFIFO)Queue, (LPFIFO)pXecb); owningObject = CONTAINER_STRUCTURE(Queue, LPCONNECTION_INFO, ListenQueue); break; } pXecb->OwningObject = owningObject; } LPXECB DequeueEcb( IN LPXECB pXecb, IN LPXECB_QUEUE Queue ) /*++ Routine Description: Removes pXecb from Queue and resets the XECB queue identifier (to NO_QUEUE) Arguments: pXecb - pointer to XECB to remove Queue - queue from which to remove pXecb Return Value: LPXECB pointer to removed XECB --*/ { LPXECB p; p = (LPXECB)FifoRemove((LPFIFO)Queue, (LPFIFO)pXecb); pXecb->QueueId = NO_QUEUE; pXecb->OwningObject = NULL; return pXecb; } VOID CancelSocketQueue( IN LPXECB_QUEUE pXecbQueue ) /*++ Routine Description: Cancels all pending ECBs on a SOCKET_INFO queue Arguments: pXecbQueue - pointer to (socket/connection) queue Return Value: None. --*/ { LPXECB ptr; while (ptr = pXecbQueue->Head) { CancelSocketEvent(ptr); } } VOID CancelConnectionQueue( IN LPXECB_QUEUE pXecbQueue ) /*++ Routine Description: Cancels all pending ECBs on a CONNECTION_INFO queue Arguments: pXecbQueue - pointer to XECB queue on CONNECTION_INFO Return Value: None. --*/ { LPXECB ptr; while (ptr = pXecbQueue->Head) { CancelConnectionEvent(ptr); } } VOID AbortQueue( IN LPXECB_QUEUE pXecbQueue, IN BYTE CompletionCode ) /*++ Routine Description: Aborts or terminates an ECB queue from a CONNECTION_INFO structure Arguments: pXecbQueue - pointer to queue CompletionCode - to put in aborted/terminated ECBs Return Value: None. --*/ { LPXECB ptr; while (ptr = pXecbQueue->Head) { AbortConnectionEvent(ptr, CompletionCode); } } VOID AbortConnectionEvent( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Aborts a connection ECB Arguments: pXecb - pointer to SPX XECB to cancel CompletionCode - value to put in ECB Return Value: None. --*/ { LPXECB ptr; LPCONNECTION_INFO pConnectionInfo; LPXECB_QUEUE pQueue; pConnectionInfo = (LPCONNECTION_INFO)pXecb->OwningObject; switch (pXecb->QueueId) { case CONNECTION_CONNECT_QUEUE: pQueue = &pConnectionInfo->ConnectQueue; break; case CONNECTION_ACCEPT_QUEUE: pQueue = &pConnectionInfo->AcceptQueue; break; case CONNECTION_SEND_QUEUE: pQueue = &pConnectionInfo->SendQueue; break; case CONNECTION_LISTEN_QUEUE: pQueue = &pConnectionInfo->ListenQueue; break; } ptr = DequeueEcb(pXecb, pQueue); if (ptr) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "AbortConnectionEvent: Aborting ECB %04x:%04x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress) )); SPX_ECB_CONNECTION_ID(ptr->Ecb) = pConnectionInfo->ConnectionId; CompleteOrQueueIo(ptr, CompletionCode); } } VOID StartIpxSend( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Starts a send operation for IPXSendPacket(). Allocates a send buffer if the ECB has >1 fragment else uses a pointer to the single fragment buffer in 16-bit address space Fills in various fields in the ECB and IPX header Assumes: 1. By the time this function is called, we already know we have a valid non-zero fragment count and the first fragment is big enough to hold an IPX packet header When this function terminates, the ECB is either completed or queued Arguments: pXecb - pointer to XECB describing ECB to use for sending pSocketInfo - pointer to SOCKET_INFO structure Return Value: None. --*/ { BOOL success; int packetLength = 0; LPFRAGMENT pFragment; int fragmentCount; LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "StartIpxSend: %d frag(s), 1: address=%x (%04x:%04x), len=%04x\n", READ_WORD(&pEcb->FragmentCount), GET_FAR_POINTER(&(ECB_FRAGMENT(pEcb, 0)->Address), IS_PROT_MODE(pXecb)), GET_SELECTOR(&(ECB_FRAGMENT(pEcb, 0)->Address)), GET_OFFSET(&(ECB_FRAGMENT(pEcb, 0)->Address)), READ_WORD(&(ECB_FRAGMENT(pEcb, 0)->Length)) )); // // mark the ECB as being used by IPX (for send) // pEcb->InUse = ECB_IU_SENDING; // // the total send buffer size cannot exceed the maximum packet size // fragmentCount = (int)pEcb->FragmentCount; ASSERT(fragmentCount); pFragment = (LPFRAGMENT)&(ECB_FRAGMENT(pEcb, 0)->Address); while (fragmentCount--) { packetLength += pFragment->Length; ++pFragment; } if (packetLength <= MyMaxPacketSize) { success = GetIoBuffer(pXecb, TRUE, IPX_HEADER_LENGTH); if (success) { LPIPX_PACKET pPacket = (LPIPX_PACKET)GET_FAR_POINTER( &(ECB_FRAGMENT(pEcb, 0)->Address), IS_PROT_MODE(pXecb) ); // // fill in the following fields in the IPX header: // // Checksum // Length // TransportControl // Source (network, node, socket) // // Does real IPX modify these fields in app memory? // If so, does the app expect modified fields? // If not, we need to always copy then modify memory, // even if only 1 fragment // pPacket->Checksum = 0xFFFF; pPacket->Length = L2BW((WORD)packetLength); pPacket->TransportControl = 0; CopyMemory((LPBYTE)&pPacket->Source, &MyInternetAddress.sa_netnum, sizeof(MyInternetAddress.sa_netnum) + sizeof(MyInternetAddress.sa_nodenum) ); pPacket->Source.Socket = pSocketInfo->SocketNumber; // // if we allocated a buffer then there is >1 fragment. Collect them // if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { GatherData(pXecb, IPX_HEADER_LENGTH); } // // initiate the send. IPX_ECB_BUFFER32(pEcb) points to the data to send, // IPX_ECB_LENGTH32(pEcb) is the size of data to send // IpxSendFirst(pXecb, pSocketInfo); } else { // // couldn't allocate a buffer? Comes under the heading of // hardware error? // CompleteEcb(pXecb, ECB_CC_HARDWARE_ERROR); if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } } else { // // packet larger than MyMaxPacketSize // CompleteOrQueueEcb(pXecb, ECB_CC_BAD_REQUEST); if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } } BOOL GetIoBuffer( IN OUT LPXECB pXecb, IN BOOL Send, IN WORD HeaderLength ) /*++ Routine Description: Allocate a buffer based on the ECB fragment list. If there is only 1 fragment we use the address of the buffer in the VDM. If >1 fragment, we allocate a 32-bit buffer large enough to hold all the 16-bit fragments We trim the buffer requirement for a send buffer: we do not send the IPX/SPX header with the data: it will be provided by the transport Assumes: 1. If called for a send buffer, the first fragment has already been verified as >= HeaderLength Arguments: pXecb - pointer to XECB which points to IPX_ECB containing fragment list to allocate buffer for Send - TRUE if this request is to get a send buffer HeaderLength - length of the (untransmitted) header portion Return Value: BOOL TRUE - Buffer allocated, XECB updated with address, length and flags FALSE - either ECB contains bad fragment descriptor list or we couldn't allocate a buffer --*/ { WORD fragmentCount; WORD bufferLength = 0; LPBYTE bufferPointer = NULL; WORD flags = 0; int i; int fragIndex = 0; // index of fragment address to use if no allocation required LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; fragmentCount = READ_WORD(&pEcb->FragmentCount); for (i = 0; i < (int)fragmentCount; ++i) { bufferLength += ECB_FRAGMENT(pEcb, i)->Length; } if (bufferLength) { // // exclude the IPX header from send buffer. If the first send fragment // contains only the IPX header, reduce the fragment count by 1 // if (Send) { bufferLength -= HeaderLength; if (ECB_FRAGMENT(pEcb, 0)->Length == HeaderLength) { --fragmentCount; fragIndex = 1; } } if (bufferLength) { if (fragmentCount > 1) { bufferPointer = AllocateBuffer(bufferLength); if (bufferPointer) { flags = XECB_FLAG_BUFFER_ALLOCATED; } else { // // need a buffer; failed to allocate it // return FALSE; } } else { // // fragmentCount must be 1 (else bufferLength would be 0) // bufferPointer = GET_FAR_POINTER( &ECB_FRAGMENT(pEcb, fragIndex)->Address, IS_PROT_MODE(pXecb) ); if (Send && !fragIndex) { // // if we are allocating a send buffer AND there is only 1 // fragment AND it is the first fragment then the one and // only fragment must contain the IPX header and the data. // Advance the data pointer past the IPX header // bufferPointer += HeaderLength; } } } else { // // sending 0 bytes!!! // } } else { // // fragments but no buffer length? Sounds like a malformed packet // return FALSE; } // // bufferPointer is either the address of a buffer in 32-bit memory which // must be gather/scattered when the I/O operation