/******************************Module*Header*******************************\ * Module Name: bitblt.c * * Contains the high-level DrvBitBlt and DrvCopyBits functions. The low- * level stuff lives in 'blt.c'. * * !!! Change note about 'iType' * * Note: Since we've implemented device-bitmaps, any surface that GDI passes * to us can have 3 values for its 'iType': STYPE_BITMAP, STYPE_DEVICE * or STYPE_DEVBITMAP. We filter device-bitmaps that we've stored * as DIBs fairly high in the code, so after we adjust its 'pptlSrc', * we can treat STYPE_DEVBITMAP surfaces the same as STYPE_DEVICE * surfaces (e.g., a blt from an off-screen device bitmap to the screen * gets treated as a normal screen-to-screen blt). So throughout * this code, we will compare a surface's 'iType' to STYPE_BITMAP: * if it's equal, we've got a true DIB, and if it's unequal, we have * a screen-to-screen operation. * * Copyright (c) 1992-1995 Microsoft Corporation * \**************************************************************************/ #include "precomp.h" /******************************Public*Data*********************************\ * Rop-needs-pattern table * * Determines if a rop2 needs uses a pattern. * * Use 'gabRopNeedsPattern[(rop3 >> 2) & 0xf]', but note that this can only * be done if it is known that the rop3 doesn't use a source. * \**************************************************************************/ BYTE gabRopNeedsPattern[] = { FALSE, // R2_BLACK TRUE, // R2_NOTMERGEPEN TRUE, // R2_MASKNOTPEN TRUE, // R2_NOTCOPYPEN TRUE, // R2_MASKPENNOT FALSE, // R2_NOT TRUE, // R2_XORPEN TRUE, // R2_NOTMASKPEN TRUE, // R2_MASKPEN TRUE, // R2_NOTXORPEN FALSE, // R2_NOP TRUE, // R2_MERGENOTPEN TRUE, // R2_COPYPEN TRUE, // R2_MERGEPENNOT TRUE, // R2_MERGEPEN FALSE, // R2_WHITE }; /******************************Public*Data*********************************\ * Mix-needs-pattern table * * Determines if a mix uses a pattern. * * Use 'gabMixNeedsPattern[mix & 0xf]' or 'gabMixNeedsPattern[mix & 0xff]'. * \**************************************************************************/ BYTE gabMixNeedsPattern[] = { FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F] FALSE, // R2_BLACK TRUE, // R2_NOTMERGEPEN TRUE, // R2_MASKNOTPEN TRUE, // R2_NOTCOPYPEN TRUE, // R2_MASKPENNOT FALSE, // R2_NOT TRUE, // R2_XORPEN TRUE, // R2_NOTMASKPEN TRUE, // R2_MASKPEN TRUE, // R2_NOTXORPEN FALSE, // R2_NOP TRUE, // R2_MERGENOTPEN TRUE, // R2_COPYPEN TRUE, // R2_MERGEPENNOT TRUE, // R2_MERGEPEN FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF] }; /******************************Public*Data*********************************\ * MIX translation table * * Translates a mix 1-16, into an old style Rop 0-255. * \**************************************************************************/ BYTE gaRop3FromMix[] = { 0xFF, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F] 0x00, // R2_BLACK 0x05, // R2_NOTMERGEPEN 0x0A, // R2_MASKNOTPEN 0x0F, // R2_NOTCOPYPEN 0x50, // R2_MASKPENNOT 0x55, // R2_NOT 0x5A, // R2_XORPEN 0x5F, // R2_NOTMASKPEN 0xA0, // R2_MASKPEN 0xA5, // R2_NOTXORPEN 0xAA, // R2_NOP 0xAF, // R2_MERGENOTPEN 0xF0, // R2_COPYPEN 0xF5, // R2_MERGEPENNOT 0xFA, // R2_MERGEPEN 0xFF // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF] }; #if DBG || !GDI_BANKING // This table is big, so we only use to aid in debugging... /******************************Public*Data*********************************\ * ROP3 translation table - Use only for debugging * * Translates the usual ternary rop into A-vector notation. Each bit in * this new notation corresponds to a term in a polynomial translation of * the rop. * * Rop(D,S,P) = a + a D + a S + a P + a DS + a DP + a SP + a DSP * 0 d s p ds dp sp dsp * \**************************************************************************/ BYTE gajRop3[] = { 0x00, 0xff, 0xb2, 0x4d, 0xd4, 0x2b, 0x66, 0x99, 0x90, 0x6f, 0x22, 0xdd, 0x44, 0xbb, 0xf6, 0x09, 0xe8, 0x17, 0x5a, 0xa5, 0x3c, 0xc3, 0x8e, 0x71, 0x78, 0x87, 0xca, 0x35, 0xac, 0x53, 0x1e, 0xe1, 0xa0, 0x5f, 0x12, 0xed, 0x74, 0x8b, 0xc6, 0x39, 0x30, 0xcf, 0x82, 0x7d, 0xe4, 0x1b, 0x56, 0xa9, 0x48, 0xb7, 0xfa, 0x05, 0x9c, 0x63, 0x2e, 0xd1, 0xd8, 0x27, 0x6a, 0x95, 0x0c, 0xf3, 0xbe, 0x41, 0xc0, 0x3f, 0x72, 0x8d, 0x14, 0xeb, 0xa6, 0x59, 0x50, 0xaf, 0xe2, 0x1d, 0x84, 0x7b, 0x36, 0xc9, 0x28, 0xd7, 0x9a, 0x65, 0xfc, 0x03, 0x4e, 0xb1, 0xb8, 0x47, 0x0a, 0xf5, 0x6c, 0x93, 0xde, 0x21, 0x60, 0x9f, 0xd2, 0x2d, 0xb4, 0x4b, 0x06, 0xf9, 0xf0, 0x0f, 0x42, 0xbd, 0x24, 0xdb, 0x96, 0x69, 0x88, 0x77, 0x3a, 0xc5, 0x5c, 0xa3, 0xee, 0x11, 0x18, 0xe7, 0xaa, 0x55, 0xcc, 0x33, 0x7e, 0x81, 0x80, 0x7f, 0x32, 0xcd, 0x54, 0xab, 0xe6, 0x19, 0x10, 0xef, 0xa2, 0x5d, 0xc4, 0x3b, 0x76, 0x89, 0x68, 0x97, 0xda, 0x25, 0xbc, 0x43, 0x0e, 0xf1, 0xf8, 0x07, 0x4a, 0xb5, 0x2c, 0xd3, 0x9e, 0x61, 0x20, 0xdf, 0x92, 0x6d, 0xf4, 0x0b, 0x46, 0xb9, 0xb0, 0x4f, 0x02, 0xfd, 0x64, 0x9b, 0xd6, 0x29, 0xc8, 0x37, 0x7a, 0x85, 0x1c, 0xe3, 0xae, 0x51, 0x58, 0xa7, 0xea, 0x15, 0x8c, 0x73, 0x3e, 0xc1, 0x40, 0xbf, 0xf2, 0x0d, 0x94, 0x6b, 0x26, 0xd9, 0xd0, 0x2f, 0x62, 0x9d, 0x04, 0xfb, 0xb6, 0x49, 0xa8, 0x57, 0x1a, 0xe5, 0x7c, 0x83, 0xce, 0x31, 0x38, 0xc7, 0x8a, 0x75, 0xec, 0x13, 0x5e, 0xa1, 0xe0, 0x1f, 0x52, 0xad, 0x34, 0xcb, 0x86, 0x79, 0x70, 0x8f, 0xc2, 0x3d, 0xa4, 0x5b, 0x16, 0xe9, 0x08, 0xf7, 0xba, 0x45, 0xdc, 0x23, 0x6e, 0x91, 0x98, 0x67, 0x2a, 0xd5, 0x4c, 0xb3, 0xfe, 0x01 }; #define AVEC_NOT 0x01 #define AVEC_D 0x02 #define AVEC_S 0x04 #define AVEC_P 0x08 #define AVEC_DS 0x10 #define AVEC_DP 0x20 #define AVEC_SP 0x40 #define AVEC_DSP 0x80 #define AVEC_NEED_SOURCE (AVEC_S | AVEC_DS | AVEC_SP | AVEC_DSP) #define AVEC_NEED_PATTERN (AVEC_P | AVEC_DP | AVEC_SP | AVEC_DSP) #define AVEC_NEED_DEST (AVEC_D | AVEC_DS | AVEC_DP | AVEC_DSP) #endif // DBG /******************************Public*Table********************************\ * BYTE gajLeftMask[] and BYTE gajRightMask[] * * Edge tables for vXferScreenTo1bpp. \**************************************************************************/ BYTE gajLeftMask[] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; BYTE gajRightMask[] = { 0xff, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe }; /******************************Public*Routine******************************\ * BOOL bIntersect * * If 'prcl1' and 'prcl2' intersect, has a return value of TRUE and returns * the intersection in 'prclResult'. If they don't intersect, has a return * value of FALSE, and 'prclResult' is undefined. * \**************************************************************************/ BOOL bIntersect( RECTL* prcl1, RECTL* prcl2, RECTL* prclResult) { prclResult->left = max(prcl1->left, prcl2->left); prclResult->right = min(prcl1->right, prcl2->right); if (prclResult->left < prclResult->right) { prclResult->top = max(prcl1->top, prcl2->top); prclResult->bottom = min(prcl1->bottom, prcl2->bottom); if (prclResult->top < prclResult->bottom) { return(TRUE); } } return(FALSE); } /******************************Public*Routine******************************\ * LONG cIntersect * * This routine takes a list of rectangles from 'prclIn' and clips them * in-place to the rectangle 'prclClip'. The input rectangles don't * have to intersect 'prclClip'; the return value will reflect the * number of input rectangles that did intersect, and the intersecting * rectangles will be densely packed. * \**************************************************************************/ LONG cIntersect( RECTL* prclClip, RECTL* prclIn, // List of rectangles LONG c) // Can be zero { LONG cIntersections; RECTL* prclOut; cIntersections = 0; prclOut = prclIn; for (; c != 0; prclIn++, c--) { prclOut->left = max(prclIn->left, prclClip->left); prclOut->right = min(prclIn->right, prclClip->right); if (prclOut->left < prclOut->right) { prclOut->top = max(prclIn->top, prclClip->top); prclOut->bottom = min(prclIn->bottom, prclClip->bottom); if (prclOut->top < prclOut->bottom) { prclOut++; cIntersections++; } } } return(cIntersections); } /******************************Public*Routine******************************\ * VOID vXferScreenTo1bpp * * Performs a SRCCOPY transfer from the screen (when it's 8bpp) to a 1bpp * bitmap. * \**************************************************************************/ #if defined(i386) VOID vXferScreenTo1bpp( // Type FNXFER PDEV* ppdev, LONG c, // Count of rectangles, can't be zero RECTL* prcl, // List of destination rectangles, in relative // coordinates ULONG ulHwMix, // Not used SURFOBJ* psoDst, // Destination surface POINTL* pptlSrc, // Original unclipped source point RECTL* prclDst, // Original unclipped destination rectangle XLATEOBJ* pxlo) // Provides colour-compressions information { LONG cjPel; VOID* pfnCompute; SURFOBJ soTmp; ULONG* pulXlate; ULONG ulForeColor; POINTL ptlSrc; RECTL rclTmp; BYTE* pjDst; BYTE jLeftMask; BYTE jRightMask; BYTE jNotLeftMask; BYTE jNotRightMask; LONG cjMiddle; LONG lDstDelta; LONG lSrcDelta; LONG cyTmpScans; LONG cyThis; LONG cyToGo; ASSERTDD(c > 0, "Can't handle zero rectangles"); ASSERTDD(psoDst->iBitmapFormat == BMF_1BPP, "Only 1bpp destinations"); ASSERTDD(TMP_BUFFER_SIZE >= (ppdev->cxMemory * ppdev->cjPel), "Temp buffer has to be larger than widest possible scan"); // When the destination is a 1bpp bitmap, the foreground colour // maps to '1', and any other colour maps to '0'. if (ppdev->iBitmapFormat == BMF_8BPP) { // When the source is 8bpp or less, we find the forground colour // by searching the translate table for the only '1': pulXlate = pxlo->pulXlate; while (*pulXlate != 1) pulXlate++; ulForeColor = pulXlate - pxlo->pulXlate; } else { ASSERTDD((ppdev->iBitmapFormat == BMF_16BPP) || (ppdev->iBitmapFormat == BMF_32BPP), "This routine only supports 8, 16 or 32bpp"); // When the source has a depth greater than 8bpp, the foreground // colour will be the first entry in the translate table we get // from calling 'piVector': pulXlate = XLATEOBJ_piVector(pxlo); ulForeColor = 0; if (pulXlate != NULL) // This check isn't really needed... ulForeColor = pulXlate[0]; } // We use the temporary buffer to keep a copy of the source // rectangle: soTmp.pvScan0 = ppdev->pvTmpBuffer; do { // ptlSrc points to the upper-left corner of the screen rectangle // for the current batch: ptlSrc.x = prcl->left + (pptlSrc->x - prclDst->left); ptlSrc.y = prcl->top + (pptlSrc->y - prclDst->top); // vGetBits takes absolute coordinates for the source point: ptlSrc.x += ppdev->xOffset; ptlSrc.y += ppdev->yOffset; pjDst = (BYTE*) psoDst->pvScan0 + (prcl->top * psoDst->lDelta) + (prcl->left >> 3); cjPel = ppdev->cjPel; soTmp.lDelta = (((prcl->right + 7L) & ~7L) - (prcl->left & ~7L)) * cjPel; // Our temporary buffer, into which we read a copy of the source, // may be smaller than the source rectangle. In that case, we // process the source rectangle in batches. // // cyTmpScans is the number of scans we can do in each batch. // cyToGo is the total number of scans we have to do for this // rectangle. // // We take the buffer size less four so that the right edge case // can safely read one