|ntel DM Provider User
Documentation

N

tal

Version 0.3
May 1, 1998
Intel Corporation

Table Of Contents

DMI PROVIDER ...ttt 4
SETTING UP THE DMI PROVIDERccoiiiiiiiie e 5
MAPPING DMI TO THE CIM SCHEMAooiiii e 7
DMI OPERATIONS USING WBEMDMIP.DLLcccoooiiiiiiiieeee e 9
DMITEST CODE SAMPLE ..ottt 11
USING THE WBEMTEST* APPLICATION TO VIEW DMI DATA.............. 13

SUBSCRIBING FOR DMI EVENTSAND NOTIFICATIONS........ccocvvivirennen. 13

Introduction

The DMI provider gives (WBEM*) applications the ability to interact with the DMI
2.0 Service Providers running on the local or remote platforms. Whbem applications
will be able to access and control the DMI enabled platforms. For additional
information, see DMI provider.

For additional information on DM, visit the DMTF website at http://www.dmtf.org.
For additional information on WBEM, visit the WBEM website at
http://www.microsoft.com/management/wbem/default.htm.

Desktop Management Interface (DMI)
Support

The DMI provider islocated between CIMOM and the DMI service providers as
illustrated in the following diagram.

CIMOM Management
Application

_——]

CIMOM COM Interface

Network Boundary

|

CIMOM COM Interface

DMI Provider DMI 2.0 Service Provider

—]|

RPC

RPC
DMI 2.0 Service Provider

DMI Provider

The WBEM DMI provider is capable of acting as:
A dynamic class provider that enumerates all classes in the DmiNodes
namespace and generates class definitions.

An instance provider that enumerates all instances of a particular class in
the DmiNodes namespace.

An event provider that provides DMI events for the DmiNodes
namespace.

A WBEM namespace must be created for each managed node. Each node's
namespace resides in the \Default\DmiNodes namespace.
The DMI provider manipulates CIM class definitions. Therefore, the DMI
Management Information Format (MIF) Components, Groups, and Attributes map to
CIM classes, instances, and properties, respectively. For more information on how
this mapping is done, see Mapping DMI to the CIM Schema.
With the DMI provider, WBEM applications will be able to perform the following
operations:
. Access all DM 2.0 Conponent, Group, and Attribute data.

Add and Del ete DM Conponents.

Add and Delete DM G oups.

Add and Delete the Rows of a DM tablular group.

Mbdi fy the witeable Attribute data.

Set the | anguage mapping of a DM Conponent.

Add or Del ete Languages froma DM Conponent.

Handl e DM Events.

Location of the DMI Provider components
The MOF file and executables for the DMI Provider are in the WBEM directory.

The software components comprising the DMI Provider

- WBEMDMIP.DLL, the main DMI Provider module responsible for schema
trandation, communication with WBEM and DM, and construction of dynamic
classes and instances.

- WBEMDMIP.M OF, the sample MOF file shipped with the DMI Provider
describing the DMI node namespace for the local node and registering the DMI
Provider with WBEM.

- MOTDMIENGINE.OCX, an ActiveX Control used by the DMI Provider to
establish communications and interactions with the DMI Service Providers.

- WCDMI.DLL, WCDMIDCE.DLL, WDMIUTIL.DLL, the DLL modules used
by the MOTDMIENGINE.OCX to handle RPC connection and tear-down with DMI
2.0 Service Providers on the local and remote nodes.

Setting Up the DMI Provider

To set up the DMI provider create a MOF file and perform the following

steps:

1. Create the \DmiNodes hamespace. To create a namespace, create an instance of
the_ NAMESPACE class. The \DmiNodes namespace must reside in the
\Root namespace:

#pragma nanespace("\\\\.\\root")
i nstance of __Nanmespace
{
Nane = "Dm Nodes";
b

2. Create a namespace for each managed node under DmiNodes. Each namespace
representing a DMI node must include a class and an instance that describes
the node, as well as instances of the required provider registration class.

#pragma nanespace("\\\\.\\root\\Dnm Nodes")
i nstance of __NaneSpace
{
Name = "ManagedNodel"; // Logical name given to a
/1 renote node

3. Createthe classDmiNode. This class must have the qualifier singleton and the
string property called “NetworkAddress’:

[si ngl et on]
cl ass Dmi Node
{
string Networ kAddress;

}s

4. Create an instance of DmiNode. Set the NetworkAddress property to the
network name or address of the managed node:

i nstance of Dm Node
{

/1 Network address for ManagedNodel or its nmachi ne name
Net wor kAddr ess = "206. 170. 168. 35"

5. Create aninstance of __ Win32Provider to register the DMI provider to handle
class and instance operations for the node created above:

#pragma nanespace("\\\\.\\root\\Dnm Nodes\\ ManagedNodel")
instance of __Wn32Provi der As $Provider
{
Name = "WoenDmi p" ;// Provider DLL naneC sld =
"{ DE0O65A70- 19B5- 11D1- B30C- 00609778D668} "

6. Createaninstance of __InstanceProvider Registration to tell the Common
Information Model Object Manager (CIMOM*) that the provider supports
instance operations:

{
Provi der = $Provi der; SupportsGet = TRUE; SupportsPut =
TRUE; SupportsDel ete = TRUE; Support sEnunmerati on = TRUE; };

7. Create aninstance of __MethodProviderRegistration to tell CIMOM that the
provider handles methods:

instance of __MethodProvi der Regi stration{ Provi der = $Provider;};
8. Create aninstance of __ClassProviderRegistration to tell CIMOM that the
provider supports class operations:

instance of __ClassProvi derRegistration{ Provider = $Provider;
SupportsGet = TRUE;
SupportsPut = FALSE;
SupportsDel ete = TRUE;
Support sEnuner ati on = TRUE;
QuerySupportLevels = NULL ; ResultSetQueries = { "Select *
From nmeta_cl ass Where __this isa \"Dm Conponent\"" ,"Sel ect *
Fromnmeta_class Where __thisisa \"Dm G oupRoot\"",
"Select * Fromneta_class Where __this isa \"Dm Bi ndi ngRoot\""

"Select * Fromneta_class Where __this isa \"Dm NodeData\"" ,
i sa \"Dm Language\"" ,
isa \"Dm Event\"" ,

isa

"Select * Fromneta_class Were __thi
"Select * Fromneta_class Were __thi

nu nu unu un

"Select * Fromneta_class Were __thi
" Dm AddMet hodPar ans\ " "
"Select * Fromneta_class Where __this isa
\ " Dmi Get EnunPar anms\ " ",
"Select * Fromneta_class Where __this isa
\ "Dm LanguageMet hodsPar ans\""
}
s
9. Create aninstance of __Win32Provider to tell CIMOM that the provider
supports events:

instance of __ W n32Provi der as $Event Prov{ Narme =

“WoenDni Event p" ; dsld = "{B21FBFA0- 1B39- 11d1- B317-

00609778D668}" ;};

10. Create aninstance of __EventProvider Registration to tell CIMOM the types
of events that the provider can handle:

I nstance of __Event Provi der Regi stration
{
Provi der = "WhenDm Event p";
Event QuerylList = {
"select * from Dm Event",
"select * from __lnstanceCreati onEvent where Targetl| nstance
is a \"Dm Conponent\"",
"select * from __| nstanceDel eti onEvent where Target| nstance
is a \"Dm Conponent\"",
"select * from __|nstanceCreati onEvent where Targetl| nstance
is a \"Dm Language\"",
"select * from __lnstanceDel eti onEvent where Target| nstance
is a \"Dm Language\""

}s

Alternately, you can use the WBEM Developer Studio to create namespaces and the
required class and instance definitions. For instructions, see the WBEM SDK
Applications Guide for instructions. See the sample MOF file, WBEMDMIP.MOF
included with the WBEM SDK.
11. After you create a MOF for a managed node, you must submit the file to
WBEM's MOF compiler.
mof conp <MOF-file>

Mapping DMI To The CIM Schema

The WBEM DMI Provider uses the following schema to represent the MIF
component group attribute information:

DmiNode
Static class defined in MOF. Used to establish the network address of the

managed node.

DmiNodeData
Dynamic singleton class with a dynamic instance. Contains DmiGetConfig data.
Has methods that allow you to add and delete components, and set the default
language.

DmiComponent
A dynamic class with dynamic instances. Contains component and component
ID group data. Has methods that allow you to add a group, add and delete a
language, and extract the component ID group attribute enumeration.

DmilL anguage
A dymanic class with dynamic instances. Contains language data.

DmiGroupRoot
Thisis an abstract class that does not have any instances. All dynamic group
classes are derived from this class.

Dynamic DmiGroup Classes
A dynamic classis created for each group on the managed node. Each dynamic
group classis given aname in the form:

Conponent <Conponent |d>__G oup<Goup |d>__<C ass String>.

A dynamic instance is created for each row of atabular group. For a scalar
group, only one instance is created.

DmiBindingRoot
Thisis an abstract class from which al bindings in the namespace are derived.
The classes derived from DmiBindingRoot are used to bind a DmiComponent
classto aDmiNode class; a DmiGroup class to a DmiComponent class, etc.

DmiL anguageBinding
Instances of this dynamic class bind DmiL anguage instances to instances of
DmiComponent.

Dynamic DmiGroupBinding Classes
A dynamic group binding class is created for each group on the managed node.
Each dynamic group binding class is given a name in the form:

Conponent <Conponent |d>__G oup<Goup |d>__<C ass String>__Binding.