completes, or it is the // address of a single fragment buffer in 16-bit memory. In the former case // flags is ECB_ALLOCATE_32 and the latter 0 // pXecb->Buffer = pXecb->Data = bufferPointer; pXecb->Length = bufferLength; pXecb->Flags |= flags; return TRUE; } PRIVATE VOID ReleaseIoBuffer( IN LPXECB pXecb ) /*++ Routine Description: Deallocates I/O buffer attached to XECB and zaps associated XECB fields Arguments: pXecb - pointer to XECB owning buffer to be released Return Value: None. --*/ { if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { DeallocateBuffer(pXecb->Buffer); pXecb->Buffer = pXecb->Data = NULL; pXecb->Flags &= ~XECB_FLAG_BUFFER_ALLOCATED; } } VOID GatherData( IN LPXECB pXecb, IN WORD HeaderLength ) /*++ Routine Description: Copies data from fragmented 16-bit memory into single 32-bit memory buffer. Used to send data. We exclude the IPX header: this information is supplied by the transport Assumes: 1. The fragment descriptor list has been verified: we know that the first fragment contains at least the IPX header Arguments: pXecb - pointer to XECB structure. The following IPX_ECB and XECB fields must contain coherent values: IPX_ECB.FragmentCount XECB.Buffer HeaderLength - length of the (untransmitted) header portion Return Value: None. --*/ { int fragmentCount; WORD length; ULPBYTE pData16; ULPBYTE pData32; LPFRAGMENT pFragment; LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; fragmentCount = (int)pEcb->FragmentCount; pFragment = (LPFRAGMENT)&(ECB_FRAGMENT(pEcb, 0)->Address); pData32 = pXecb->Buffer; // // if the 1st fragment contains more than the IPX/SPX header, copy the data // after the header // if (pFragment->Length > HeaderLength) { LPBYTE fragAddr = GET_FAR_POINTER(&pFragment->Address, IS_PROT_MODE(pXecb) ); length = pFragment->Length - HeaderLength; CopyMemory((LPVOID)pData32, fragAddr + HeaderLength, length ); pData32 += length; } // // copy subsequent fragments // ++pFragment; while (--fragmentCount) { pData16 = GET_FAR_POINTER(&pFragment->Address, IS_PROT_MODE(pXecb)); if (pData16 == NULL) { break; } length = pFragment->Length; CopyMemory((PVOID)pData32, (CONST VOID*)pData16, (ULONG)length); pData32 += length; ++pFragment; } } VOID ScatterData( IN LPXECB pXecb ) /*++ Routine Description: Copies data from 32-bit memory to 16-bit. The data must be fragmented if this function has been called (i.e. we determined there were >1 fragments and allocated a single 32-bit buffer to cover them) Arguments: pXecb - pointer to XECB containing 32-bit buffer info Return Value: None. --*/ { int fragmentCount; int length; WORD length16; WORD length32; ULPBYTE pData16; ULPBYTE pData32; LPFRAGMENT pFragment; LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; fragmentCount = (int)pEcb->FragmentCount; pFragment = (LPFRAGMENT)&(ECB_FRAGMENT(pEcb, 0)->Address); pData32 = pXecb->Buffer; length32 = pXecb->Length; while (length32) { pData16 = GET_FAR_POINTER(&pFragment->Address, IS_PROT_MODE(pXecb)); if (pData16 == NULL) { break; } length16 = pFragment->Length; length = min(length16, length32); CopyMemory((PVOID)pData16, (CONST VOID*)pData32, (ULONG)length); pData32 += length; length32 -= (WORD) length; ++pFragment; --fragmentCount; ASSERT(fragmentCount >= 0); } } VOID IpxReceiveFirst( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Performs a receive against a non-blocking socket. This is the first receive call for this ECB. If the receive completes immediately with data or an error that isn't WSAEWOULDBLOCK then the ECB is completed. If the receives completes with a WSAEWOULDBLOCK error then the request is queued for deferred processing by the AES thread Unlike send, receives are not serialized. If there are already receives pending against the socket there could be a clash between this function and IpxReceiveNext(), called from the AES thread. In this case, we expect Winsock to do the right thing and serialize the callers Arguments: pXecb - pointer to XECB describing receive ECB pSocketInfo - pointer to socket structure Return Value: None. --*/ { SOCKADDR_IPX