/*++ Copyright (c) 1997 Microsoft Corporation Module Name: gart.c Abstract: Routines for querying and setting the Intel 440xx GART aperture Author: John Vert (jvert) 10/30/1997 Revision History: --*/ #include "agp440.h" // // Local function prototypes // NTSTATUS Agp440CreateGart( IN PAGP440_EXTENSION AgpContext, IN ULONG MinimumPages ); PGART_PTE Agp440FindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState ); NTSTATUS Agp440SetRate( IN PVOID AgpContext, IN ULONG AgpRate ); VOID Agp440SetGTLB_Enable( IN PAGP440_EXTENSION AgpContext, IN BOOLEAN Enable ); #ifdef ALLOC_PRAGMA #pragma alloc_text(PAGE, AgpDisableAperture) #pragma alloc_text(PAGE, AgpQueryAperture) #pragma alloc_text(PAGE, AgpReserveMemory) #pragma alloc_text(PAGE, AgpReleaseMemory) #pragma alloc_text(PAGE, Agp440CreateGart) #pragma alloc_text(PAGE, AgpMapMemory) #pragma alloc_text(PAGE, AgpUnMapMemory) #pragma alloc_text(PAGE, Agp440FindRangeInGart) #pragma alloc_text(PAGE, AgpFindFreeRun) #pragma alloc_text(PAGE, AgpGetMappedPages) #endif #define Agp440EnableTB(_x_) Agp440SetGTLB_Enable((_x_), TRUE) #define Agp440DisableTB(_x_) Agp440SetGTLB_Enable((_x_), FALSE) NTSTATUS AgpQueryAperture( IN PAGP440_EXTENSION AgpContext, OUT PHYSICAL_ADDRESS *CurrentBase, OUT ULONG *CurrentSizeInPages, OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements ) /*++ Routine Description: Queries the current size of the GART aperture. Optionally returns the possible GART settings. Arguments: AgpContext - Supplies the AGP context. CurrentBase - Returns the current physical address of the GART. CurrentSizeInPages - Returns the current GART size. ApertureRequirements - if present, returns the possible GART settings Return Value: NTSTATUS --*/ { ULONG ApBase; UCHAR ApSize; PIO_RESOURCE_LIST Requirements; ULONG i; ULONG Length; PAGED_CODE(); // // Get the current APBASE and APSIZE settings // Read440Config(&ApBase, APBASE_OFFSET, sizeof(ApBase)); Read440Config(&ApSize, APSIZE_OFFSET, sizeof(ApSize)); ASSERT(ApBase != 0); CurrentBase->QuadPart = ApBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK; // // Convert APSIZE into the actual size of the aperture // switch (ApSize) { case AP_SIZE_4MB: *CurrentSizeInPages = 4 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_8MB: *CurrentSizeInPages = 8 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_16MB: *CurrentSizeInPages = 16 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_32MB: *CurrentSizeInPages = 32 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_64MB: *CurrentSizeInPages = 64 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_128MB: *CurrentSizeInPages = 128 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_256MB: *CurrentSizeInPages = 256 * (1024*1024 / PAGE_SIZE); break; default: AGPLOG(AGP_CRITICAL, ("AGP440 - AgpQueryAperture - Unexpected value %x for ApSize!\n", ApSize)); ASSERT(FALSE); AgpContext->ApertureStart.QuadPart = 0; AgpContext->ApertureLength = 0; return(STATUS_UNSUCCESSFUL); } // // Remember the current aperture settings // AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart; AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE; if (pApertureRequirements != NULL) { ULONG VendorId; // // 440 supports 7 different aperture sizes, all must be // naturally aligned. Start with the largest aperture and // work downwards so that we get the biggest possible aperture. // Requirements = ExAllocatePoolWithTag(PagedPool, sizeof(IO_RESOURCE_LIST) + (AP_SIZE_COUNT-1)*sizeof(IO_RESOURCE_DESCRIPTOR), 'RpgA'); if (Requirements == NULL) { return(STATUS_INSUFFICIENT_RESOURCES); } Requirements->Version = Requirements->Revision = 1; // // 815 only supports 64MB and 32MB Aperture sizes // Read440Config(&VendorId, 0, sizeof(VendorId)); if (VendorId == AGP_815_IDENTIFIER) { Requirements->Count = AP_815_SIZE_COUNT; Length = AP_815_MAX_SIZE; } else { Requirements->Count = AP_SIZE_COUNT; Length = AP_MAX_SIZE; } for (i=0; iCount; i++) { Requirements->Descriptors[i].Option = IO_RESOURCE_ALTERNATIVE; Requirements->Descriptors[i].Type = CmResourceTypeMemory; Requirements->Descriptors[i].ShareDisposition = CmResourceShareDeviceExclusive; Requirements->Descriptors[i].