/* -------------------------------------------------------------------- */ /* */ /* Copyright (c) 1991-1999 by Andrew Kadatch */ /* */ /* -------------------------------------------------------------------- */ #include "xprs.h" #define MAX_CHAIN 9 // Zobrist hashing #define Z_HASH_SIZE_LOG (BUFF_SIZE_LOG - 1) #define Z_HASH_SIZE (1 << Z_HASH_SIZE_LOG) #define Z_HASH_SUM(b) (z_hash_map[0][b[0]] ^ z_hash_map[1][b[1]] ^ z_hash_map[2][b[2]]) // quick hashing #define Q_HASH_SH1 3 #define Q_HASH_SH2 (Q_HASH_SH1 >> 1) #define Q_HASH_SUM3(c1,c2,c3) (((c1) << Q_HASH_SH1) + ((c2) << Q_HASH_SH2) + (c3)) #define Q_HASH_SUM(b) Q_HASH_SUM3 (b[0], b[1], b[2]) #define Q_HASH_SIZE (Q_HASH_SUM3 (255, 255, 255) + 1) #define z_hash_t uint16 #define z_index_t uint16 #if CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) typedef struct huff_node_t huff_node; struct huff_node_t { huff_node *son[2]; uxint freq; uint16 ch; uint16 bits; }; typedef struct { huff_node buff[2 * HUFF_SIZE], *head[256], **link[256]; } huff_info; #endif typedef struct { struct { #if CODING == CODING_BY_BIT xint bits; uchar *ptr; #elif CODING & (CODING_DIRECT | CODING_DIRECT2) uchar *ptr; #elif CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) uxint freq[HUFF_SIZE]; uxint mask[HUFF_SIZE]; uchar bits[HUFF_SIZE]; huff_info info; uxint pointers; uxint extra; uxint masks; #endif /* CODING */ } stat; xint chain; xint max_size; struct { uchar *beg; uchar *ptr; } comp; struct { z_index_t *hash; uchar *beg; uchar *ptr; uchar *tag_ptr; tag_t tag_mask; } temp; struct { xint len; xint pos; } match; struct { xint pos; xint size; xint stop; xint progress; const uchar *ptr; const uchar *end; const uchar *end_16; const uchar *end_3; const uchar *ptr_stop; } orig; } context; #define v p[-1].c typedef struct { union { z_index_t z_next[16]; const uchar *q_last[16]; } x; context c; } prs; #define MAGIC_ENCODE 0x53E7C0DE typedef struct { int magic; void *memory; prs *p; uchar *temp; unsigned max_size; int chain; } xpress_info; #if MAX_CHAIN >= 1 static z_hash_t z_hash_map[MIN_MATCH][256]; static int z_hash_map_initialized = 0; static void z_hash_map_init (void) { long v1, v2; z_hash_t *m; if (z_hash_map_initialized) return; v1 = 0x13579bdfL; v2 = 0x87654321L; for (m = z_hash_map[0]; m < z_hash_map[0] + sizeof (z_hash_map) / sizeof (z_hash_map[0][0]); ++m) { long vv1 = v2, vv2 = v1, d = 0; xint i = 32; do { d += 0x9e3779b9L; vv1 += d; vv2 += d; v1 += ((v2<<3) + vv1) ^ (v2 + d) ^ ((v2>>5) + vv2); v2 += ((v1<<3) + vv2) ^ (v1 + d) ^ ((v1>>5) + vv1); --i; } while (i); *m = (z_hash_t) ((v1 += v2) & (Z_HASH_SIZE - 1)); } z_hash_map_initialized = 1; } static void z_hash_insert (prs *p) { const uchar *b, *e; xint n, h; z_index_t *hash = v.temp.hash; e = v.orig.end - (MIN_MATCH-1); b = v.orig.ptr; n = 0; for (; b < e; ++b, ++n) { h = Z_HASH_SUM (b); p->x.z_next[n] = hash[h]; hash[h] = (z_index_t) n; } e += MIN_MATCH-1; for (; b < e; ++b, ++n) p->x.z_next[n] = 0; } #endif #if CODING != CODING_BY_BIT static void tag_write_start (prs *p) { v.temp.tag_ptr = v.temp.ptr; v.temp.ptr += sizeof (v.temp.tag_mask); v.temp.tag_mask = 1; } #if CODING == CODING_HUFF_ALL #define INC_MASKS ++v.stat.masks #else #define INC_MASKS #endif #define tag_write(p,ptr,n) \ { \ tag_t __n = n | (v.temp.tag_mask << 1); \ if (v.temp.tag_mask < 0) \ { \ *(__unaligned tag_t *) v.temp.tag_ptr = __n; \ v.temp.tag_ptr = ptr; \ ptr += sizeof (v.temp.tag_mask); \ INC_MASKS; \ __n = 1; \ } \ v.temp.tag_mask = __n; \ } static void tag_write_finish (prs *p) { uchar *ptr = v.temp.ptr; do { tag_write (p, ptr, 1); } while (ptr == v.temp.ptr); } #elif CODING == CODING_BY_BIT static void tag_write_start (prs *p) { v.temp.tag_ptr = (uchar *) &v.temp.tag_mask; v.temp.tag_mask = 0; v.stat.bits = 0; } #define tag_write(p,ptr,n) do { \ if (--v.stat.bits < 0) \ { \ *(__unaligned tag_t *)v.temp.tag_ptr = v.temp.tag_mask; \ v.temp.tag_mask = n; \ v.stat.bits = 8 * sizeof (v.temp.tag_mask) - 1; \ v.temp.tag_ptr = ptr; \ ptr += sizeof (v.temp.tag_mask); \ } \ v.temp.tag_mask = (v.temp.tag_mask << 1) + (n); \ } while (0) #define tag_write_mask(p,ptr,n,b) do { \ if ((v.stat.bits -= (b)) < 0) \ { \ *(__unaligned tag_t *)v.temp.tag_ptr = (v.temp.tag_mask << ((b) + v.stat.bits)) \ + ((n) >> (-v.stat.bits)); \ v.stat.bits += 8 * sizeof (v.temp.tag_mask); \ v.temp.tag_mask = (n); \ v.temp.tag_ptr = ptr; \ ptr += sizeof (v.temp.tag_mask); \ } \ else \ v.temp.tag_mask = (v.temp.tag_mask << (b)) + (n); \ } while (0); static void tag_write_finish (prs *p) { do tag_write (p, v.temp.ptr, 1); while (v.stat.bits != 0); *(__unaligned tag_t *)v.temp.tag_ptr = v.temp.tag_mask; } #define write_lit(p,ptr,ch) do { \ tag_write (p, ptr, 0); \ *ptr++ = (ch); \ } while (0) INLINE uchar *write_ptr (prs *p, uchar *ptr, xint offset, xint length) { uxint k; --offset; k = 2; if (offset > 255) k = 3; tag_write_mask (p, ptr, k, 2); *ptr++ = (uchar) offset; if (offset > 255) *ptr++ = (uchar) (offset >>= 8); if (length <= 8) { length -= MIN_MATCH - 1; tag_write_mask (p, ptr, 1, length); } else { tag_write_mask (p, ptr, 0, (9 - MIN_MATCH)); if ((length -= 9) < 15) { if (v.stat.ptr == 0) { v.stat.ptr = ptr; *ptr++ = (uchar) length; } else { v.stat.ptr[0] |= length << 4; v.stat.ptr = 0; } } else { length -= 15; if (v.stat.ptr == 0) { v.stat.ptr = ptr; *ptr++ = 15; } else { v.stat.ptr[0] += 0xf0; v.stat.ptr = 0; } *ptr++ = (uchar) length; if (length >= 255) { ptr[-1] = 255; ptr[0] = (uchar) length; ptr[1] = (uchar) (length >>= 8); ptr += 2; } } } return (ptr); } #endif #if CODING & (CODING_DIRECT | CODING_DIRECT2) #define write_lit(p,ptr,ch) do { \ *ptr++ = (ch); \ tag_write (p, ptr, 0); \ } while (0) INLINE uchar *write_ptr (prs *p, uchar *ptr, int offset, int length) { length -= MIN_MATCH; --offset; #if CODING == CODING_DIRECT2 offset <<= DIRECT2_LEN_LOG; if (length < DIRECT2_MAX_LEN) { offset |= length; ptr[0] = (uchar) offset; ptr[1] = (uchar) (offset >>= 8); ptr += 2; } else { offset |= DIRECT2_MAX_LEN; length -= DIRECT2_MAX_LEN; ptr[0] = (uchar) offset; ptr[1] = (uchar) (offset >>= 