dword past the end: cyTmpScans = (TMP_BUFFER_SIZE - 4) / soTmp.lDelta; cyToGo = prcl->bottom - prcl->top; ASSERTDD(cyTmpScans > 0, "Buffer too small for largest possible scan"); // Initialize variables that don't change within the batch loop: rclTmp.top = 0; rclTmp.left = prcl->left & 7L; rclTmp.right = (prcl->right - prcl->left) + rclTmp.left; // Note that we have to be careful with the right mask so that it // isn't zero. A right mask of zero would mean that we'd always be // touching one byte past the end of the scan (even though we // wouldn't actually be modifying that byte), and we must never // access memory past the end of the bitmap (because we can access // violate if the bitmap end is exactly page-aligned). jLeftMask = gajLeftMask[rclTmp.left & 7]; jRightMask = gajRightMask[rclTmp.right & 7]; cjMiddle = ((rclTmp.right - 1) >> 3) - (rclTmp.left >> 3) - 1; if (cjMiddle < 0) { // The blt starts and ends in the same byte: jLeftMask &= jRightMask; jRightMask = 0; cjMiddle = 0; } jNotLeftMask = ~jLeftMask; jNotRightMask = ~jRightMask; lDstDelta = psoDst->lDelta - cjMiddle - 2; // Delta from the end of the destination // to the start on the next scan, accounting // for 'left' and 'right' bytes lSrcDelta = soTmp.lDelta - ((8 * (cjMiddle + 2)) * cjPel); // Compute source delta for special cases // like when cjMiddle gets bumped up to '0', // and to correct aligned cases do { // This is the loop that breaks the source rectangle into // manageable batches. cyThis = cyTmpScans; cyToGo -= cyThis; if (cyToGo < 0) cyThis += cyToGo; rclTmp.bottom = cyThis; vGetBits(ppdev, &soTmp, &rclTmp, &ptlSrc); ptlSrc.y += cyThis; // Get ready for next batch loop _asm { mov eax,ulForeColor ;eax = foreground colour ;ebx = temporary storage ;ecx = count of middle dst bytes ;dl = destination byte accumulator ;dh = temporary storage mov esi,soTmp.pvScan0 ;esi = source pointer mov edi,pjDst ;edi = destination pointer ; Figure out the appropriate compute routine: mov ebx,cjPel mov pfnCompute,offset Compute_Destination_Byte_From_8bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_16bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_32bpp Do_Left_Byte: call pfnCompute and dl,jLeftMask mov dh,jNotLeftMask and dh,[edi] or dh,dl mov [edi],dh inc edi mov ecx,cjMiddle dec ecx jl short Do_Right_Byte Do_Middle_Bytes: call pfnCompute mov [edi],dl inc edi dec ecx jge short Do_Middle_Bytes Do_Right_Byte: call pfnCompute and dl,jRightMask mov dh,jNotRightMask and dh,[edi] or dh,dl mov [edi],dh inc edi add edi,lDstDelta add esi,lSrcDelta dec cyThis jnz short Do_Left_Byte mov pjDst,edi ;save for next batch jmp All_Done Compute_Destination_Byte_From_8bpp: mov bl,[esi] sub bl,al cmp bl,1 adc dl,dl ;bit 0 mov bl,[esi+1] sub bl,al cmp bl,1 adc dl,dl ;bit 1 mov bl,[esi+2] sub bl,al cmp bl,1 adc dl,dl ;bit 2 mov bl,[esi+3] sub bl,al cmp bl,1 adc dl,dl ;bit 3 mov bl,[esi+4] sub bl,al cmp bl,1 adc dl,dl ;bit 4 mov bl,[esi+5] sub bl,al cmp bl,1 adc dl,dl ;bit 5 mov bl,[esi+6] sub bl,al cmp bl,1 adc dl,dl ;bit 6 mov bl,[esi+7] sub bl,al cmp bl,1 adc dl,dl ;bit 7 add esi,8 ;advance the source ret Compute_Destination_Byte_From_16bpp: mov bx,[esi] sub bx,ax cmp bx,1 adc dl,dl ;bit 0 mov bx,[esi+2] sub bx,ax cmp bx,1 adc dl,dl ;bit 1 mov bx,[esi+4] sub bx,ax cmp bx,1 adc dl,dl ;bit 2 mov bx,[esi+6] sub bx,ax cmp bx,1 adc dl,dl ;bit 3 mov bx,[esi+8] sub bx,ax cmp bx,1 adc dl,dl ;bit 4 mov bx,[esi+10] sub bx,ax cmp bx,1 adc dl,dl ;bit 5 mov bx,[esi+12] sub bx,ax cmp bx,1 adc dl,dl ;bit 6 mov bx,[esi+14] sub bx,ax cmp bx,1 adc dl,dl ;bit 7 add esi,16 ;advance the source ret Compute_Destination_Byte_From_32bpp: mov ebx,[esi] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 0 mov ebx,[esi+4] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 1 mov ebx,[esi+8] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 2 mov ebx,[esi+12] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 3 mov ebx,[esi+16] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 4 mov ebx,[esi+20] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 5 mov ebx,[esi+24] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 6 mov ebx,[esi+28] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 7 add esi,32 ;advance the source ret All_Done: } } while (cyToGo > 0); prcl++; } while (--c != 0); } #endif // i386 /******************************Public*Routine******************************\ * BOOL bPuntBlt * * Has GDI do any drawing operations that we don't specifically handle * in the driver. * \**************************************************************************/ BOOL bPuntBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { #if DBG { ////////////////////////////////////////////////////////////////////// // Diagnostics // // Since calling the engine to do any drawing can be rather painful, // particularly when the source is an off-screen DFB (since GDI will // have to allocate a DIB and call us to make a temporary copy before // it can even start drawing), we'll try to avoid it as much as // possible. // // Here we simply spew out information describing the blt whenever // this routine gets called (checked builds only, of course): ULONG ulClip; PDEV* ppdev; ULONG ulAvec; if (psoDst->dhpdev != NULL) ppdev = (PDEV*) psoDst->dhpdev; else ppdev = (PDEV*) psoSrc->dhpdev; ulClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity; DISPDBG((3, ">> Punt << Dst format: %li Dst type: %li Clip: %li Rop: %lx", psoDst->iBitmapFormat, psoDst->iType, ulClip, rop4)); if (psoSrc != NULL) DISPDBG((3, " << Src format: %li Src type: %li", psoSrc->iBitmapFormat, psoSrc->iType)); if ((pxlo != NULL) && !