Dynamic instances of these classes are created for each row of atabular group.
For a scalar group, only one instance is created. An instance of a dynamic group
binding class binds an instance of a dynamic group class to an instance of a
DmiComponent.

DmiAddM ethodParams
I nstances of this dynamic class contain the parameters required by the add
language, add group, and delete language methods.

DmiGetEnumPar ams
Instances of this dynamic class contain the parameters required by the get
attribute enumeration method.

DmiEnum class
A dynamic class created for attribute enumeration. Instances of this class
contain the value string pair of a DMI attribute's enumeration.

DmiL anguageM ethodPar ams
I nstances of this dynamic class are used in setting the default language.

DmiEvent
Instances of this dynamic class are generated when a DMI event is generated.

DMI Operations using Wbemdmip.dll

This section briefly describes the WBEM methods used for common DM
management tasks. See the DMITEST sample application included in this package
for an example of how to use the DMI access methods.

DmiGetVersion
Use IWbemServices::Createl nstanceEnum with the class set to the singleton
instance of DmiNodeData.

DmiGetConfig
Use IWbemServices::GetObject with the path for the singleton instance of
DmiNodeData.

DmiSetConfig
Use the IWbemSer vices:: ExecM ethod with the path for the singleton instance
of DmiNodeData, the method SetDefaultL anguage, and the instance of
DmiL anguageM ethodPar ams with the L anguage property set to the desired
language string.

DmiListComponents
Use the [WbemServices.:Createl nstanceEnum method with the class set to
DmiComponent.

DmiListL anguages

Use the [WbemServices.:Createl nstanceEnum method with the class set to
DmilL anguage.

DmiListGroups
Use the [WbemServices:: CreateClassEnum method with the superclass set to
DmiGroupRoot.

DmiListAttributes
Use the [WbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

DmiGetAttribute
Use the [WbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

Note:
This gives you all the attributes in the group. There is no way to access just one
attribute. Once you get the object that contains all the attributes, you can
perform the Get operations on the object to get the class property representing a
given DMI attribute.

DmiSetAttribute
Use the [WbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class. Use the WBEM’s PUT method on
the object to modify the instance returned, then use
| WbemServices.:Putlnstance.

DmiGetMultiple
Use the [WbemServices::GetObject method with the path set to the desired
instance of the desired dynamic group class.

Note:
This gives you all the attributes in the group.

DmiSetMultiple
Use the IWbemServices:: GetObject method with the path set to the desired instance
of the desired dynamic group class. Modify the instance returned. Then use
| WbemServices::Putl nstance.
DmiAddRow
Use the IWbemSer vices:: GetObject method with the path set to the desired instance
of the desired dynamic group class. Modify the instance returned then use
| WbemServices:: Putl nstance.
Note:
The Rowld property must be changed to a nonexistent Rowld.

DmiDe eteRow

Use the IWbemServices:: Deletel nstance with the path set to the desired
dynamic instance of the dynamic class.

DmiAddComponent
Use the IWbemSer vices:: ExecM ethod with the path for the singleton instance
of DmiNodeData, the method of AddComponent, and the MifFile property of
the instance of the DmiAddM ethodParams set to the desired MIF file path.

DmiAddL anguage
Use the IWbemServices:: ExecM ethod with the path to the instance of the
component to which the language is to be added. Set the method to
AddL anguage, and the MifFile property of the instance of the
DmiAddM ethodParams set to the desired MIF file path.

DmiAddGroup
Use the IWbemServices:: ExecM ethod with the path to the instance of the
component to which the language is to be added. Set the method to AddGroup,
and the MifFile property of the instance of the DmiAddM ethodPar ams set to
the desired MIF file path.

DmiDeleteComponent
Use IWbemServices::Deletel nstance with the path set to the desired dynamic
instance of the DmiComponent class.

DmiDeletel anguage
Use the IWbemSer vices:: ExecM ethaod with the path to the instance of
component to which the language is going to be deleted. Set the method to
Deletel anguage, and the L anguage property of the instance of the
DmiL anguageM ethodPar ams set to the language string to be deleted.

DmiDeleteGroup
Use IWbemServices::DeleteClass with the path set to the desired dynamic
group class.

DMITEST Code Sample

This section describes the dmitest code sample (DMITEST.EXE), a Win32 console
application that uses the WBEM API to access and manipulate a DMI 2.0 enabled
Win32 platform. The sample includes examples of DMI 2.0 MIF files that will be
used to install components in the DM database.

The same code reads input data from a script file, dmitest.scr, processes the
command script, and makes appropriate WBEM API calls to access the DMI
database. The application then will store the output datainto afile called
dmitest.out.

The dmitest application relies on the user to ensure that the DMI 2.0 Service Provider
is already running on the system and that the WBEMDMIP.MOF file has already
been compiled and installed into the CIMOM'’ s repository to enable DMI operations.