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE; Requirements->Descriptors[i].u.Memory.Length = Length; Requirements->Descriptors[i].u.Memory.Alignment = Length; Requirements->Descriptors[i].u.Memory.MinimumAddress.QuadPart = 0; Requirements->Descriptors[i].u.Memory.MaximumAddress.QuadPart = (ULONG)-1; Length = Length/2; } *pApertureRequirements = Requirements; } return(STATUS_SUCCESS); } NTSTATUS AgpSetAperture( IN PAGP440_EXTENSION AgpContext, IN PHYSICAL_ADDRESS NewBase, IN ULONG NewSizeInPages ) /*++ Routine Description: Sets the GART aperture to the supplied settings Arguments: AgpContext - Supplies the AGP context NewBase - Supplies the new physical memory base for the GART. NewSizeInPages - Supplies the new size for the GART Return Value: NTSTATUS --*/ { PACCFG PACConfig; UCHAR ApSize; ULONG ApBase; // // Figure out the new APSIZE setting, make sure it is valid. // switch (NewSizeInPages) { case 4 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_4MB; break; case 8 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_8MB; break; case 16 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_16MB; break; case 32 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_32MB; break; case 64 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_64MB; break; case 128 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_128MB; break; case 256 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_256MB; break; default: AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid GART size of %lx pages specified, aperture at %I64X.\n", NewSizeInPages, NewBase.QuadPart)); ASSERT(FALSE); return(STATUS_INVALID_PARAMETER); } // // Make sure the supplied size is aligned on the appropriate boundary. // ASSERT(NewBase.HighPart == 0); ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0); if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) { AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid base %I64X specified for GART aperture of %lx pages\n", NewBase.QuadPart, NewSizeInPages)); return(STATUS_INVALID_PARAMETER); } // // Reprogram Special Target settings when the chip // is powered off, but ignore rate changes as those were already // applied during MasterInit // if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) { AgpSpecialTarget(AgpContext, AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE); } // // Need to reset the hardware to match the supplied settings // // If the aperture is enabled, disable it, write the new settings, then reenable the aperture // Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); PACConfig.GlobalEnable = 0; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); // // Write APSIZE first, as this will enable the correct bits in APBASE that need to // be written next. // Write440Config(&ApSize, APSIZE_OFFSET, sizeof(ApSize)); // // Now we can update APBASE // ApBase = NewBase.LowPart & PCI_ADDRESS_MEMORY_ADDRESS_MASK; Write440Config(&ApBase, APBASE_OFFSET, sizeof(ApBase)); #if DBG // // Read back what we wrote, make sure it worked // { ULONG DbgBase; UCHAR DbgSize; Read440Config(&DbgSize, APSIZE_OFFSET, sizeof(ApSize)); Read440Config(&DbgBase, APBASE_OFFSET, sizeof(ApBase)); ASSERT(DbgSize == ApSize); ASSERT((DbgBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK) == ApBase); } #endif // // Now enable the aperture if it was enabled before // if (AgpContext->GlobalEnable) { Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); ASSERT(PACConfig.GlobalEnable == 0); PACConfig.GlobalEnable = 1; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); } // // Update our extension to reflect the new GART setting // AgpContext->ApertureStart = NewBase; AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE; // // Enable the TB in case we are resuming from S3 or S4 // Agp440EnableTB(AgpContext); // // If the GART has been allocated, rewrite the ATTBASE // if (AgpContext->Gart != NULL) { Write440Config(&AgpContext->GartPhysical.LowPart, ATTBASE_OFFSET, sizeof(AgpContext->GartPhysical.LowPart)); } return(STATUS_SUCCESS); } VOID AgpDisableAperture( IN PAGP440_EXTENSION AgpContext ) /*++ Routine Description: Disables the GART aperture so that this resource is available for other devices Arguments: AgpContext - Supplies the AGP context Return Value: None - this routine must always succeed. --*/ { PACCFG PACConfig; // // Disable the aperture // Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); if (PACConfig.GlobalEnable == 1) { PACConfig.GlobalEnable = 0; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); } AgpContext->GlobalEnable = FALSE; // // Nuke the Gart! (It's meaningless now...) // if (AgpContext->Gart != NULL) { MmFreeContiguousMemory(AgpContext->Gart); AgpContext->Gart = NULL; AgpContext->GartLength = 0; } } NTSTATUS AgpReserveMemory( IN PAGP440_EXTENSION