from; int fromLen = sizeof(from); int rc; BYTE status; BOOL error; rc = recvfrom(pSocketInfo->Socket, (char FAR*)pXecb->Buffer, (int)pXecb->Length, 0, // flags (LPSOCKADDR)&from, &fromLen ); if (rc != SOCKET_ERROR) { error = FALSE; status = ECB_CC_SUCCESS; } else { error = TRUE; rc = WSAGetLastError(); if (rc == WSAEWOULDBLOCK) { RequestMutex(); QueueReceiveRequest(pXecb, pSocketInfo); ReleaseMutex(); } else if (rc == WSAEMSGSIZE) { error = FALSE; status = ECB_CC_BAD_REQUEST; rc = pXecb->Length; } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxReceiveFirst: recvfrom() returns %d (buflen=%d)\n", rc, pXecb->Length )); CompleteOrQueueIo(pXecb, ECB_CC_BAD_REQUEST); } } if (!error) { // // rc = bytes received, or 0 = connection terminated (even for DGRAM?) // IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "IpxReceiveFirst: bytes received = %d (%x)\n", rc, rc )); /* VwDumpEcb(pXecb->Ecb, HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), FALSE, TRUE, TRUE, IS_PROT_MODE(pXecb) ); */ IPXDUMPDATA((pXecb->Buffer, 0, 0, FALSE, (WORD)rc)); // // if the receive buffers are fragmented, copy the data to 16-bit memory // (else single buffer: its already there (dude)) // if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { // // update the ECB_LENGTH32 field to reflect the amount of data received // pXecb->Length = (WORD)rc; ScatterData(pXecb); // // we have finished with the 32-bit buffer: deallocate it // ReleaseIoBuffer(pXecb); } // // update the ImmediateAddress field in the ECB with the node address // of the sender // CopyMemory(pXecb->Ecb->ImmediateAddress, from.sa_nodenum, sizeof(from.sa_nodenum)); // // if this ECB has a non-NULL ESR then queue for asynchronous completion // else complete immediately (app must poll InUse field) // CompleteOrQueueEcb(pXecb, status); } } VOID IpxReceiveNext( IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Attempts to complete an IPXListenForPacket request that has been deferred due to the fact the socket was blocked. The ECB containing all the receive information is at the head of the ListenQueue on pSocketInfo We can use any queued listen ECB, but it just so happens we use the one at the head of the FIFO Note: SerializationCritSec is held when this function is called. Arguments: pSocketInfo - pointer to SOCKET_INFO structure with pending IPX send request Return Value: None. --*/ { LPXECB pXecb; SOCKADDR_IPX from; int fromLen = sizeof(from); int rc; BYTE status; BOOL error; ASSERT(pSocketInfo); pXecb = (LPXECB)pSocketInfo->ListenQueue.Head; ASSERT(pXecb); rc = recvfrom(pSocketInfo->Socket, (char FAR*)pXecb->Buffer, (int)pXecb->Length, 0, // flags (LPSOCKADDR)&from, &fromLen ); if (rc != SOCKET_ERROR) { error = FALSE; status = ECB_CC_SUCCESS; } else { error = TRUE; rc = WSAGetLastError(); if (rc == WSAEMSGSIZE) { error = FALSE; status = ECB_CC_BAD_REQUEST; rc = pXecb->Length; } else if (rc != WSAEWOULDBLOCK) { DequeueReceiveRequest(pXecb, pSocketInfo); IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxReceiveNext: recvfrom() returns %d\n", rc )); CompleteOrQueueIo(pXecb, ECB_CC_CANCELLED); } } if (!error) { /* VwDumpEcb(pXecb->Ecb, HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), FALSE, TRUE, TRUE, IS_PROT_MODE(pXecb) ); */ // // data received. Remove ECB from queue // DequeueReceiveRequest(pXecb, pSocketInfo); // // rc = bytes received, or 0 = connection terminated (even for DGRAM?) // IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "IpxReceiveNext: ECB %04x:%04x bytes received = %d (%x)\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), rc, rc )); IPXDUMPDATA((pXecb->Buffer, 0, 0, FALSE, (WORD)rc)); // // if the receive buffers are fragmented, copy the data to 16-bit memory // (else single buffer: its already there (dude)) // if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { // // update the IPX_ECB_LENGTH32 field to reflect the amount of data received // pXecb->Length = (WORD)rc; ScatterData(pXecb); ReleaseIoBuffer(pXecb); } // // update the ImmediateAddress field in the ECB with the node