/******************************Module*Header*******************************\ * Module Name: fastfill.c * * Fills solid-coloured, unclipped, non-complex rectangles. * * Copyright (c) 1993-1994 Microsoft Corporation \**************************************************************************/ #include "precomp.h" #define RIGHT 0 #define LEFT 1 #define SWAP(a, b, tmp) { tmp = a; a = b; b = tmp; } typedef struct _EDGEDATA { LONG x; // Current x position LONG dx; // # pixels to advance x on each scan LONG lError; // Current DDA error LONG lErrorUp; // DDA error increment on each scan LONG lErrorDown; // DDA error adjustment POINTFIX* pptfx; // Points to start of current edge LONG dptfx; // Delta (in bytes) from pptfx to next point LONG cy; // Number of scans to go for this edge } EDGEDATA; /* ed, ped */ /******************************Public*Routine******************************\ * bFastFill * * Draws a non-complex, unclipped polygon. * * Returns TRUE if the polygon was drawn; FALSE if the polygon was complex. * \**************************************************************************/ BOOL bFastFill( PPDEV ppdev, LONG cEdges, // Includes close figure edge POINTFIX* pptfxFirst, ULONG ulHwMix, ULONG iSolidColor) { LONG yTrapezoid; // Top scan for next trapezoid LONG cyTrapezoid; // Number of scans in current trapezoid LONG yStart; // y-position of start point in current edge LONG dM; // Edge delta in FIX units in x direction LONG dN; // Edge delta in FIX units in y direction LONG i; POINTFIX* pptfxLast; // Points to the last point in the polygon array POINTFIX* pptfxTop; // Points to the top-most point in the polygon POINTFIX* pptfxOld; // Start point in current edge POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop LONG cScanEdges; // Number of edges scanned to find pptfxTop // (doesn't include the closefigure edge) LONG iEdge; LONG lQuotient; LONG lRemainder; EDGEDATA aed[2]; // DDA terms and stuff EDGEDATA* ped; pptfxScan = pptfxFirst; pptfxTop = pptfxFirst; // Assume for now that the first // point in path is the topmost pptfxLast = pptfxFirst + cEdges - 1; // 'pptfxScan' will always point to the first point in the current // edge, and 'cScanEdges' will the number of edges remaining, including // the current one: cScanEdges = cEdges - 1; // The number of edges, not counting close figure if ((pptfxScan + 1)->y > pptfxScan->y) { // Collect all downs: do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y); // Collect all ups: do { if (--cScanEdges == 0) goto SetUpForFillingCheck; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y); // Collect all downs: pptfxTop = pptfxScan; do { if ((pptfxScan + 1)->y > pptfxFirst->y) break; if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y); return(FALSE); } else { // Collect all ups: do { pptfxTop++; // We increment this now because we // want it to point to the very last // point if we early out in the next // statement... if (--cScanEdges == 0) goto SetUpForFilling; } while ((pptfxTop + 1)->y <= pptfxTop->y); // Collect all downs: pptfxScan = pptfxTop; do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y); // Collect all ups: do { if ((pptfxScan + 1)->y < pptfxFirst->y) break; if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y); return(FALSE); } SetUpForFillingCheck: // We check to see if the end of the current edge is higher // than the top edge we've found so far: if ((pptfxScan + 1)->y < pptfxTop->y) pptfxTop = pptfxScan + 1; SetUpForFilling: yTrapezoid = (pptfxTop->y + 15) >> 4; // We initialize the hardware for the colour, mix, pixel operation, // rectangle height of one, and the y position for the first scan: IO_FIFO_WAIT(ppdev, 5); IO_CUR_Y(ppdev, yTrapezoid); IO_FRGD_COLOR(ppdev, (INT) iSolidColor); IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | (WORD) ulHwMix); IO_PIX_CNTL(ppdev, ALL_ONES); IO_MIN_AXIS_PCNT(ppdev, 0); // Make sure we initialize the DDAs appropriately: aed[LEFT].cy = 0; aed[RIGHT].cy = 0; // For now, guess as to which is the left and which is the right edge: aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX); aed[RIGHT].dptfx = sizeof(POINTFIX); aed[LEFT].pptfx = pptfxTop; aed[RIGHT].pptfx = pptfxTop; NextEdge: // We loop through this routine on a per-trapezoid basis. for (iEdge = 1; iEdge >= 0; iEdge--) { ped = &aed[iEdge]; if (ped->cy == 0) { // Need a new DDA: do { cEdges--; if (cEdges < 0) return(TRUE); // Find the next left edge, accounting for wrapping: pptfxOld = ped->pptfx; ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx); if (ped->pptfx < pptfxFirst) ped->pptfx = pptfxLast; else if (ped->pptfx > pptfxLast) ped->pptfx = pptfxFirst; // Have to find the edge that spans yTrapezoid: ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid; // With fractional coordinate end points, we may get edges // that don't cross any scans, in which case we try the // next one: } while (ped->cy <= 0); // 'pptfx' now points to the end point of the edge spanning // the scan 'yTrapezoid'. dN = ped->pptfx->y - pptfxOld->y; dM = ped->pptfx->x - pptfxOld->x; ASSERTDD(dN > 0, "Should be going down only"); // Compute the DDA increment terms: if (dM < 0) { dM = -dM; if (dM < dN) // Can't be '<=' { ped->dx = -1; ped->lErrorUp = dN - dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder); ped->dx = -lQuotient; // - dM / dN ped->lErrorUp = lRemainder; // dM % dN if (ped->lErrorUp > 0) { ped->dx--; ped->lErrorUp = dN - ped->lErrorUp; } } } else { if (dM < dN) // Can't be '<=' { ped->dx = 0; ped->lErrorUp = dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder); ped->dx = lQuotient; // dM / dN ped->lErrorUp = lRemainder; // dM % dN } } ped->lErrorDown = dN; // DDA limit ped->lError = -1; // Error is initially zero (add dN - 1 for // the ceiling, but subtract off dN so that // we can check the sign instead of comparing // to dN) ped->x = pptfxOld->x; yStart = pptfxOld->y; if ((yStart & 15) != 0) { // Advance to the next integer y coordinate for (i = 16 - (yStart & 15); i != 0; i--) { ped->x += ped->dx; ped->lError += ped->lErrorUp; if (ped->lError >= 0) { ped->lError -= ped->lErrorDown; ped->x++; } } } if ((ped->x & 15) != 0) { ped->lError -= ped->lErrorDown * (16 - (ped->x & 15)); ped->x += 15; // We'll want the ceiling in just a bit... } // Chop off those fractional bits: ped->x >>= 4; ped->lError >>= 4; } } cyTrapezoid = min(aed[LEFT].cy, aed[RIGHT].cy); // # of scans in this trap aed[LEFT].cy -= cyTrapezoid; aed[RIGHT].cy -= cyTrapezoid; yTrapezoid += cyTrapezoid; // Top scan in next trap // If the left and right edges are vertical, simply output as // a rectangle: if (((aed[LEFT].lErrorUp | aed[RIGHT].lErrorUp) == 0) && ((aed[LEFT].dx | aed[RIGHT].dx) == 0) && (cyTrapezoid > 1)) { LONG lWidth; ContinueVertical: lWidth = aed[RIGHT].x - aed[LEFT].x - 1; if (lWidth >= 0) { IO_FIFO_WAIT(ppdev, 5); IO_MAJ_AXIS_PCNT(ppdev, lWidth); IO_MIN_AXIS_PCNT(ppdev, cyTrapezoid - 1); IO_CUR_X(ppdev, aed[LEFT].x); IO_CMD(ppdev, RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE); IO_MIN_AXIS_PCNT(ppdev, 0); } else if (lWidth == -1) { // If the rectangle was too thin to light any pels, we still // have to advance the y current position: IO_FIFO_WAIT(ppdev, 1); IO_CUR_Y(ppdev, yTrapezoid - cyTrapezoid + 1); } else { LONG lTmp; POINTFIX* pptfxTmp; SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp); SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp); SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp); SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; } goto NextEdge; } while (TRUE) { LONG lWidth; // The very first time through, make sure we set x: lWidth = aed[RIGHT].x - aed[LEFT].x - 1; if (lWidth >= 0) { IO_FIFO_WAIT(ppdev, 3); IO_MAJ_AXIS_PCNT(ppdev, lWidth); IO_CUR_X(ppdev, aed[LEFT].x); IO_CMD(ppdev, RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE); ContinueAfterZero: // Advance the right wall: aed[RIGHT].x += aed[RIGHT].dx; aed[RIGHT].lError += aed[RIGHT].lErrorUp; if (aed[RIGHT].lError >= 0) { aed[RIGHT].lError -= aed[RIGHT].lErrorDown; aed[RIGHT].x++; } // Advance the left wall: aed[LEFT].x += aed[LEFT].dx; aed[LEFT].lError += aed[LEFT].lErrorUp; if (aed[LEFT].lError >= 0) { aed[LEFT].lError -= aed[LEFT].lErrorDown; aed[LEFT].x++; } cyTrapezoid--; if (cyTrapezoid == 0) goto NextEdge; } else if (lWidth == -1) { IO_FIFO_WAIT(ppdev, 1); IO_CUR_Y(ppdev, yTrapezoid - cyTrapezoid + 1); goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we // should rarely get self-intersecting polygons (if we're slow, // the app gets what it deserves): LONG lTmp; POINTFIX* pptfxTmp; SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp); SWAP(aed[LEFT].dx, aed[RIGHT].dx, lTmp); SWAP(aed[LEFT].lError, aed[RIGHT].lError, lTmp); SWAP(aed[LEFT].lErrorUp, aed[RIGHT].lErrorUp, lTmp); SWAP(aed[LEFT].lErrorDown, aed[RIGHT].lErrorDown, lTmp); SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp); SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp); SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp); continue; } } }