The dmitest code sample was developed using Microsoft Visual C++ version 5.0.

The DMITEST s MIF data

The application uses two MIF files dbtypesl.mif and tempcoml.mif to install three
components in the DMI database and access them through the DMI provider. The
dbtypesl.mif isinstalled twice. The DMITEST.SCR script uses hard coded path of
CA\TESTMIFS for the location of the above two MIF files. To accessthe MIF files
from a different directory, change the DMITEST.SCR file to look for the correct
path.

Location of the Dmitest Code sample
The source files and executables for the Dmitest Code sample are in the subdirectory

\WBEM\SDK\COM\DMITEST

The files included in this sample

- DMITEST.CPP, the main source file for the DMITEST application responsible
for reading and processing command scripts from the DMITEST.SCR input file
and submitting DMI requests to WBEM.
DMITEST .H, the header file for DMITEST.CPP module.
DMITEST.SCR, the file containing the DMI command scripts processed by the
DMITEST application.
DMITEST.OUT, the DMITEST application generated output file containing the
results from executing the DMI service requests.
DATATYPES.CPP, amodule that contains code for manipulating the OLE data
types used by the DMITEST.CPP module.
DATATYPES.H, the header file for DATATY PES.CPP module.
DEFINES.H, a header file containing definitions used to turn off some sections
of the WINDOWS.H header file that are not used by the application.
WBEM SVC.H, the header file containing the CIMOM interface definitions.
DBTYPESL.MIF, the MIF file used to install aDMI component called “First
Database Types MIF’
TEMPCOM1.MIF, aMIFfile used to install a DMI component called “ Test
System Temporary Component”
DMITEST.DSP, DMITEST.DSW, the Visual C++ 5.0 project file used to build
the DMITEST.EXE executable.

Building and using the DMITEST Code sample with Visual
C+++v5.0 IDE

To build the Dmitest module, perform these steps:

1. Runthe Microsoft Visua C++ 5.0 Development Studio program.

2. Load the DMITEST.DSP project file.

3. Fromthe BUILD menu, select SETTINGS. Choose the Preprocessor option from
the C/C++ Tabbed dialog box. Set the Additional Include Directory entry to the
INCLUDE directory of the WBEM SDK installed on your system.

4. Replace the WBEMUUID.LIB modulein the project files list with the one in the
LIB directory of the WBEM SDK installed on your system. To build this library,
run the “nmake” program from the \wbem\include subdirectory.

5. Fromthe BUILD menu, select UPDATE ALL DEPENDENCIES.

6. Rebuild the project to generate the DMITEST.EXE module.

7. Verify that DMITEST.SCR file isin the same directory asthe DMITEST.EXE
module.

8. Runthe DMITEST application and view DMITEST.OUT file for the results after
the program terminates.

9. Openthe DMITEST.CPP module and set breakpoints on the ProcessScriptFile()
function, run the DMITEST application again, and observe how the application
accesses DMI information through WBEM.

Using The WBEMTEST* Application To View DMI
Data

To view the DMI data on the local or remote node, connect to the machines residing
in the DMINODES namespace. For example, to view the DMI data on the local

machine, use the following connect string:
Root\dminodes\local

After you establish connection, you can query and view the DMI classes specified
earlier in this document. For example, to view alist of the DMI components

installed in the DMI database, click on the “Enuminstances’ button, and enter
“dmicomponent” without quotes for the class name. To view alist of the DMI
groups, click “EnumClasses’ button, and enter “dmigrouproot” without quotes for the
class name.

Subscribing For DMI Events and Notifications

Y ou can use the WBEMTEST application to subscribe for DMI events and
notifications. To subscribe for events, enable the “ Execute asynchronously” check
box, click on the “ Notification Query” button and enter the appropriate event
subscription queries. The following example shows how to subscribe for a
“DmiComponent Added” notification:

Select * from __InstanceCreationEvent Where Targetinstance isa “ DmiComponent”
The following example shows how to subscribe for a*“DmiComponent Added”
notification:

Select * from __InstanceDeletionEvent Where Targetlnstance isa “ DmiComponent”

The “DmiGroup Added/Deleted” notifications map to ClassCreation and
ClassDeletion events in CIMOM. Since CIMOM does not support the
ClassCreation and ClassDeletion events, the DMI provider does not
support the above DMI group notifications.

The following example shows how to subscribe for all kinds of DMI extrinsic events
including the extrinsic DMI events:

Select * from DmiEvent

Copyright ¢ 1998 Intel Corporation. All rightsreserved.

*QOther products and cor porate names may be trademarks of other companiesand are
used only for explanation and to the owners' benefit, without intent to infringe.

Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497. Intel
Corporation assumes no responsibility for errorsor omissionsin this document; nor does
Intel make any commitment to update the information contained herein.

