/*++ BUILD Version: 0003    // Increment this if a change has global effects

Copyright (c) 1989  Microsoft Corporation

Module Name:

    ntosdef.h

Abstract:

    Common type definitions for the NTOS component that are private to
    NTOS, but shared between NTOS sub-components.

Author:

    Steve Wood (stevewo) 08-May-1989

Revision History:

--*/

#ifndef _NTOSDEF_
#define _NTOSDEF_

// begin_ntosp

//
// Define per processor nonpaged lookaside list descriptor structure.
//

struct _NPAGED_LOOKASIDE_LIST;

typedef struct _PP_LOOKASIDE_LIST {
    struct _GENERAL_LOOKASIDE *P;
    struct _GENERAL_LOOKASIDE *L;
} PP_LOOKASIDE_LIST, *PPP_LOOKASIDE_LIST;

//
// Define the number of small pool lists.
//
// N.B. This value is used in pool.h and is used to allocate single entry
//      lookaside lists in the processor block of each processor.

#define POOL_SMALL_LISTS 32

// begin_ntddk begin_wdm begin_nthal begin_ntifs

//
// Define alignment macros to align structure sizes and pointers up and down.
//

#define ALIGN_DOWN(length, type) \
    ((ULONG)(length) & ~(sizeof(type) - 1))

#define ALIGN_UP(length, type) \
    (ALIGN_DOWN(((ULONG)(length) + sizeof(type) - 1), type))

#define ALIGN_DOWN_POINTER(address, type) \
    ((PVOID)((ULONG_PTR)(address) & ~((ULONG_PTR)sizeof(type) - 1)))

#define ALIGN_UP_POINTER(address, type) \
    (ALIGN_DOWN_POINTER(((ULONG_PTR)(address) + sizeof(type) - 1), type))

#define POOL_TAGGING 1

#ifndef DBG
#define DBG 0
#endif

#if DBG
#define IF_DEBUG if (TRUE)
#else
#define IF_DEBUG if (FALSE)
#endif

#if DEVL

// end_ntddk end_wdm end_nthal end_ntifs end_ntosp
//
// Global flag set by NtPartyByNumber(6) controls behaviour of
// NT.  See \nt\sdk\inc\ntexapi.h for flag definitions
//
// begin_ntddk begin_wdm begin_nthal begin_ntifs begin_ntosp

extern ULONG NtGlobalFlag;

#define IF_NTOS_DEBUG( FlagName ) \
    if (NtGlobalFlag & (FLG_ ## FlagName))

#else
#define IF_NTOS_DEBUG( FlagName ) if (FALSE)
#endif

//
// Kernel definitions that need to be here for forward reference purposes
//

// begin_ntndis
//
// Processor modes.
//

typedef CCHAR KPROCESSOR_MODE;

typedef enum _MODE {
    KernelMode,
    UserMode,
    MaximumMode
} MODE;

// end_ntndis
//
// APC function types
//

//
// Put in an empty definition for the KAPC so that the
// routines can reference it before it is declared.
//

struct _KAPC;

typedef
VOID
(*PKNORMAL_ROUTINE) (
    IN PVOID NormalContext,
    IN PVOID SystemArgument1,
    IN PVOID SystemArgument2
    );

typedef
VOID
(*PKKERNEL_ROUTINE) (
    IN struct _KAPC *Apc,
    IN OUT PKNORMAL_ROUTINE *NormalRoutine,
    IN OUT PVOID *NormalContext,
    IN OUT PVOID *SystemArgument1,
    IN OUT PVOID *SystemArgument2
    );

typedef
VOID
(*PKRUNDOWN_ROUTINE) (
    IN struct _KAPC *Apc
    );

typedef
BOOLEAN
(*PKSYNCHRONIZE_ROUTINE) (
    IN PVOID SynchronizeContext
    );

typedef
BOOLEAN
(*PKTRANSFER_ROUTINE) (
    VOID
    );

//
//
// Asynchronous Procedure Call (APC) object
//
//

typedef struct _KAPC {
    CSHORT Type;
    CSHORT Size;
    ULONG Spare0;
    struct _KTHREAD *Thread;
    LIST_ENTRY ApcListEntry;
    PKKERNEL_ROUTINE KernelRoutine;
    PKRUNDOWN_ROUTINE RundownRoutine;
    PKNORMAL_ROUTINE NormalRoutine;
    PVOID NormalContext;