(pxlo->flXlate & XO_TRIVIAL) && (psoSrc != NULL)) { if (((psoSrc->dhsurf == NULL) && (psoSrc->iBitmapFormat != ppdev->iBitmapFormat)) || ((psoDst->dhsurf == NULL) && (psoDst->iBitmapFormat != ppdev->iBitmapFormat))) { // Don't bother printing the 'xlate' message when the source // is a different bitmap format from the destination -- in // those cases we know there always has to be a translate. } else { DISPDBG((3, " << With xlate")); } } // The high 2 bytes of rop4 is not guaranteed to be zero. So in order // to get the low 8 bits as index, we have to &ffff before do >> ulAvec = gajRop3[rop4 & 0xff] | gajRop3[(rop4 & 0xffff) >> 8]; if ((ulAvec & AVEC_NEED_PATTERN) && (pbo->iSolidColor == -1)) { if (pbo->pvRbrush == NULL) DISPDBG((3, " << With brush -- Not created")); else DISPDBG((3, " << With brush -- Created Ok")); } } #endif #if GDI_BANKING { ////////////////////////////////////////////////////////////////////// // Banked Framebuffer bPuntBlt // // This section of code handles a PuntBlt when GDI can directly draw // on the framebuffer, but the drawing has to be done in banks: BANK bnk; PDEV* ppdev; BOOL b; HSURF hsurfTmp; SURFOBJ* psoTmp; SIZEL sizl; POINTL ptlSrc; RECTL rclTmp; RECTL rclDst; b = FALSE; // Fore error cases, assume we'll fail // We copy the original destination rectangle, and use that in every // GDI call-back instead of the original because sometimes GDI is // sneaky and points 'prclDst' to '&pco->rclBounds'. Because we // modify 'rclBounds', that would affect 'prclDst', which we don't // want to happen: rclDst = *prclDst; if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL)) { ASSERTDD(psoDst->dhsurf != NULL, "Dest should be the screen when given a DIB source"); // Do a memory-to-screen blt: ppdev = (PDEV*) psoDst->dhpdev; vBankStart(ppdev, &rclDst, pco, &bnk); b = TRUE; do { b &= EngBitBlt(bnk.pso, psoSrc, psoMsk, bnk.pco, pxlo, &rclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4); } while (bBankEnum(&bnk)); } else { // The screen is the source (it may be the destination too...) ppdev = (PDEV*) psoSrc->dhpdev; ptlSrc.x = pptlSrc->x + ppdev->xOffset; ptlSrc.y = pptlSrc->y + ppdev->yOffset; if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL)) { // We have to intersect the destination rectangle with // the clip bounds if there is one (consider the case // where the app asked to blt a really, really big // rectangle from the screen -- prclDst would be really, // really big but pco->rclBounds would be the actual // area of interest): rclDst.left = max(rclDst.left, pco->rclBounds.left); rclDst.top = max(rclDst.top, pco->rclBounds.top); rclDst.right = min(rclDst.right, pco->rclBounds.right); rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom); // Correspondingly, we have to offset the source point: ptlSrc.x += (rclDst.left - prclDst->left); ptlSrc.y += (rclDst.top - prclDst->top); } // We're now either going to do a screen-to-screen or screen-to-DIB // blt. In either case, we're going to create a temporary copy of // the source. (Why do we do this when GDI could do it for us? // GDI would create a temporary copy of the DIB for every bank // call-back!) sizl.cx = rclDst.right - rclDst.left; sizl.cy = rclDst.bottom - rclDst.top; // Don't forget to convert from relative to absolute coordinates // on the source! (vBankStart takes care of that for the // destination.) rclTmp.right = sizl.cx; rclTmp.bottom = sizl.cy; rclTmp.left = 0; rclTmp.top = 0; // GDI does guarantee us that the blt extents have already been // clipped to the surface boundaries (we don't have to worry // here about trying to read where there isn't video memory). // Let's just assert to make sure: ASSERTDD((ptlSrc.x >= 0) && (ptlSrc.y >= 0) && (ptlSrc.x + sizl.cx <= ppdev->cxMemory) && (ptlSrc.y + sizl.cy <= ppdev->cyMemory), "Source rectangle out of bounds!"); hsurfTmp = (HSURF) EngCreateBitmap(sizl, 0, // Let GDI choose ulWidth ppdev->iBitmapFormat, 0, // Don't need any options NULL);// Let GDI allocate if (hsurfTmp != 0) { psoTmp = EngLockSurface(hsurfTmp); if (psoTmp != NULL) { vGetBits(ppdev, psoTmp, &rclTmp, &ptlSrc); if (psoDst->dhsurf == NULL) { // It was a Screen-to-DIB blt; now it's a DIB-to-DIB // blt. Note that the source point is (0, 0) in our // temporary surface: b = EngBitBlt(psoDst, psoTmp, psoMsk, pco, pxlo, &rclDst, (POINTL*) &rclTmp, pptlMsk, pbo, pptlBrush, rop4); } else { // It was a Screen-to-Screen blt; now it's a DIB-to- // screen blt. Note that the source point is (0, 0) // in our temporary surface: vBankStart(ppdev, &rclDst, pco, &bnk); b = TRUE; do { b &= EngBitBlt(bnk.pso, psoTmp, psoMsk, bnk.pco, pxlo, &rclDst, (POINTL*) &rclTmp, pptlMsk, pbo, pptlBrush, rop4); } while (bBankEnum(&bnk)); } EngUnlockSurface(psoTmp); } EngDeleteSurface(hsurfTmp); } // if (hsurfTmp != 0) else b = FALSE; } return(b); } #else { ////////////////////////////////////////////////////////////////////// // Really Slow bPuntBlt // // Here we handle a PuntBlt when GDI can't draw directly on the // framebuffer (as on the Alpha, which can't do it because of its // 32 bit bus). If you thought the banked version was slow, just // look at this one. Guaranteed, there will be at least one bitmap // allocation and extra copy involved; there could be two if it's a // screen-to-screen operation. PDEV* ppdev; POINTL ptlSrc; RECTL rclDst; SIZEL sizl; ULONG ulAvec; BOOL