AgpContext, IN OUT AGP_RANGE *Range ) /*++ Routine Description: Reserves a range of memory in the GART. Arguments: AgpContext - Supplies the AGP Context Range - Supplies the AGP_RANGE structure. AGPLIB will have filled in NumberOfPages and Type. This routine will fill in MemoryBase and Context. Return Value: NTSTATUS --*/ { ULONG Index; ULONG NewState; NTSTATUS Status; PGART_PTE FoundRange; BOOLEAN Backwards; PAGED_CODE(); ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined)); if (Range->NumberOfPages > (AgpContext->ApertureLength / PAGE_SIZE)) { return STATUS_INSUFFICIENT_RESOURCES; } // // If we have not allocated our GART yet, now is the time to do so // if (AgpContext->Gart == NULL) { ASSERT(AgpContext->GartLength == 0); Status = Agp440CreateGart(AgpContext,Range->NumberOfPages); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_CRITICAL, ("Agp440CreateGart failed %08lx to create GART of size %lx\n", Status, AgpContext->ApertureLength)); return(Status); } } ASSERT(AgpContext->GartLength != 0); // // Now that we have a GART, try and find enough contiguous entries to satisfy // the request. Requests for uncached memory will scan from high addresses to // low addresses. Requests for write-combined memory will scan from low addresses // to high addresses. We will use a first-fit algorithm to try and keep the allocations // packed and contiguous. // Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE; FoundRange = Agp440FindRangeInGart(&AgpContext->Gart[0], &AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1], Range->NumberOfPages, Backwards, GART_ENTRY_FREE); if (FoundRange == NULL) { // // A big enough chunk was not found. // AGPLOG(AGP_CRITICAL, ("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n", Range->NumberOfPages, Range->Type, AgpContext->Gart)); // // This is where we could try and grow the GART // return(STATUS_INSUFFICIENT_RESOURCES); } AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n", Range->NumberOfPages, FoundRange)); // // Set these pages to reserved // if (Range->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else { NewState = GART_ENTRY_RESERVED_WC; } for (Index = 0;Index < Range->NumberOfPages; Index++) { ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE); FoundRange[Index].AsUlong = 0; FoundRange[Index].Soft.State = NewState; } Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE; Range->Context = FoundRange; ASSERT(Range->MemoryBase.HighPart == 0); AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n", FoundRange, Range->MemoryBase.LowPart)); return(STATUS_SUCCESS); } NTSTATUS AgpReleaseMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE Range ) /*++ Routine Description: Releases memory previously reserved with AgpReserveMemory Arguments: AgpContext - Supplies the AGP context AgpRange - Supplies the range to be released. Return Value: NTSTATUS --*/ { PGART_PTE Pte; ULONG Start; PAGED_CODE(); // // Go through and free all the PTEs. None of these should still // be valid at this point. // for (Pte = Range->Context; Pte < (PGART_PTE)Range->Context + Range->NumberOfPages; Pte++) { if (Range->Type == MmNonCached) { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC); } else { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC); } Pte->Soft.State = GART_ENTRY_FREE; } Range->MemoryBase.QuadPart = 0; return(STATUS_SUCCESS); } NTSTATUS Agp440CreateGart( IN PAGP440_EXTENSION AgpContext, IN ULONG MinimumPages ) /*++ Routine Description: Allocates and initializes an empty GART. The current implementation attempts to allocate the entire GART on the first reserve. Arguments: AgpContext - Supplies the AGP context MinimumPages - Supplies the minimum size (in pages) of the GART to be created. Return Value: NTSTATUS --*/ { PGART_PTE Gart; ULONG GartLength; PHYSICAL_ADDRESS HighestAcceptable; PHYSICAL_ADDRESS LowestAcceptable; PHYSICAL_ADDRESS BoundaryMultiple; PHYSICAL_ADDRESS GartPhysical; ULONG i; PAGED_CODE(); // // Try and get a chunk of contiguous memory big enough to map the // entire aperture. // LowestAcceptable.QuadPart = 0; BoundaryMultiple.QuadPart = 0; HighestAcceptable.QuadPart = 0xFFFFFFFF; GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE); Gart = MmAllocateContiguousMemorySpecifyCache(GartLength, LowestAcceptable, HighestAcceptable, BoundaryMultiple, MmNonCached); if (Gart == NULL) { AGPLOG(AGP_CRITICAL, ("Agp440CreateGart - MmAllocateContiguousMemorySpecifyCache %lx failed\n", GartLength)); return(STATUS_INSUFFICIENT_RESOURCES); } // // We