8); ptr += 2; if (v.stat.ptr == 0) { v.stat.ptr = ptr; *ptr++ = (uchar) (length < 15 ? length : 15); } else { v.stat.ptr[0] |= (uchar) ((length < 15 ? length : 15) << 4); v.stat.ptr = 0; } if ((length -= 15) >= 0) { *ptr++ = (uchar) length; if (length >= 255) { ptr[-1] = 255; length += DIRECT2_MAX_LEN + 15; ptr[0] = (uchar) length; ptr[1] = (uchar) (length >>= 8); ptr += 2; } } } #elif CODING == CODING_DIRECT if (v.stat.ptr == 0) { if (length < 7) { length <<= 5; v.stat.ptr = ptr; short_len: ptr[0] = (uchar) length; ptr[1] = (uchar) offset; ptr += 2; if (offset > 255) { ptr[0] = (uchar) (offset >>= 8); ptr[-2] = (uchar) (length += 16); ptr += 1; } } else if (length < 15 + 7) { length += (14 << 4) - 7; goto short_len; } else { if (offset > 255) ptr[0] = 0xff; else ptr[0] = 0xef; long_len: ptr[1] = (uchar) (length -= (7 + 15)); ptr += 2; if (length >= 255) { length += 7 + 15; ptr[-1] = 255; ptr[0] = (uchar) (length); ptr[1] = (uchar) (length >>= 8); ptr += 2; } *ptr++ = (uchar) offset; if (offset > 255) *ptr++ = (uchar) (offset >>= 8); } } else { if (length < 7) { length |= v.stat.ptr[0]; *ptr++ = (uchar) offset; if (offset > 255) { *ptr++ = (uchar) (offset >>= 8); length |= 8; } v.stat.ptr[0] = (uchar) length; v.stat.ptr = 0; } else if (length < 15 + 7) { length -= 7; ptr[1] = (uchar) offset; ptr[0] = (uchar) (length <<= 4); if (offset > 255) { v.stat.ptr[0] |= 15; v.stat.ptr = ptr; ptr[2] = (uchar) (offset >>= 8); ptr += 3; } else { v.stat.ptr[0] |= 7; v.stat.ptr = ptr; ptr += 2; } } else { if (offset > 255) v.stat.ptr[0] |= 15; else v.stat.ptr[0] |= 7; v.stat.ptr = ptr; ptr[0] = 15 << 4; goto long_len; } } #endif /* CODING */ tag_write (p, ptr, 1); return (ptr); } #elif CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) #if CODING == CODING_HUFF_ALL #define write_lit(p,ptr,ch) do { \ ++v.stat.freq[*ptr++ = (ch)]; \ tag_write (p, ptr, 0); \ } while (0) #else #define write_lit(p,ptr,ch) do { \ *ptr++ = (ch); \ tag_write (p, ptr, 0); \ } while (0) #endif #define BIOWR(mask,bits) { \ assert (((mask) >> (bits)) == 0); \ if ((Bits -= (bits)) < 0) \ { \ *(__unaligned bitmask2 *)Ptr1 = (bitmask2) ((Mask << (Bits + (bits))) \ + ((mask) >> (-Bits))); \ Mask = (mask); \ Bits += sizeof (ubitmask2) * 8; \ Ptr1 = Ptr2; \ Ptr2 = (ubitmask2 *) ptr; \ ptr += sizeof (ubitmask2); \ } \ else \ Mask = (Mask << (bits)) + (mask); \ } #if CODING == CODING_HUFF_LEN INLINE uchar *write_ptr (prs *p, uchar *ptr, int offset, int length) { xint k; ++v.stat.pointers; length -= MIN_MATCH; --offset; k = 0; if (offset > 255) k = 1; if (length < MAX_LENGTH - 1) ++v.stat.freq[*ptr++ = (uchar) (k |= length << 1)]; else { length -= MAX_LENGTH - 1; ++v.stat.freq[ptr[0] = (uchar) (k |= (MAX_LENGTH - 1) << 1)]; ptr[1] = (uchar) length; ptr += 2; if (length >= 255) { ptr[-1] = 255; length += MAX_LENGTH - 1; ptr[0] = (uchar) length; ptr[1] = (uchar) (length >>= 8); ptr += 2; } } *ptr++ = (uchar) offset; if (offset > 255) *ptr++ = (uchar) (offset >>= 8); tag_write (p, ptr, 1); return (ptr); } static void