bSrcIsScreen; HSURF hsurfSrc; RECTL rclTmp; BOOL b; LONG lDelta; BYTE* pjBits; BYTE* pjScan0; HSURF hsurfDst; RECTL rclScreen; b = FALSE; // Fore error cases, assume we'll fail rclDst = *prclDst; if (pptlSrc != NULL) ptlSrc = *pptlSrc; if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL)) { // We have to intersect the destination rectangle with // the clip bounds if there is one (consider the case // where the app asked to blt a really, really big // rectangle from the screen -- prclDst would be really, // really big but pco->rclBounds would be the actual // area of interest): rclDst.left = max(rclDst.left, pco->rclBounds.left); rclDst.top = max(rclDst.top, pco->rclBounds.top); rclDst.right = min(rclDst.right, pco->rclBounds.right); rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom); ptlSrc.x += (rclDst.left - prclDst->left); ptlSrc.y += (rclDst.top - prclDst->top); } sizl.cx = rclDst.right - rclDst.left; sizl.cy = rclDst.bottom - rclDst.top; // The high 2 bytes of rop4 is not guaranteed to be zero. So in order // to get the low 8 bits as index, we have to &ffff before do >> ulAvec = gajRop3[rop4 & 0xff] | gajRop3[(rop4 & 0xffff) >> 8]; bSrcIsScreen = ((ulAvec & AVEC_NEED_SOURCE) && (psoSrc->dhsurf != NULL)); if (bSrcIsScreen) { ppdev = (PDEV*) psoSrc->dhpdev; // We need to create a copy of the source rectangle: hsurfSrc = (HSURF) EngCreateBitmap(sizl, 0, ppdev->iBitmapFormat, 0, NULL); if (hsurfSrc == 0) goto Error_0; psoSrc = EngLockSurface(hsurfSrc); if (psoSrc == NULL) goto Error_1; rclTmp.left = 0; rclTmp.top = 0; rclTmp.right = sizl.cx; rclTmp.bottom = sizl.cy; // vGetBits takes absolute coordinates for the source point: ptlSrc.x += ppdev->xOffset; ptlSrc.y += ppdev->yOffset; vGetBits(ppdev, psoSrc, &rclTmp, &ptlSrc); // The source will now come from (0, 0) of our temporary source // surface: ptlSrc.x = 0; ptlSrc.y = 0; } if (psoDst->dhsurf == NULL) { b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc, pptlMsk, pbo, pptlBrush, rop4); } else { ppdev = (PDEV*) psoDst->dhpdev; // We need to create a temporary work buffer. We have to do // some fudging with the offsets so that the upper-left corner // of the (relative coordinates) clip object bounds passed to // GDI will be transformed to the upper-left corner of our // temporary bitmap. // The alignment doesn't have to be as tight as this at 16bpp // and 32bpp, but it won't hurt: lDelta = (((rclDst.right + 3) & ~3L) - (rclDst.left & ~3L)) << ppdev->cPelSize; // We're actually only allocating a bitmap that is 'sizl.cx' x // 'sizl.cy' in size: pjBits = EngAllocMem(0, lDelta * sizl.cy, ALLOC_TAG); if (pjBits == NULL) goto Error_2; // We now adjust the surface's 'pvScan0' so that when GDI thinks // it's writing to pixel (rclDst.top, rclDst.left), it will // actually be writing to the upper-left pixel of our temporary // bitmap: pjScan0 = pjBits - (rclDst.top * lDelta) - ((rclDst.left & ~3L) << ppdev->cPelSize); ASSERTDD((((ULONG_PTR) pjScan0) & 3) == 0, "pvScan0 must be dword aligned!"); // The checked build of GDI sometimes checks on blts that // prclDst->right <= pso->sizl.cx, so we lie to it about // the size of our bitmap: sizl.cx = rclDst.right; sizl.cy = rclDst.bottom; hsurfDst = (HSURF) EngCreateBitmap( sizl, // Bitmap covers rectangle lDelta, // Use this delta ppdev->iBitmapFormat, // Same colour depth BMF_TOPDOWN, // Must have a positive delta pjScan0); // Where (0, 0) would be if ((hsurfDst == 0) || (!EngAssociateSurface(hsurfDst, ppdev->hdevEng, 0))) goto Error_3; psoDst = EngLockSurface(hsurfDst); if (psoDst == NULL) goto Error_4; // Make sure that the rectangle we Get/Put from/to the screen // is in absolute coordinates: rclScreen.left = rclDst.left + ppdev->xOffset; rclScreen.right = rclDst.right + ppdev->xOffset; rclScreen.top = rclDst.top + ppdev->yOffset; rclScreen.bottom = rclDst.bottom + ppdev->yOffset; // It would be nice to get a copy of the destination rectangle // only when the ROP involves the destination (or when the source // is an RLE), but we can't do that. If the brush is truly NULL, // GDI will immediately return TRUE from EngBitBlt, without // modifying the temporary bitmap -- and we would proceed to // copy the uninitialized temporary bitmap back to the screen. vGetBits(ppdev, psoDst, &rclDst, (POINTL*) &rclScreen); b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc, pptlMsk, pbo, pptlBrush, rop4); vPutBits(ppdev, psoDst, &rclScreen, (POINTL*) &rclDst); EngUnlockSurface(psoDst); Error_4: EngDeleteSurface(hsurfDst); Error_3: EngFreeMem(pjBits); } Error_2: if (bSrcIsScreen) { EngUnlockSurface(psoSrc); Error_1: EngDeleteSurface(hsurfSrc); } Error_0: return(b); } #endif } /******************************Public*Routine******************************\ * BOOL DrvBitBlt * * Implements the workhorse routine of a display driver. * \**************************************************************************/ BOOL DrvBitBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { PDEV* ppdev; DSURF* pdsurfDst; DSURF* pdsurfSrc; POINTL ptlSrc; BYTE jClip; OH* poh; BOOL bMore; CLIPENUM ce; LONG c; RECTL rcl; ULONG rop3; FNFILL* pfnFill; RBRUSH_COLOR rbc; // Realized brush or solid colour FNXFER* pfnXfer; ULONG iSrcBitmapFormat; ULONG iDir; jClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity; pdsurfDst = (DSURF*) psoDst->dhsurf; // May be NULL if (psoSrc == NULL) { /////////////////////////////////////////////////////////////////// // Fills /////////////////////////////////////////////////////////////////// // Fills