successfully allocated a contiguous chunk of memory. // It should be page aligned already. // ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0); // // Get the physical address. // GartPhysical = MmGetPhysicalAddress(Gart); AGPLOG(AGP_NOISE, ("Agp440CreateGart - GART of length %lx created at VA %08lx, PA %08lx\n", GartLength, Gart, GartPhysical.LowPart)); ASSERT(GartPhysical.HighPart == 0); ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0); // // Initialize all the PTEs to free // for (i=0; iGart = Gart; AgpContext->GartLength = GartLength; AgpContext->GartPhysical = GartPhysical; return(STATUS_SUCCESS); } NTSTATUS AgpMapMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE Range, IN PMDL Mdl, IN ULONG OffsetInPages, OUT PHYSICAL_ADDRESS *MemoryBase ) /*++ Routine Description: Maps physical memory into the GART somewhere in the specified range. Arguments: AgpContext - Supplies the AGP context Range - Supplies the AGP range that the memory should be mapped into Mdl - Supplies the MDL describing the physical pages to be mapped OffsetInPages - Supplies the offset into the reserved range where the mapping should begin. MemoryBase - Returns the physical memory in the aperture where the pages were mapped. Return Value: NTSTATUS --*/ { ULONG PageCount; PGART_PTE Pte; PGART_PTE StartPte; ULONG Index; ULONG TargetState; PPFN_NUMBER Page; BOOLEAN Backwards; GART_PTE NewPte; PACCFG PACConfig; PAGED_CODE(); ASSERT(Mdl->Next == NULL); StartPte = Range->Context; PageCount = BYTES_TO_PAGES(Mdl->ByteCount); ASSERT(PageCount <= Range->NumberOfPages); ASSERT(OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount > 0); TargetState = (Range->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC; Pte = StartPte + OffsetInPages; // // We have a suitable range, now fill it in with the supplied MDL. // ASSERT(Pte >= StartPte); ASSERT(Pte + PageCount <= StartPte + Range->NumberOfPages); NewPte.AsUlong = 0; NewPte.Soft.State = (Range->Type == MmNonCached) ? GART_ENTRY_VALID_UC : GART_ENTRY_VALID_WC; Page = (PPFN_NUMBER)(Mdl + 1); // // Disable the TB as per the 440 spec. This is probably unnecessary // as there should be no valid entries in this range, and there should // be no invalid entries still in the TB. So flushing the TB seems // a little gratuitous but that's what the 440 spec says to do. // Agp440DisableTB(AgpContext); for (Index = 0; Index < PageCount; Index++) { ASSERT(Pte[Index].Soft.State == TargetState); NewPte.Hard.Page = (ULONG)(*Page++); Pte[Index].AsUlong = NewPte.AsUlong; ASSERT(Pte[Index].Hard.Valid == 1); } // // We have filled in all the PTEs. Read back the last one we wrote // in order to flush the write buffers. // NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong; // // Re-enable the TB // Agp440EnableTB(AgpContext); // // If we have not yet gotten around to enabling the GART aperture, do it now. // if (!AgpContext->GlobalEnable) { AGPLOG(AGP_NOISE, ("AgpMapMemory - Enabling global aperture access\n")); Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); PACConfig.GlobalEnable = 1; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); AgpContext->GlobalEnable = TRUE; } MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE; return(STATUS_SUCCESS); } NTSTATUS AgpUnMapMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages ) /*++ Routine Description: Unmaps previously mapped memory in the GART. Arguments: AgpContext - Supplies the AGP context AgpRange - Supplies the AGP range that the memory should be freed from NumberOfPages - Supplies the number of pages in the range to be freed. OffsetInPages - Supplies the offset into the range where the freeing should begin. Return Value: NTSTATUS --*/ { ULONG i; PGART_PTE Pte; PGART_PTE LastChanged=NULL; PGART_PTE StartPte; ULONG NewState; PAGED_CODE(); ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages); StartPte = AgpRange->Context; Pte = &StartPte[OffsetInPages]; if (AgpRange->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else { NewState = GART_ENTRY_RESERVED_WC; } // // Disable the TB to flush it // Agp440DisableTB(AgpContext); for (i=0; iAsUlong); } // // Reenable the TB // Agp440EnableTB(AgpContext); return(STATUS_SUCCESS); } PGART_PTE Agp440FindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState ) /*++ Routine Description: Finds a contiguous range in the GART. This routine can search either from the beginning of the GART forwards or the end of the GART backwards. Arguments: StartIndex - Supplies