    //
    // N.B. The following two members MUST be together.
    //

    PVOID SystemArgument1;
    PVOID SystemArgument2;
    CCHAR ApcStateIndex;
    KPROCESSOR_MODE ApcMode;
    BOOLEAN Inserted;
} KAPC, *PKAPC, *RESTRICTED_POINTER PRKAPC;

// begin_ntndis
//
// DPC routine
//

struct _KDPC;

typedef
VOID
(*PKDEFERRED_ROUTINE) (
    IN struct _KDPC *Dpc,
    IN PVOID DeferredContext,
    IN PVOID SystemArgument1,
    IN PVOID SystemArgument2
    );

//
// Define DPC importance.
//
// LowImportance - Queue DPC at end of target DPC queue.
// MediumImportance - Queue DPC at end of target DPC queue.
// HighImportance - Queue DPC at front of target DPC DPC queue.
//
// If there is currently a DPC active on the target processor, or a DPC
// interrupt has already been requested on the target processor when a
// DPC is queued, then no further action is necessary. The DPC will be
// executed on the target processor when its queue entry is processed.
//
// If there is not a DPC active on the target processor and a DPC interrupt
// has not been requested on the target processor, then the exact treatment
// of the DPC is dependent on whether the host system is a UP system or an
// MP system.
//
// UP system.
//
// If the DPC is of medium or high importance, the current DPC queue depth
// is greater than the maximum target depth, or current DPC request rate is
// less the minimum target rate, then a DPC interrupt is requested on the
// host processor and the DPC will be processed when the interrupt occurs.
// Otherwise, no DPC interupt is requested and the DPC execution will be
// delayed until the DPC queue depth is greater that the target depth or the
// minimum DPC rate is less than the target rate.
//
// MP system.
//
// If the DPC is being queued to another processor and the depth of the DPC
// queue on the target processor is greater than the maximum target depth or
// the DPC is of high importance, then a DPC interrupt is requested on the
// target processor and the DPC will be processed when the interrupt occurs.
// Otherwise, the DPC execution will be delayed on the target processor until
// the DPC queue depth on the target processor is greater that the maximum
// target depth or the minimum DPC rate on the target processor is less than
// the target mimimum rate.
//
// If the DPC is being queued to the current processor and the DPC is not of
// low importance, the current DPC queue depth is greater than the maximum
// target depth, or the minimum DPC rate is less than the minimum target rate,
// then a DPC interrupt is request on the current processor and the DPV will
// be processed whne the interrupt occurs. Otherwise, no DPC interupt is
// requested and the DPC execution will be delayed until the DPC queue depth
// is greater that the target depth or the minimum DPC rate is less than the
// target rate.
//

typedef enum _KDPC_IMPORTANCE {
    LowImportance,
    MediumImportance,
    HighImportance
} KDPC_IMPORTANCE;

//
// Deferred Procedure Call (DPC) object
//

typedef struct _KDPC {
    CSHORT Type;
    UCHAR Number;
    UCHAR Importance;
    LIST_ENTRY DpcListEntry;
    PKDEFERRED_ROUTINE DeferredRoutine;
    PVOID DeferredContext;
    PVOID SystemArgument1;
    PVOID SystemArgument2;
    PULONG_PTR Lock;
} KDPC, *PKDPC, *RESTRICTED_POINTER PRKDPC;


//
// Interprocessor interrupt worker routine function prototype.
//

typedef PVOID PKIPI_CONTEXT;

typedef
VOID
(*PKIPI_WORKER)(
    IN PKIPI_CONTEXT PacketContext,
    IN PVOID Parameter1,
    IN PVOID Parameter2,
    IN PVOID Parameter3
    );

//
// Define interprocessor interrupt performance counters.
//

typedef struct _KIPI_COUNTS {
    ULONG Freeze;
    ULONG Packet;
    ULONG DPC;
    ULONG APC;
    ULONG FlushSingleTb;
    ULONG FlushMultipleTb;
    ULONG FlushEntireTb;
    ULONG GenericCall;
    ULONG ChangeColor;
    ULONG SweepDcache;
    ULONG SweepIcache;
    ULONG SweepIcacheRange;
    ULONG FlushIoBuffers;
    ULONG GratuitousDPC;
} KIPI_COUNTS, *PKIPI_COUNTS;