are this function's "raison d'etre" (which is French // for "purple armadillo"), so we handle them as quickly as // possible: ASSERTDD(pdsurfDst != NULL, "Expect only device destinations when no source"); if (pdsurfDst->dt == DT_SCREEN) { ppdev = (PDEV*) psoDst->dhpdev; poh = pdsurfDst->poh; ppdev->xOffset = poh->x; ppdev->yOffset = poh->y; // Make sure it doesn't involve a mask (i.e., it's really a // Rop3): if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Since 'psoSrc' is NULL, the rop3 had better not indicate // that we need a source. ASSERTDD((((rop4 >> 2) ^ (rop4)) & 0x33) == 0, "Need source but GDI gave us a NULL 'psoSrc'"); Fill_It: pfnFill = ppdev->pfnFillSolid; if (gabRopNeedsPattern[(rop4 >> 2) & 0xf]) { rbc.iSolidColor = pbo->iSolidColor; if (rbc.iSolidColor == -1) { // Try and realize the pattern brush; by doing // this call-back, GDI will eventually call us // again through DrvRealizeBrush: rbc.prb = pbo->pvRbrush; if (rbc.prb == NULL) { rbc.prb = BRUSHOBJ_pvGetRbrush(pbo); if (rbc.prb == NULL) { // If we couldn't realize the brush, punt // the call (it may have been a non 8x8 // brush or something, which we can't be // bothered to handle, so let GDI do the // drawing): goto Punt_It; } } pfnFill = ppdev->pfnFillPat; } } // Note that these 2 'if's are more efficient than // a switch statement: if (jClip == DC_TRIVIAL) { pfnFill(ppdev, 1, prclDst, rop4, rbc, pptlBrush); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnFill(ppdev, 1, &rcl, rop4, rbc, pptlBrush); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0); do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce); c = cIntersect(prclDst, ce.arcl, ce.c); if (c != 0) pfnFill(ppdev, c, ce.arcl, rop4, rbc, pptlBrush); } while (bMore); goto All_Done; } } } } if ((psoSrc != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; if (pdsurfSrc->dt == DT_DIB) { // Here we consider putting a DIB DFB back into off-screen // memory. If there's a translate, it's probably not worth // moving since we won't be able to use the hardware to do // the blt (a similar argument could be made for weird rops // and stuff that we'll only end up having GDI simulate, but // those should happen infrequently enough that I don't care). if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { ppdev = (PDEV*) psoSrc->dhpdev; // See 'DrvCopyBits' for some more comments on how this // moving-it-back-into-off-screen-memory thing works: if (pdsurfSrc->iUniq == ppdev->iHeapUniq) { if (--pdsurfSrc->cBlt == 0) { if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc)) goto Continue_It; } } else { // Some space was freed up in off-screen memory, // so reset the counter for this DFB: pdsurfSrc->iUniq = ppdev->iHeapUniq; pdsurfSrc->cBlt = HEAP_COUNT_DOWN; } } psoSrc = pdsurfSrc->pso; // Handle the case where the source is a DIB DFB and the // destination is a regular bitmap: if (psoDst->dhsurf == NULL) goto EngBitBlt_It; } } Continue_It: if (pdsurfDst != NULL) { if (pdsurfDst->dt == DT_DIB) { psoDst = pdsurfDst->pso; // If the destination is a DIB, we can only handle this // call if the source is not a DIB: if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL)) goto EngBitBlt_It; } } // At this point, we know that either the source or the destination is // not a DIB. Check for a DFB to screen, DFB to DFB, or screen to DFB // case: if ((psoSrc != NULL) && (psoDst->dhsurf != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; pdsurfDst = (DSURF*) psoDst->dhsurf; ASSERTDD(pdsurfSrc->dt == DT_SCREEN, "Expected screen source"); ASSERTDD(pdsurfDst->dt == DT_SCREEN, "Expected screen destination"); ptlSrc.x = pptlSrc->x - (pdsurfDst->poh->x - pdsurfSrc->poh->x); ptlSrc.y = pptlSrc->y - (pdsurfDst->poh->y - pdsurfSrc->poh->y); pptlSrc = &ptlSrc; } if (psoDst->dhsurf != NULL) { pdsurfDst = (DSURF*) psoDst->dhsurf; ppdev = (PDEV*) psoDst->dhpdev; ppdev->xOffset = pdsurfDst->poh->x; ppdev->yOffset = pdsurfDst->poh->y; } else { pdsurfSrc = (DSURF*) psoSrc->dhsurf; ppdev = (PDEV*) psoSrc->dhpdev; ppdev->xOffset = pdsurfSrc->poh->x; ppdev->yOffset = pdsurfSrc->poh->y; } // We bail here if we're running in a high-colour mode: if (ppdev->flStat & STAT_UNACCELERATED) goto EngBitBlt_It; if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Since we've already handled the cases where the ROP4 is really // a ROP3 and no source is required, we can assert... ASSERTDD((psoSrc != NULL) && (pptlSrc != NULL), "Expected no-source case to already have been handled"); /////////////////////////////////////////////////////////////////// // Bitmap transfers /////////////////////////////////////////////////////////////////// // Since the foreground and background ROPs are the same, we // don't have to worry about no stinking masks (it's a simple // Rop3). rop3 = (rop4 & 0xff); // Make it into a Rop3 (we keep the rop4 // around in case we decide to punt) if (psoDst->dhsurf != NULL) { // The destination is the screen: if ((rop3 >> 4) == (rop3 & 0xf)) { // The ROP3 doesn't require a pattern: if (psoSrc->dhsurf == NULL) { ////////////////////////////////////////////////// // DIB-to-screen blt // This section handles 1bpp, 4bpp and 8bpp sources. iSrcBitmapFormat = psoSrc->iBitmapFormat; if (iSrcBitmapFormat == BMF_1BPP) { pfnXfer = ppdev->pfnXfer1bpp; goto Xfer_It; } } else // psoSrc->dhsurf != NULL { if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { ////////////////////////////////////////////////// // Screen-to-screen blt with no translate