encode_pass2 (prs *p) { xint Bits; ubitmask4 Mask; ubitmask2 *Ptr1, *Ptr2; tag_t bmask; uchar *src = v.temp.beg; uchar *ptr = v.comp.ptr; uxint k; Ptr1 = (ubitmask2 *) ptr; ptr += sizeof (ubitmask2); Ptr2 = (ubitmask2 *) ptr; ptr += sizeof (ubitmask2); Mask = 0; Bits = 8 * sizeof (ubitmask2); bmask = 0; goto start; next: if (bmask >= 0) { bmask <<= 1; copy_byte: *ptr++ = *src++; goto next; } if ((bmask <<= 1) == 0) { start: *(__unaligned tag_t *)ptr = bmask = *(__unaligned tag_t *)src; src += sizeof (tag_t); ptr += sizeof (tag_t); if (bmask >= 0) { bmask = (bmask << 1) + 1; goto copy_byte; } bmask = (bmask << 1) + 1; } if (src >= v.temp.ptr) goto done; k = *src++; assert (k < HUFF_SIZE); BIOWR (v.stat.mask[k], v.stat.bits[k]); if (k >= ((MAX_LENGTH - 1) << 1)) { if ((*ptr++ = *src++) == 255) { ptr[0] = src[0]; ptr[1] = src[1]; src += 2; ptr += 2; } } *ptr++ = *src++; if (k & 1) *ptr++ = *src++; goto next; done: *Ptr1 = (ubitmask2) (Mask <<= Bits); *Ptr2 = 0; v.comp.ptr = ptr; assert (src == v.temp.ptr); } #elif CODING & (CODING_HUFF_PTR | CODING_HUFF_ALL) #define MAX_BITNO_LOG 8 #define MAX_BITNO (1 << MAX_BITNO_LOG) static uchar bitno_table[MAX_BITNO]; static int bitno_table_initialized = 0; static void bitno_init (void) { int i, k, n; if (bitno_table_initialized) return; bitno_table[0] = 255; for (i = 0; i < MAX_BITNO_LOG; ++i) { for (n = (k = 1<> (MAX_BITNO_LOG*2)) == 0); if (n >= MAX_BITNO) return (bitno_table[n >> MAX_BITNO_LOG] + MAX_BITNO_LOG); return (bitno_table[n]); } #if CODING == CODING_HUFF_ALL #define CODING_ADJUST(n) (256 + (n)) #else #define CODING_ADJUST(n) (n) #endif INLINE uchar *write_ptr (prs *p, uchar *ptr, int offset, int length) { xint k; k = bitno (offset); length -= MIN_MATCH; offset ^= 1 << k; v.stat.pointers += 2; v.stat.extra += k; k <<= MAX_LENGTH_LOG; if (length < MAX_LENGTH - 1) { k |= length; *ptr++ = (uchar) k; ++v.stat.freq[CODING_ADJUST (k)]; } else { k |= MAX_LENGTH - 1; length -= MAX_LENGTH - 1; ptr[0] = (uchar) k; ++v.stat.freq[CODING_ADJUST (k)]; ptr[1] = (uchar) length; ptr += 2; if (length >= 255) { length += MAX_LENGTH - 1; ptr[-1] = 255; ptr[0] = (uchar) length; ptr[1] = (uchar) (length >>= 8); ptr += 2; } } *ptr++ = (uchar) offset; if (k >= (9 << MAX_LENGTH_LOG)) { v.stat.pointers += 1; *ptr++ = (uchar) (offset >>= 8); } tag_write (p, ptr, 1); return (ptr); } static void encode_pass2 (prs *p) { xint Bits; uxint Mask; ubitmask2 *Ptr1, *Ptr2; tag_t bmask; uchar *src = v.temp.beg; uchar *ptr = v.comp.ptr; uxint k; Ptr1 = (ubitmask2 *) ptr; ptr += sizeof (ubitmask2); Ptr2 = (ubitmask2 *) ptr; ptr += sizeof (ubitmask2); Mask = 0; Bits = 8 * sizeof (ubitmask2); bmask = 0; goto start; next: if (bmask >= 0) { bmask <<= 1; copy_byte: #if CODING == CODING_HUFF_ALL k = *src++; BIOWR (v.stat.mask[k], v.stat.bits[k]); #elif CODING == CODING_HUFF_PTR *ptr++ = *src++; #endif goto next; } if ((bmask <<= 1) == 0) { start: bmask = *(__unaligned tag_t *)src; src += sizeof (tag_t); #if CODING == CODING_HUFF_PTR *(__unaligned tag_t *)ptr = bmask; ptr += sizeof (tag_t); #endif if (bmask >= 0) { bmask = (bmask << 1) + 1; goto copy_byte; } bmask = (bmask << 1) + 1; } if (src >= v.temp.ptr) goto done; k = *src++; assert (k < HUFF_SIZE); BIOWR (v.stat.mask[CODING_ADJUST (k)], v.stat.bits[CODING_ADJUST (k)]); if ((k & (MAX_LENGTH - 1)) == MAX_LENGTH - 1) { if ((*ptr++ = *src++) == 255) { ptr[0] = src[0]; ptr[1] = src[1]; src += 2; ptr += 2; } } k >>= MAX_LENGTH_LOG; { uxint m = *src++; if (k > 8) m += *src++ << 8; BIOWR (m, k); } goto next; done: #if CODING == CODING_HUFF_ALL BIOWR (v.stat.mask[CODING_ADJUST(0)], v.stat.bits[CODING_ADJUST(0)]); #endif *Ptr1 = (ubitmask2) (Mask <<= Bits); *Ptr2 = 0; v.comp.ptr = ptr; assert (src == v.temp.ptr); } #endif /* ------------------ Create canonical Huffman code ------------------- */ /* ----------------------------- */ #define MAX_ALPHABET HUFF_SIZE static void huffman_create_codes (huff_info *info, uxint *freq, xint n, uxint *mask, uchar *length, uxint maxbits, uchar *encoded, uxint *total) { huff_node *p, *q, *r, *first_sorted, *first_free; xint i, k; assert ((uxint) (n-1) <= (MAX_ALPHABET-1)); /* honestly it is easy enough to create Huffman code in-place */ /* but the use of explicit data structures makes code simpler */ /* clean everything up */ memset (length, 0, sizeof (length[0]) * n); memset (encoded, 0, (n + 1) >> 1); if (mask != 0 && mask != freq) memset (mask, 0, sizeof (mask[0]) * n); /* store frequencies */ p = info->buff; for (i = 0; i < n; ++i) { if ((p->freq = freq[i]) != 0) { p->son[0] = p+1; p->son[1] = 0; p->ch = (uint16) i; ++p; } } /* handle simple case */ *total = 0; if (p <= info->buff + 1) { if (p == info->buff) /* if no symbols do nothing */ return; i = p[-1].ch; /* single symbol code */ mask[i] = 0; encoded[i >> 1] = 0x11; /* two symbols has 1-bit length */ return; } first_free = p; /* store location of first unused node */ p[-1].son[0] = 0; /* terminate the list */ /* radix sort the list by frequency */ p = info->buff; /* head of the list */ /* initialize */ for (n = 0; n < 256; ++n) *(info->link[n] = info->head + n) = 0; for (i = 0; i < (BUFF_SIZE_LOG <= 16 ? 16 : 32); i += 8) { /* link node to the end of respective bucket */ do { n = (p->freq >> i) & 0xff; info->link[n][0] = p; info->link[n] = p->son; } while ((p = p->son[0]) != 0); /* merge buckets into single list */ n = 0; while (info->head[n] == 0) ++n; p = info->head[n]; info->head[k = n] = 0; while (++n < 256) { if (info->head[n] == 0) continue; info->link[k][0] = info->head[n]; info->link[k] = info->head + k; info->head[n] = 0; k = n; } info->link[k][0] = 0; info->link[k] = info->head + k; } first_sorted = p; /* store head of sorted symbol's list */ restart: assert (p == first_sorted); q = first_free; r = q - 1; while (p != 0 || q != r) { ++r; /* select left subtree */ assert (q <= r && (p != 0 || q != r)); if (p == 0 || (q != r && p->freq > q->freq)) { r->son[0] = q; r->freq = q->freq; ++q; } else { r->son[0] = p; r->freq = p->freq; p = p->son[0]; } /* select right subtree */ assert (q <= r && (p != 0 || q != r)); if (p == 0 || (q != r && p->freq > q->freq)) { r->son[1] = q; r->freq += q->freq; ++q; } else { r->son[1] = p; r->freq += p->freq; p = p->son[0]; } } /* evaluate codewords' length */ i = -1; /* stack pointer */ n = 0; /* current tree depth */ p = r; /* current subtree root */ for (;;) { while (p->son[1] != 0) { /* put right son into stack and set up its depth */ (info->head[++i] = p->son[1])->bits = (uint16) (++n); (p = p->son[0])->bits = (uint16) n; } length[p->ch] = (uchar) n; if (i < 0) break; /* nothing's in stack */ n = (p = info->head[i--])->bits; } p = first_sorted; #if DEBUG for (q = p; (r = q->son[0]) != 0; q = r) assert (q->bits >= r->bits); #endif if (p->bits > maxbits) { assert (p == first_sorted); q = p; do q->freq = (q->freq + 1) >> 1; while ((q = q->son[0]) != 0); goto restart; } /* now sort symbols in a stable way by increasing codeword length */ /* initialize */ memset (info->head, 0, sizeof (info->head[0]) * 32); for (n = 0; n < 32; ++n) info->link[n] = info->head + n; /* link node to the end of respective bucket */ p = info->buff; do { n = p->bits; info->link[n][0] = p; info->link[n] = p->son; } while (++p != first_free); /* merge buckets into single list */ n = 0; while (info->head[n] == 0) ++n; p = info->head[n]; k = n; while (++n < 32) { if (info->head[n] == 0) continue; info->link[k][0] = info->head[n]; k = n; } info->link[k][0] = 0; #if DEBUG for (q = p; (r = q->son[0]) != 0; q = r) assert (r->bits > q->bits || (r->bits == q->bits && r->ch > q->ch)); #endif /* set up code masks */ if (mask == freq) memset (mask, 0, sizeof (mask[0]) * n); n = 0; /* mask */ i = 1; /* bit length */ k = 1; /* first index */ do { /* sum a[i] * b[i] may be evaluated without multiplications */ /* using O(B) memory and O(N+B) time if 0 <= b[i] < B */ *total += freq[p->ch] * p->bits; encoded[p->ch >> 1] |= p->bits << (p->ch & 1 ? 4 : 0); mask[p->ch] = (n <<= p->bits - i); i = p->bits; ++n; } while ((p = p->son[0]) != 0); } #endif /* CODING */ #define CHAIN 0 #define encode_pass1 encode0_pass1 #include "xencode.i" #if MAX_CHAIN >= 1 #define CHAIN 1 #define encode_pass1 encode1_pass1 #define find_match find_match1 #include "xencode.i" #endif #if MAX_CHAIN >= 2 #define CHAIN 2 #define encode_pass1 encode2_pass1 #define find_match find_match2 #include "xencode.i" #endif #if MAX_CHAIN >= 3 #define CHAIN 3 #define encode_pass1 encodeN_pass1 #define find_match find_matchN #include "xencode.i" #endif typedef void encode_pass1_proc (prs *p); static void encode_pass1_progress ( prs *p, encode_pass1_proc *encode_pass1, XpressProgressFn *ProgressFn, // NULL or progress callback void *ProgressContext, // user-defined context that will be passed to ProgressFn int ProgressSize // call ProgressFn each time ProgressSize bytes processed ) { xint stop; if (ProgressFn == 0) { encode_pass1 (p); return; } stop = v.orig.stop; for (;;) { if (v.orig.pos - v.orig.progress >= ProgressSize) { #if CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) ProgressFn (ProgressContext, v.orig.ptr); #else ProgressFn (ProgressContext, (v.orig.pos * 15) >> 4); #endif v.orig.progress = v.orig.pos; } v.orig.stop = stop; if (v.orig.pos >= stop) break; if (stop - v.orig.progress > ProgressSize) v.orig.stop = v.orig.progress + ProgressSize; assert (v.orig.stop > v.orig.pos); encode_pass1 (p); } } int XPRESS_CALL XpressEncode ( XpressEncodeStream stream, void *comp, int comp_size, const void *orig, int orig_size, XpressProgressFn *ProgressFn, // NULL or progress callback void *ProgressContext, // user-defined context that will be passed to ProgressFn int ProgressSize // call ProgressFn each time ProgressSize bytes processed ) { #if CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) uchar huff_buff [HUFF_SIZE >> 1]; uxint huff_total; #endif uxint c_size; prs *p; xpress_info *info = (xpress_info *) stream; encode_pass1_proc *encode_pass1; if (info == 0 || info->magic != MAGIC_ENCODE) return (0); if ((unsigned) (orig_size-1) > info->max_size || orig_size <= MIN_SIZE || comp_size < MIN_SIZE || comp == 0 || orig == 0) { return (orig_size); } p = info->p; memset (&v, 0, sizeof (v)); v.temp.hash = (z_index_t *) (v.temp.ptr = info->temp); v.chain = info->chain; v.orig.end = (v.orig.ptr = orig) + (v.orig.size = v.orig.stop = orig_size); v.orig.end_16 = v.orig.end - 16; v.orig.end_3 = v.orig.end - MIN_MATCH; v.comp.ptr = v.comp.beg = comp; v.orig.pos = 0; v.temp.beg = v.temp.ptr; encode_pass1 = encode0_pass1; if (v.chain <= 0) memset ((void *) (&p->x.q_last[0]), 0, Q_HASH_SIZE * sizeof (p->x.q_last[0])); #if MAX_CHAIN >= 1 else if (v.chain == 1) { encode_pass1 = encode1_pass1; memset ((void *) (&p->x.z_next[0]), 0, Z_HASH_SIZE * sizeof (p->x.z_next[0])); } #if MAX_CHAIN >= 2 else { encode_pass1 = encode2_pass1; #if MAX_CHAIN >= 3 if (v.chain >= 3) encode_pass1 = encodeN_pass1; #endif memset (v.temp.hash, 0, sizeof (v.temp.hash[0]) * Z_HASH_SIZE); z_hash_insert (p); } #endif #endif if (ProgressSize <= 0 || ProgressSize > orig_size) ProgressSize = orig_size; if (ProgressFn != 0) ProgressFn (ProgressContext, v.orig.progress = 0); #if CODING & (CODING_DIRECT | CODING_DIRECT2 | CODING_BY_BIT) v.temp.beg = v.temp.ptr = v.comp.ptr; tag_write_start (p); for (;;) { xint rest = comp_size - (xint) (v.temp.ptr - v.comp.beg) - 2 * sizeof (tag_t); rest -= (rest + 7) >> 3; if (rest <= (xint) (2 * sizeof (tag_t) + 8)) goto no_compression; if (v.orig.pos >= v.orig.size) break; v.orig.stop = v.orig.pos + rest; if (v.orig.stop > v.orig.size - 8) { v.orig.stop = v.orig.size - 8; if (v.orig.pos >= v.orig.stop) break; } encode_pass1_progress (p, encode_pass1, ProgressFn, ProgressContext, ProgressSize); } #else v.orig.stop -= 7; tag_write_start (p); encode_pass1_progress (p, encode_pass1, ProgressFn, ProgressContext, ProgressSize); #endif while (v.orig.pos < v.orig.size) { write_lit (p, v.temp.ptr, v.orig.ptr[v.orig.pos]); ++v.orig.pos; } tag_write_finish (p); #if CODING & (CODING_DIRECT | CODING_DIRECT2 | CODING_BY_BIT) c_size = (xint) (v.temp.ptr - v.temp.beg); #elif CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) if (v.stat.pointers == 0) goto no_compression; #if CODING == CODING_HUFF_ALL ++v.stat.freq[CODING_ADJUST(0)]; #endif huffman_create_codes ( &v.stat.info, v.stat.freq, HUFF_SIZE, v.stat.mask, v.stat.bits, 15, huff_buff, &huff_total); c_size = huff_total; #if CODING & (CODING_HUFF_PTR | CODING_HUFF_ALL) c_size += v.stat.extra; #endif if (c_size == 0) c_size = 1; c_size = (((c_size - 1) & ~(sizeof (bitmask2) * 8 - 1)) >> 3); c_size += (int) (v.temp.ptr - v.temp.beg) - v.stat.pointers + 4 + sizeof (huff_buff); #if CODING == CODING_HUFF_ALL for (huff_total = 0; huff_total < 256; ++huff_total) c_size -= v.stat.freq[huff_total]; c_size -= v.stat.masks * sizeof (tag_t); #endif #endif /* CODING */ if (c_size >= (uxint) comp_size) { no_compression: comp_size = orig_size; } else { #if CODING & (CODING_HUFF_LEN | CODING_HUFF_PTR | CODING_HUFF_ALL) memcpy (v.comp.ptr, huff_buff, sizeof (huff_buff)); v.comp.ptr += sizeof (huff_buff); encode_pass2 (p); #elif CODING & (CODING_BY_BIT | CODING_DIRECT | CODING_DIRECT2) v.comp.ptr += c_size; #else #error Unknown CODING #endif comp_size = (int) (v.comp.ptr - v.comp.beg); #if DEBUG if (c_size != (uxint) comp_size) printf ("error: c_size = %d, comp_size = %d\n", c_size, comp_size); #endif } if (ProgressFn != 0) ProgressFn (ProgressContext, orig_size); return (comp_size); } #define ALIGN 32 XpressEncodeStream XPRESS_CALL XpressEncodeCreate (int orig_size, void *context, XpressAllocFn *AllocFn, int chain) { xpress_info *info; prs *p; uchar *b; int temp_size; int alloc_size; if (AllocFn == 0 || (unsigned) (orig_size-1) > (BUFF_SIZE-1)) return (0); #if CODING & (CODING_DIRECT | CODING_DIRECT2 | CODING_BY_BIT) temp_size = 0; #else temp_size = orig_size + ((orig_size + 7) >> 3); #endif alloc_size = sizeof (p->x.q_last[0]) * Q_HASH_SIZE; #if MAX_CHAIN <= 0 chain = 0; #else if (chain > MAX_CHAIN) chain = MAX_CHAIN; if (chain >= 1) { alloc_size = sizeof (p->x.z_next[0]) * Z_HASH_SIZE; #if MAX_CHAIN >= 2 if (chain >= 2) { alloc_size = sizeof (p->x.z_next[0]) * orig_size; if (temp_size < sizeof (v.temp.hash[0]) * Z_HASH_SIZE) temp_size = sizeof (v.temp.hash[0]) * Z_HASH_SIZE; } #endif } #endif temp_size = (temp_size + 256 + sizeof (*p)) & ~(ALIGN-1); alloc_size += temp_size + sizeof (*info) + ALIGN; b = AllocFn (context, alloc_size); if (b == 0) return (0); info = (xpress_info *) b; info->max_size = orig_size - 1; info->chain = chain; info->magic = MAGIC_ENCODE; info->memory = b; b = (uchar *) (info + 1); b += ALIGN - (((__int64) b) & (ALIGN-1)); info->p = p = ((prs *) (b + temp_size)); info->temp = b; #if MAX_CHAIN >= 1 z_hash_map_init (); #endif #if CODING & (CODING_HUFF_PTR | CODING_HUFF_ALL) bitno_init (); #endif return ((XpressEncodeStream) info); } void XPRESS_CALL XpressEncodeClose (XpressEncodeStream stream, void *context, XpressFreeFn *FreeFn) { xpress_info *info = (xpress_info *) stream; if (info != 0 && FreeFn != 0 && info->magic == MAGIC_ENCODE) { info->magic = 0; FreeFn (context, info->memory); } }