#if defined(NT_UP)

#define HOT_STATISTIC(a) a

#else

#define HOT_STATISTIC(a) (KeGetCurrentPrcb()->a)

#endif

//
// I/O system definitions.
//
// Define a Memory Descriptor List (MDL)
//
// An MDL describes pages in a virtual buffer in terms of physical pages.  The
// pages associated with the buffer are described in an array that is allocated
// just after the MDL header structure itself.  In a future compiler this will
// be placed at:
//
//      ULONG Pages[];
//
// Until this declaration is permitted, however, one simply calculates the
// base of the array by adding one to the base MDL pointer:
//
//      Pages = (PULONG) (Mdl + 1);
//
// Notice that while in the context of the subject thread, the base virtual
// address of a buffer mapped by an MDL may be referenced using the following:
//
//      Mdl->StartVa | Mdl->ByteOffset
//


typedef struct _MDL {
    struct _MDL *Next;
    CSHORT Size;
    CSHORT MdlFlags;
    struct _EPROCESS *Process;
    PVOID MappedSystemVa;
    PVOID StartVa;
    ULONG ByteCount;
    ULONG ByteOffset;
} MDL, *PMDL;

#define MDL_MAPPED_TO_SYSTEM_VA     0x0001
#define MDL_PAGES_LOCKED            0x0002
#define MDL_SOURCE_IS_NONPAGED_POOL 0x0004
#define MDL_ALLOCATED_FIXED_SIZE    0x0008
#define MDL_PARTIAL                 0x0010
#define MDL_PARTIAL_HAS_BEEN_MAPPED 0x0020
#define MDL_IO_PAGE_READ            0x0040
#define MDL_WRITE_OPERATION         0x0080
#define MDL_PARENT_MAPPED_SYSTEM_VA 0x0100
#define MDL_FREE_EXTRA_PTES         0x0200
#define MDL_IO_SPACE                0x0800
#define MDL_NETWORK_HEADER          0x1000
#define MDL_MAPPING_CAN_FAIL        0x2000
#define MDL_ALLOCATED_MUST_SUCCEED  0x4000


#define MDL_MAPPING_FLAGS (MDL_MAPPED_TO_SYSTEM_VA     | \
                           MDL_PAGES_LOCKED            | \
                           MDL_SOURCE_IS_NONPAGED_POOL | \
                           MDL_PARTIAL_HAS_BEEN_MAPPED | \
                           MDL_PARENT_MAPPED_SYSTEM_VA | \
                           MDL_SYSTEM_VA               | \
                           MDL_IO_SPACE )

// end_ntndis
//
// switch to DBG when appropriate
//

#if DBG
#define PAGED_CODE() \
    { if (KeGetCurrentIrql() > APC_LEVEL) { \
          KdPrint(( "EX: Pageable code called at IRQL %d\n", KeGetCurrentIrql() )); \
          ASSERT(FALSE); \
       } \
    }
#else
#define PAGED_CODE() NOP_FUNCTION;
#endif

// end_ntddk end_wdm end_nthal end_ntifs end_ntosp


// begin_ntifs begin_ntosp
//
// Data structure used to represent client security context for a thread.
// This data structure is used to support impersonation.
//
//  THE FIELDS OF THIS DATA STRUCTURE SHOULD BE CONSIDERED OPAQUE
//  BY ALL EXCEPT THE SECURITY ROUTINES.
//

typedef struct _SECURITY_CLIENT_CONTEXT {
    SECURITY_QUALITY_OF_SERVICE SecurityQos;
    PACCESS_TOKEN ClientToken;
    BOOLEAN DirectlyAccessClientToken;
    BOOLEAN DirectAccessEffectiveOnly;
    BOOLEAN ServerIsRemote;
    TOKEN_CONTROL ClientTokenControl;
    } SECURITY_CLIENT_CONTEXT, *PSECURITY_CLIENT_CONTEXT;