the first GART pte to search EndPte - Supplies the last GART to search (inclusive) Length - Supplies the number of contiguous free entries to search for. SearchBackward - TRUE indicates that the search should begin at EndPte and search backwards. FALSE indicates that the search should begin at StartPte and search forwards SearchState - Supplies the PTE state to look for. Return Value: Pointer to the first PTE in the GART if a suitable range is found. NULL if no suitable range exists. --*/ { PGART_PTE Current; PGART_PTE Last; LONG Delta; ULONG Found; PGART_PTE Candidate; PAGED_CODE(); ASSERT(EndPte >= StartPte); ASSERT(Length <= (ULONG)(EndPte - StartPte + 1)); ASSERT(Length != 0); if (SearchBackward) { Current = EndPte; Last = StartPte-1; Delta = -1; } else { Current = StartPte; Last = EndPte+1; Delta = 1; } Found = 0; while (Current != Last) { if (Current->Soft.State == SearchState) { if (++Found == Length) { // // A suitable range was found, return it // if (SearchBackward) { return(Current); } else { return(Current - Length + 1); } } } else { Found = 0; } Current += Delta; } // // A suitable range was not found. // return(NULL); } VOID Agp440SetGTLB_Enable( IN PAGP440_EXTENSION AgpContext, IN BOOLEAN Enable ) /*++ Routine Description: Enables or disables the GTLB by setting or clearing the GTLB_Enable bit in the AGPCTRL register Arguments: AgpContext - Supplies the AGP context Enable - TRUE, GTLB_Enable is set to 1 FALSE, GTLB_Enable is set to 0 Return Value: None --*/ { AGPCTRL AgpCtrl; Read440Config(&AgpCtrl, AGPCTRL_OFFSET, sizeof(AgpCtrl)); if (Enable) { AgpCtrl.GTLB_Enable = 1; } else { AgpCtrl.GTLB_Enable = 0; } Write440Config(&AgpCtrl, AGPCTRL_OFFSET, sizeof(AgpCtrl)); } VOID AgpFindFreeRun( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT ULONG *FreePages, OUT ULONG *FreeOffset ) /*++ Routine Description: Finds the first contiguous run of free pages in the specified part of the reserved range. Arguments: AgpContext - Supplies the AGP context AgpRange - Supplies the AGP range NumberOfPages - Supplies the size of the region to be searched for free pages OffsetInPages - Supplies the start of the region to be searched for free pages FreePages - Returns the length of the first contiguous run of free pages FreeOffset - Returns the start of the first contiguous run of free pages Return Value: None. FreePages == 0 if there are no free pages in the specified range. --*/ { PGART_PTE Pte; ULONG i; Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages; // // Find the first free PTE // for (i=0; iByteCount); Pages = (PULONG)(Mdl + 1); Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages; for (i=0; i> AGP_FLAG_SET_RATE_SHIFT)); if (!NT_SUCCESS(Status)) { return Status; } } // // Add more tweaks here... // AgpContext->SpecialTarget |= DeviceFlags; return STATUS_SUCCESS; } NTSTATUS Agp440SetRate( IN PAGP440_EXTENSION AgpContext, IN ULONG AgpRate ) /*++ Routine Description: This routine sets the AGP rate Arguments: AgpContext - Supplies the AGP context AgpRate - Rate to set Return Value: STATUS_SUCCESS, or error status --*/ { NTSTATUS Status; ULONG TargetEnable; ULONG MasterEnable; PCI_AGP_CAPABILITY TargetCap; PCI_AGP_CAPABILITY MasterCap; BOOLEAN ReverseInit; // // Read capabilities // Status = AgpLibGetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibGetPciDeviceCapability " "failed %08lx\n", Status)); return Status; } Status = AgpLibGetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibGetMasterCapability " "failed %08lx\n", Status)); return Status; } // // Verify the requested rate is supported by both master and target // if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) { return STATUS_INVALID_PARAMETER; } // // Disable AGP while the pull the rug out from underneath // TargetEnable = TargetCap.AGPCommand.AGPEnable; TargetCap.AGPCommand.AGPEnable = 0; Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; } MasterEnable = MasterCap.AGPCommand.AGPEnable; MasterCap.AGPCommand.AGPEnable = 0; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); return Status; } // // Fire up AGP with new rate // ReverseInit = (AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) == AGP_FLAG_REVERSE_INITIALIZATION; if (ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } } TargetCap.AGPCommand.Rate = AgpRate; TargetCap.AGPCommand.AGPEnable = TargetEnable; Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; } if (!ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } } return Status; }