if (jClip == DC_TRIVIAL) { (ppdev->pfnCopyBlt)(ppdev, 1, prclDst, rop4, pptlSrc, prclDst); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) { (ppdev->pfnCopyBlt)(ppdev, 1, &rcl, rop4, pptlSrc, prclDst); } goto All_Done; } else { // Don't forget that we'll have to draw the // rectangles in the correct direction: if (pptlSrc->y >= prclDst->top) { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTDOWN; else iDir = CD_LEFTDOWN; } else { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTUP; else iDir = CD_LEFTUP; } CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, iDir, 0); do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce); c = cIntersect(prclDst, ce.arcl, ce.c); if (c != 0) { (ppdev->pfnCopyBlt)(ppdev, c, ce.arcl, rop4, pptlSrc, prclDst); } } while (bMore); goto All_Done; } } } } } else { #if defined(i386) { // We special case screen to monochrome blts because they // happen fairly often. We only handle SRCCOPY rops and // monochrome destinations (to handle a true 1bpp DIB // destination, we would have to do near-colour searches // on every colour; as it is, the foreground colour gets // mapped to '1', and everything else gets mapped to '0'): if ((psoDst->iBitmapFormat == BMF_1BPP) && (rop3 == 0xcc) && (pxlo->flXlate & XO_TO_MONO) && (ppdev->iBitmapFormat != BMF_24BPP)) { pfnXfer = vXferScreenTo1bpp; psoSrc = psoDst; // A misnomer, I admit goto Xfer_It; } } #endif // i386 } } else if ((psoMsk == NULL) && (rop4 == 0xaacc)) { // The only time GDI will ask us to do a true rop4 using the brush // mask is when the brush is 1bpp, and the background rop is AA // (meaning it's a NOP): goto Fill_It; } // Just fall through to Punt_It... Punt_It: return(bPuntBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4)); ////////////////////////////////////////////////////////////////////// // Common bitmap transfer Xfer_It: if (jClip == DC_TRIVIAL) { pfnXfer(ppdev, 1, prclDst, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnXfer(ppdev, 1, &rcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0); do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce); c = cIntersect(prclDst, ce.arcl, ce.c); if (c != 0) { pfnXfer(ppdev, c, ce.arcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); } } while (bMore); goto All_Done; } //////////////////////////////////////////////////////////////////////// // Common DIB blt EngBitBlt_It: // Our driver doesn't handle any blt's between two DIBs. Normally // a driver doesn't have to worry about this, but we do because // we have DFBs that may get moved from off-screen memory to a DIB, // where we have GDI do all the drawing. GDI does DIB drawing at // a reasonable speed (unless one of the surfaces is a device- // managed surface...) // // If either the source or destination surface in an EngBitBlt // call-back is a device-managed surface (meaning it's not a DIB // that GDI can draw with), GDI will automatically allocate memory // and call the driver's DrvCopyBits routine to create a DIB copy // that it can use. So this means that this could handle all 'punts', // and we could conceivably get rid of bPuntBlt. But this would have // a bad performance impact because of the extra memory allocations // and bitmap copies -- you really don't want to do this unless you // have to (or your surface was created such that GDI can draw // directly onto it) -- I've been burned by this because it's not // obvious that the performance impact is so bad. // // That being said, we only call EngBitBlt when all the surfaces // are DIBs: return(EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4)); All_Done: return(TRUE); } /******************************Public*Routine******************************\ * BOOL DrvCopyBits * * Do fast bitmap copies. * * Note that GDI will (usually) automatically adjust the blt extents to * adjust for any rectangular clipping, so we'll rarely see DC_RECT * clipping in this routine (and as such, we don't bother special casing * it). * * I'm not sure if the performance benefit from this routine is actually * worth the increase in code size, since SRCCOPY BitBlts are hardly the * most common drawing operation we'll get. But what the heck. * \**************************************************************************/ BOOL DrvCopyBits( SURFOBJ* psoDst, SURFOBJ* psoSrc, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc) { PDEV* ppdev; DSURF* pdsurfSrc; DSURF* pdsurfDst; RECTL rcl; POINTL ptl; OH* pohSrc; OH* pohDst; // DrvCopyBits is a fast-path for SRCCOPY blts. But it can still be // pretty complicated: there can be translates, clipping, RLEs, // bitmaps that aren't the same format as the screen, plus // screen-to-screen, DIB-to-screen or screen-to-DIB operations, // not to mention DFBs (device format bitmaps). // // Rather than making this routine almost as big as DrvBitBlt, I'll // handle here only the speed-critical cases, and punt the rest to // our DrvBitBlt routine. // // We'll try to handle anything that doesn't involve clipping: if (((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL)) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { if (psoDst->dhsurf != NULL) { // We know the destination is either a DFB or the screen: ppdev = (PDEV*) psoDst->dhpdev; pdsurfDst = (DSURF*) psoDst->dhsurf; // See if the source is a plain DIB: if (psoSrc->dhsurf != NULL) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; // Make sure the destination is really the screen or an // off-screen DFB (i.e., not a DFB that we've