//
// where
//
//    SecurityQos - is the security quality of service information in effect
//        for this client.  This information is used when directly accessing
//        the client's token.  In this case, the information here over-rides
//        the information in the client's token.  If a copy of the client's
//        token is requested, it must be generated using this information,
//        not the information in the client's token.  In all cases, this
//        information may not provide greater access than the information
//        in the client's token.  In particular, if the client's token is
//        an impersonation token with an impersonation level of
//        "SecurityDelegation", but the information in this field indicates
//        an impersonation level of "SecurityIdentification", then
//        the server may only get a copy of the token with an Identification
//        level of impersonation.
//
//    ClientToken - If the DirectlyAccessClientToken field is FALSE,
//        then this field contains a pointer to a duplicate of the
//        client's token.  Otherwise, this field points directly to
//        the client's token.
//
//    DirectlyAccessClientToken - This boolean flag indicates whether the
//        token pointed to by ClientToken is a copy of the client's token
//        or is a direct reference to the client's token.  A value of TRUE
//        indicates the client's token is directly accessed, FALSE indicates
//        a copy has been made.
//
//    DirectAccessEffectiveOnly - This boolean flag indicates whether the
//        the disabled portions of the token that is currently directly
//        referenced may be enabled.  This field is only valid if the
//        DirectlyAccessClientToken field is TRUE.  In that case, this
//        value supersedes the EffectiveOnly value in the SecurityQos
//        FOR THE CURRENT TOKEN ONLY!  If the client changes to impersonate
//        another client, this value may change.  This value is always
//        minimized by the EffectiveOnly flag in the SecurityQos field.
//
//    ServerIsRemote - If TRUE indicates that the server of the client's
//        request is remote.  This is used for determining the legitimacy
//        of certain levels of impersonation and to determine how to
//        track context.
//
//    ClientTokenControl - If the ServerIsRemote flag is TRUE, and the
//        tracking mode is DYNAMIC, then this field contains a copy of
//        the TOKEN_SOURCE from the client's token to assist in deciding
//        whether the information at the remote server needs to be
//        updated to match the current state of the client's security
//        context.
//
//
//    NOTE: At some point, we may find it worthwhile to keep an array of
//          elements in this data structure, where each element of the
//          array contains {ClientToken, ClientTokenControl} fields.
//          This would allow efficient handling of the case where a client
//          thread was constantly switching between a couple different
//          contexts - presumably impersonating client's of its own.
//
// end_ntifs end_ntosp

//
// Define function decoration depending on whether a driver, a file system,
// or a kernel component is being built.
//

#if (defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_NTOSP_)) && !defined(_BLDR_)
// begin_ntosp
#if defined(_NTSYSTEM_)

#define NTKERNELAPI

#else

#define NTKERNELAPI DECLSPEC_IMPORT     // wdm ntddk nthal ntndis ntifs

#endif
// end_ntosp
#else

#define NTKERNELAPI

#endif

//
// Define function decoration depending on whether the HAL or other kernel
// component is being build.

// begin_ntddk
#if !defined(_NTHAL_) && !defined(_BLDR_)

#define NTHALAPI DECLSPEC_IMPORT            // wdm ntndis ntifs ntosp

#else

#define NTHALAPI                            // nthal

#endif
// end_ntddk

// begin_ntddk begin_wdm begin_nthal begin_ntifs begin_ntndis begin_ntosp
//
// Common dispatcher object header
//
// N.B. The size field contains the number of dwords in the structure.
//

typedef struct _DISPATCHER_HEADER {
    UCHAR Type;
    UCHAR Absolute;
    UCHAR Size;
    UCHAR Inserted;
    LONG SignalState;
    LIST_ENTRY WaitListHead;
} DISPATCHER_HEADER;

//
// Event object
//

typedef struct _KEVENT {
    DISPATCHER_HEADER Header;
} KEVENT, *PKEVENT, *RESTRICTED_POINTER PRKEVENT;

//
// Timer object
//

typedef struct _KTIMER {
    DISPATCHER_HEADER Header;
    ULARGE_INTEGER DueTime;
    LIST_ENTRY TimerListEntry;
    struct _KDPC *Dpc;
    LONG Period;
} KTIMER, *PKTIMER, *RESTRICTED_POINTER PRKTIMER;

// end_ntddk end_wdm end_nthal end_ntifs end_ntndis end_ntosp

#endif // _NTOSDEF_