address // of the sender // CopyMemory(pXecb->Ecb->ImmediateAddress, from.sa_nodenum, sizeof(from.sa_nodenum) ); // // if this ECB has a non-NULL ESR then queue for asynchronous completion // else complete immediately (app must poll InUse field) // CompleteOrQueueEcb(pXecb, ECB_CC_SUCCESS); } } PRIVATE VOID IpxSendFirst( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Tries to send an IPX packet. This is the first attempt to send the packet described in the ECB. If the send succeeds or fails with an error other than WSAEWOULDBLOCK we complete the ECB. If the send attempt fails because the transport can't accept the request at this time, we queue it for later when the AES thread will attempt to send it. If there is already a send being attempted then we just queue this request and let AES handle it in IpxSendNext() Arguments: pXecb - pointer to XECB pSocketInfo - pointer to SOCKET_INFO structure Return Value: None. --*/ { RequestMutex(); if (pSocketInfo->Flags & SOCKET_FLAG_SENDING) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "IpxSendFirst: queueing ECB %04x:%04x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress) )); QueueSendRequest(pXecb, pSocketInfo); } else { SOCKADDR_IPX to; LPIPX_PACKET pPacket; int length; int rc; LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; int type; /* VwDumpEcb(pXecb->Ecb, HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), FALSE, TRUE, TRUE, IS_PROT_MODE(pXecb) ); */ length = (int)pXecb->Length; // // the first fragment holds the destination address info // pPacket = (LPIPX_PACKET)GET_FAR_POINTER(&ECB_FRAGMENT(pEcb, 0)->Address, IS_PROT_MODE(pXecb) ); to.sa_family = AF_IPX; // // copy the destination net number as a DWORD (4 bytes) from the // destination network address structure in the IPX packet header // *(ULPDWORD)&to.sa_netnum[0] = *(ULPDWORD)&pPacket->Destination.Net[0]; // // copy the immediate (destination) node number as a DWORD (4 bytes) and // a WORD (2 bytes) from the Destination network address structure in // the IPX packet header. pPacket is an unaligned pointer, so we are // safe // *(ULPDWORD)&to.sa_nodenum[0] = *(ULPDWORD)&pPacket->Destination.Node[0]; *(LPWORD)&to.sa_nodenum[4] = *(ULPWORD)&pPacket->Destination.Node[4]; // // copy the destination socket number from the IPX packet header as a // WORD (2 bytes). Again, the aligned pointer will save us // to.sa_socket = pPacket->Destination.Socket; type = (int)pPacket->PacketType; rc = setsockopt(pSocketInfo->Socket, NSPROTO_IPX, IPX_PTYPE, (char FAR*)&type, sizeof(type) ); if (rc) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxSendFirst: setsockopt(IPX_PTYPE) returns %d\n", WSAGetLastError() )); } rc = sendto(pSocketInfo->Socket, (char FAR*)pXecb->Buffer, length, 0, // flags (LPSOCKADDR)&to, sizeof(to) ); if (rc == length) { // // all data sent // IPXDUMPDATA((pXecb->Buffer, 0, 0, FALSE, (WORD)rc)); CompleteOrQueueIo(pXecb, ECB_CC_SUCCESS); if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } else if (rc == SOCKET_ERROR) { rc = WSAGetLastError(); if (rc == WSAEWOULDBLOCK) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "IpxSendFirst: queueing ECB %04x:%04x (after sendto)\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress) )); QueueSendRequest(pXecb, pSocketInfo); } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxSendFirst: sendto() returns %d\n", rc )); CompleteIo(pXecb, ECB_CC_UNDELIVERABLE); if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } } else { // // send should send all the data or return an error // IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_FATAL, "IpxSendFirst: sendto() returns unexpected %d (length = %d)\n", rc, length )); } } ReleaseMutex(); } VOID IpxSendNext( IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Attempts to complete an IPXSendPacket request that has been deferred due to the fact the socket was blocked. The ECB containing all the send information is at the head of the SendQueue on pSocketInfo The SendQueue is serialized in FIFO order Note: SerializationCritSec is held when this