converted // to a DIB): if (pdsurfDst->dt == DT_SCREEN) { ASSERTDD(psoSrc->dhsurf != NULL, "Can't be a DIB"); if (pdsurfSrc->dt == DT_SCREEN) { Screen_To_Screen: ////////////////////////////////////////////////////// // Screen-to-screen ASSERTDD((psoSrc->dhsurf != NULL) && (pdsurfSrc->dt == DT_SCREEN) && (psoDst->dhsurf != NULL) && (pdsurfDst->dt == DT_SCREEN), "Should be a screen-to-screen case"); // pfnCopyBlt takes relative coordinates (relative // to the destination surface, that is), so we have // to change the start point to be relative to the // destination surface too: pohSrc = pdsurfSrc->poh; pohDst = pdsurfDst->poh; ptl.x = pptlSrc->x - (pohDst->x - pohSrc->x); ptl.y = pptlSrc->y - (pohDst->y - pohSrc->y); ppdev->xOffset = pohDst->x; ppdev->yOffset = pohDst->y; (ppdev->pfnCopyBlt)(ppdev, 1, prclDst, 0xCCCC, &ptl, prclDst); return(TRUE); } else // (pdsurfSrc->dt != DT_SCREEN) { // Ah ha, the source is a DFB that's really a DIB. ASSERTDD(psoDst->dhsurf != NULL, "Destination can't be a DIB here"); ///////////////////////////////////////////////////// // Put It Back Into Off-screen? // // We take this opportunity to decide if we want to // put the DIB back into off-screen memory. This is // a pretty good place to do it because we have to // copy the bits to some portion of the screen, // anyway. So we would incur only an extra screen-to- // screen blt at this time, much of which will be // over-lapped with the CPU. // // The simple approach we have taken is to move a DIB // back into off-screen memory only if there's already // room -- we won't throw stuff out to make space // (because it's tough to know what ones to throw out, // and it's easy to get into thrashing scenarios). // // Because it takes some time to see if there's room // in off-screen memory, we only check one in // HEAP_COUNT_DOWN times if there's room. To bias // in favour of bitmaps that are often blt, the // counters are reset every time any space is freed // up in off-screen memory. We also don't bother // checking if no space has been freed since the // last time we checked for this DIB. if (pdsurfSrc->iUniq == ppdev->iHeapUniq) { if (--pdsurfSrc->cBlt == 0) { if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc)) goto Screen_To_Screen; } } else { // Some space was freed up in off-screen memory, // so reset the counter for this DFB: pdsurfSrc->iUniq = ppdev->iHeapUniq; pdsurfSrc->cBlt = HEAP_COUNT_DOWN; } // Since the destination is definitely the screen, // we don't have to worry about creating a DIB to // DIB copy case (for which we would have to call // EngCopyBits): psoSrc = pdsurfSrc->pso; goto DIB_To_Screen; } } else // (pdsurfDst->dt != DT_SCREEN) { // Because the source is not a DIB, we don't have to // worry about creating a DIB to DIB case here (although // we'll have to check later to see if the source is // really a DIB that's masquerading as a DFB...) ASSERTDD(psoSrc->dhsurf != NULL, "Source can't be a DIB here"); psoDst = pdsurfDst->pso; goto Screen_To_DIB; } } else if (psoSrc->iBitmapFormat == ppdev->iBitmapFormat) { // Make sure the destination is really the screen: if (pdsurfDst->dt == DT_SCREEN) { DIB_To_Screen: ////////////////////////////////////////////////////// // DIB-to-screen ASSERTDD((psoDst->dhsurf != NULL) && (pdsurfDst->dt == DT_SCREEN) && (psoSrc->dhsurf == NULL) && (psoSrc->iBitmapFormat == ppdev->iBitmapFormat), "Should be a DIB-to-screen case"); // vPutBits takes absolute screen coordinates, so // we have to muck with the destination rectangle: pohDst = pdsurfDst->poh; rcl.left = prclDst->left + pohDst->x; rcl.right = prclDst->right + pohDst->x; rcl.top = prclDst->top + pohDst->y; rcl.bottom = prclDst->bottom + pohDst->y; // We use the memory aperture to do the transfer, // because that is supposed to be faster for SRCCOPY // blts than using the data-transfer register: vPutBits(ppdev, psoSrc, &rcl, pptlSrc); return(TRUE); } } } else // (psoDst->dhsurf == NULL) { Screen_To_DIB: pdsurfSrc = (DSURF*) psoSrc->dhsurf; ppdev = (PDEV*) psoSrc->dhpdev; if (psoDst->iBitmapFormat == ppdev->iBitmapFormat) { if (pdsurfSrc->dt == DT_SCREEN) { ////////////////////////////////////////////////////// // Screen-to-DIB ASSERTDD((psoSrc->dhsurf != NULL) && (pdsurfSrc->dt == DT_SCREEN) && (psoDst->dhsurf == NULL) && (psoDst->iBitmapFormat == ppdev->iBitmapFormat), "Should be a screen-to-DIB case"); // vGetBits takes absolute screen coordinates, so we have // to muck with the source point: pohSrc = pdsurfSrc->poh; ptl.x = pptlSrc->x + pohSrc->x; ptl.y = pptlSrc->y + pohSrc->y; vGetBits(ppdev, psoDst, prclDst, &ptl); return(TRUE); } else { // The source is a DFB that's really a DIB. Since we // know that the destination is a DIB, we've got a DIB // to DIB operation, and should call EngCopyBits: psoSrc = pdsurfSrc->pso; goto EngCopyBits_It; } } } } // We can't call DrvBitBlt if we've accidentally converted both // surfaces to DIBs, because it isn't equipped to handle it: ASSERTDD((psoSrc->dhsurf != NULL) || (psoDst->dhsurf != NULL), "Accidentally converted both surfaces to DIBs"); ///////////////////////////////////////////////////////////////// // A DrvCopyBits is after all just a simplified DrvBitBlt: return(DrvBitBlt(psoDst, psoSrc, NULL, pco, pxlo, prclDst, pptlSrc, NULL, NULL, NULL, 0x0000CCCC)); EngCopyBits_It: ASSERTDD((psoDst->dhsurf == NULL) && (psoSrc->dhsurf == NULL), "Both surfaces should be DIBs to call EngCopyBits"); return(EngCopyBits(psoDst, psoSrc, pco, pxlo, prclDst, pptlSrc)); }