function is called. Arguments: pSocketInfo - pointer to SOCKET_INFO structure with pending IPX send request Return Value: None. --*/ { SOCKADDR_IPX to; LPIPX_PACKET pPacket; int length; int rc; LPXECB pXecb; LPIPX_ECB pEcb; int type; pXecb = (LPXECB)pSocketInfo->SendQueue.Head; pEcb = (LPIPX_ECB)pXecb->Ecb; ASSERT(pXecb); ASSERT(pEcb); /* VwDumpEcb(pXecb->Ecb, HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), FALSE, TRUE, TRUE, IS_PROT_MODE(pXecb) ); */ length = (int)pXecb->Length; // // even though we have a 32-bit pointer to the IPX packet buffer which // may be in 16- or 32-bit memory, we still need unaligned access // pPacket = (LPIPX_PACKET)pXecb->Buffer; to.sa_family = AF_IPX; // // copy the destination net number as a DWORD (4 bytes) from the // destination network address structure in the IPX packet header // *(ULPDWORD)&to.sa_netnum[0] = *(ULPDWORD)&pPacket->Destination.Net[0]; // // copy the immediate (destination) node number as a DWORD (4 bytes) and // a WORD (2 bytes) from the Destination network address structure in // the IPX packet header. pPacket is an unaligned pointer, so we are // safe // *(ULPDWORD)&to.sa_nodenum[0] = *(ULPDWORD)&pPacket->Destination.Node[0]; *(LPWORD)&to.sa_nodenum[4] = *(ULPWORD)&pPacket->Destination.Node[4]; // // copy the destination socket number from the IPX packet header as a // WORD (2 bytes). Again, the aligned pointer will save us // to.sa_socket = pPacket->Destination.Socket; type = (int)pPacket->PacketType; rc = setsockopt(pSocketInfo->Socket, NSPROTO_IPX, IPX_PTYPE, (char FAR*)&type, sizeof(type) ); if (rc) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxSendNext: setsockopt(IPX_PTYPE) returns %d\n", WSAGetLastError() )); } rc = sendto(pSocketInfo->Socket, (char FAR*)pPacket, length, 0, // flags (LPSOCKADDR)&to, sizeof(to) ); if (rc == length) { // // all data sent - dequeue it // IPXDUMPDATA((pXecb->Buffer, 0, 0, FALSE, (WORD)rc)); DequeueEcb(pXecb, &pSocketInfo->SendQueue); if (pXecb->EsrAddress) { if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { ReleaseIoBuffer(pXecb); } QueueAsyncCompletion(pXecb, ECB_CC_SUCCESS); } else { CompleteIo(pXecb, ECB_CC_SUCCESS); } if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } else if (rc == SOCKET_ERROR) { // // if the socket is still blocked, there's nothing to do - just leave // the request hanging around till next time // rc = WSAGetLastError(); if (rc != WSAEWOULDBLOCK) { DequeueSendRequest(pXecb, pSocketInfo); IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_ERROR, "IpxSendNext: sendto() returns %d\n", rc )); CompleteIo(pXecb, ECB_CC_UNDELIVERABLE); if (pSocketInfo->Flags & SOCKET_FLAG_TEMPORARY) { KillSocket(pSocketInfo); } } } else { // // send should send all the data or return an error // IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_FATAL, "IpxSendNext: sendto() returns unexpected %d (length = %d)\n", rc, length )); } } PRIVATE VOID QueueReceiveRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Add a listen XECB to queue of listen XECBs on a SOCKET_INFO structure Arguments: pXecb - pointer to listen XECB to queue pSocketInfo - pointer to SOCKET_INFO structure Return Value: None. --*/ { QueueEcb(pXecb, &pSocketInfo->ListenQueue, SOCKET_LISTEN_QUEUE); ++pSocketInfo->PendingListens; pSocketInfo->Flags |= SOCKET_FLAG_LISTENING; } PRIVATE LPXECB DequeueReceiveRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Remove a listen XECB from queue of listen XECBs on a SOCKET_INFO structure Arguments: pXecb - pointer to listen XECB to dequeue pSocketInfo - pointer to SOCKET_INFO structure Return Value: LPXECB --*/ { LPXECB ptr; ptr = (LPXECB)DequeueEcb(pXecb, &pSocketInfo->ListenQueue); if (ptr) { ASSERT(ptr == pXecb); --pSocketInfo->PendingListens; if (!pSocketInfo->PendingListens) { pSocketInfo->Flags &= ~SOCKET_FLAG_LISTENING; } pXecb->Ecb->InUse = ECB_IU_AWAITING_PROCESSING; } return ptr; } PRIVATE VOID QueueSendRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Add a send XECB to queue of send XECBs on a SOCKET_INFO structure Arguments: pXecb - pointer to send XECB to queue pSocketInfo - pointer to SOCKET_INFO structure Return Value: None. --*/ { QueueEcb(pXecb, &pSocketInfo->SendQueue, SOCKET_SEND_QUEUE); ++pSocketInfo->PendingSends; pSocketInfo->Flags |= SOCKET_FLAG_SENDING; pXecb->Ecb->InUse = ECB_IU_SEND_QUEUED; } PRIVATE LPXECB DequeueSendRequest( IN LPXECB pXecb, IN LPSOCKET_INFO pSocketInfo ) /*++ Routine Description: Remove a send XECB from queue of send XECBs on a SOCKET_INFO structure Arguments: pXecb - pointer to send XECB to dequeue pSocketInfo - pointer to SOCKET_INFO structure Return Value: LPXECB --*/ { LPXECB ptr; ptr = (LPXECB)DequeueEcb(pXecb, &pSocketInfo->SendQueue); if (ptr) { ASSERT(ptr == pXecb); --pSocketInfo->PendingSends; if (!pSocketInfo->PendingSends) { pSocketInfo->Flags &= ~SOCKET_FLAG_SENDING; } pXecb->Ecb->InUse = ECB_IU_AWAITING_PROCESSING; } return ptr; } VOID CompleteOrQueueIo( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Returns any allocated buffer resource then completes or queues the ECB Arguments: pXecb - pointer to XECB structure CompletionCode - value to put in CompletionCode field Return Value: None. --*/ { // // if we allocated a buffer, free it // if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { ReleaseIoBuffer(pXecb); } CompleteOrQueueEcb(pXecb, CompletionCode); } VOID CompleteIo( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Completes a send/receive request by returning any allocated buffer resource and setting the ECB InUse and CompletionCode fields Arguments: pXecb - pointer to XECB structure CompletionCode - value to put in CompletionCode field Return Value: None. --*/ { // // if we allocated a buffer, free it // if (pXecb->Flags & XECB_FLAG_BUFFER_ALLOCATED) { ReleaseIoBuffer(pXecb); } CompleteEcb(pXecb, CompletionCode); } VOID CompleteOrQueueEcb( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Queues an XECB for completion by ESR or completes it now Arguments: pXecb - pointer to XECB describing ECB to complete CompletionCode - value to put in ECB CompletionCode field Return Value: None. --*/ { if (pXecb->EsrAddress) { QueueAsyncCompletion(pXecb, CompletionCode); } else { CompleteIo(pXecb, CompletionCode); } } VOID CompleteEcb( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Sets the CompletionCode field in the ECB and sets the InUse field to 0. Deallocates the XECB structure Arguments: pXecb - pointer to XECB describing ECB in 16-bit memory to update CompletionCode - value to put in CompletionCode field Return Value: None. --*/ { LPIPX_ECB pEcb = (LPIPX_ECB)pXecb->Ecb; IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "CompleteEcb: completing ECB @%04x:%04x w/ %02x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), CompletionCode )); // // if this is really an AES ECB then CompletionCode is actually the first // byte of the AES workspace. It shouldn't matter that we write into this // field - we are supposed to own it // pEcb->CompletionCode = CompletionCode; pEcb->InUse = ECB_IU_NOT_IN_USE; // // reset the LinkAddress field. This means we have completed the ECB // pEcb->LinkAddress = NULL; // // finally, deallocate the XECB. This mustn't have any allocated resources // (like a buffer) // DeallocateXecb(pXecb); } PRIVATE VOID QueueAsyncCompletion( IN LPXECB pXecb, IN BYTE CompletionCode ) /*++ Routine Description: Add an XECB to the (serialized) async completion queue and raise a simulated hardware interrupt in the VDM. The interrupt will cause the VDM to start executing at the ISR in the TSR which will call-back to find the address for the ESR, then execute it Arguments: pXecb - pointer to XECB describing IPX or AES ECB to add to async completion list CompletionCode - the ECB in VDM memory will be updated with this completion code Return Value: None. --*/ { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "QueueAsyncCompletion: completing ECB @%04x:%04x w/ %02x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), CompletionCode )); pXecb->Ecb->CompletionCode = CompletionCode; pXecb->QueueId = ASYNC_COMPLETION_QUEUE; EnterCriticalSection(&AsyncCritSec); FifoAdd(&AsyncCompletionQueue, (LPFIFO)pXecb); LeaveCriticalSection(&AsyncCritSec); IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "QueueAsyncCompletion: ECB @ %04x:%04x ESR @ %04x:%04x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), HIWORD(pXecb->EsrAddress), LOWORD(pXecb->EsrAddress) )); VDDSimulateInterrupt(Ica, IcaLine, 1); } VOID EsrCallback( VOID ) /*++ Routine Description: Callback function from within 16-bit TSR ESR function. Returns the address of the next completed ECB in ES:SI Any allocated resources (e.g. 32-bit buffer) must have been freed by the time the ESR callback happens Arguments: None. Return Value: None. --*/ { WORD segment = 0; WORD offset = 0; BYTE flags = 0; VWinEsrCallback( &segment, &offset, &flags ); setES(segment); setSI(offset); setAL(flags); } VOID VWinEsrCallback( WORD *pSegment, WORD *pOffset, BYTE *pFlags ) /*++ Routine Description: Callback function from within 16-bit function. Returns the address of the next completed ECB Any allocated resources (e.g. 32-bit buffer) must have been freed by the time the ESR callback happens Arguments: None. Return Value: None. --*/ { LPXECB pXecb; EnterCriticalSection(&AsyncCritSec); pXecb = AsyncCompletionQueue.Head; if (pXecb) { WORD msw = getMSW(); if ((msw & MSW_PE) ^ IS_PROT_MODE(pXecb)) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "EsrCallback: ECB @ %04x:%04x NOT for this proc mode (%d)\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), msw & MSW_PE )); pXecb = NULL; } else { pXecb = (LPXECB)FifoNext(&AsyncCompletionQueue); } } else { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_FATAL, "EsrCallback: no ECBs on AsyncCompletionQueue!\n" )); } LeaveCriticalSection(&AsyncCritSec); if (pXecb) { IPXDBGPRINT((__FILE__, __LINE__, FUNCTION_ANY, IPXDBG_LEVEL_INFO, "EsrCallback: ECB @ %04x:%04x ESR @ %04x:%04x\n", HIWORD(pXecb->EcbAddress), LOWORD(pXecb->EcbAddress), HIWORD(pXecb->EsrAddress), LOWORD(pXecb->EsrAddress) )); *pSegment = HIWORD(pXecb->EcbAddress); *pOffset = LOWORD(pXecb->EcbAddress); pXecb->Ecb->LinkAddress = NULL; pXecb->Ecb->InUse = ECB_IU_NOT_IN_USE; *pFlags = (BYTE)((pXecb->Flags & XECB_FLAG_IPX) ? ECB_TYPE_IPX : ECB_TYPE_AES); DeallocateXecb(pXecb); setCF(0); } else { setCF(1); } } VOID FifoAddHead( IN LPFIFO pFifo, IN LPFIFO pElement ) /*++ Routine Description: Adds an element to the head of a (single-linked) FIFO list Arguments: pFifo - pointer to FIFO structure pElement - pointer to (FIFO) element to add to list Return Value: None. --*/ { if (!pFifo->Head) { pFifo->Head = pFifo->Tail = pElement; pElement->Head = NULL; } else { pElement->Head = pFifo->Head; pFifo->Head = pElement; } } VOID FifoAdd( IN LPFIFO pFifo, IN LPFIFO pElement ) /*++ Routine Description: Adds an element to the tail of a (single-linked) FIFO list Arguments: pFifo - pointer to FIFO structure pElement - pointer to (FIFO) element to add to list Return Value: None. --*/ { if (!pFifo->Head) { pFifo->Head = pFifo->Tail = pElement; } else { ((LPFIFO)pFifo->Tail)->Head = pElement; } pFifo->Tail = pElement; pElement->Head = NULL; } LPFIFO FifoRemove( IN LPFIFO pFifo, IN LPFIFO pElement ) /*++ Routine Description: Removes an element from a (single-linked) FIFO list Arguments: pFifo - pointer to FIFO structure pElement - pointer to (FIFO) element to remove (single-linked) Return Value: PFIFO NULL - pElement not on list !NULL - pElement removed from list --*/ { LPFIFO p; LPFIFO prev = (LPFIFO)pFifo; p = (LPFIFO)pFifo->Head; while (p && (p != pElement)) { prev = p; p = p->Head; } if (p) { prev->Head = p->Head; if (pFifo->Head == NULL) { pFifo->Tail = NULL; } else if (pFifo->Tail == p) { pFifo->Tail = prev; } } return p; } LPFIFO FifoNext( IN LPFIFO pFifo ) /*++ Routine Description: Remove element at head of FIFO queue Arguments: pFifo - pointer to FIFO Return Value: LPFIFO NULL - nothing on queue !NULL - removed element --*/ { LPFIFO p; LPFIFO prev = (LPFIFO)pFifo; p = (LPFIFO)pFifo->Head; if (p) { pFifo->Head = p->Head; if (!pFifo->Head) { pFifo->Tail = NULL; } } return p; }