Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3805 lines
89 KiB

//***************************************************************************
//
// THRESHLD.CPP
//
// Module: HEALTHMON SERVER AGENT
//
// Purpose: CThreshold class to do thresholding on a CDatapoint class.
// The CDatapoint class contains the WMI instance, and the CThreshold
// class says what ptoperty to threshold against, and how.
//
// Copyright (c)1999 Microsoft Corporation, All Rights Reserved
//
//***************************************************************************
#include <stdio.h>
#include <tchar.h>
#include "threshld.h"
#include "datacltr.h"
#include "system.h"
extern CSystem* g_pSystem;
extern CSystem* g_pStartupSystem;
BOOL CThreshold::mg_bEnglishCompare = TRUE;
//STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC
void CThreshold::ThresholdTerminationCleanup(void)
{
if (g_pThresholdEventSink != NULL)
{
g_pThresholdEventSink->Release();
g_pThresholdEventSink = NULL;
}
#ifdef SAVE
if (g_pThresholdInstanceEventSink != NULL)
{
g_pThresholdInstanceEventSink->Release();
g_pThresholdInstanceEventSink = NULL;
}
#endif
}
//STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC STATIC
void CThreshold::GetLocal(void)
{
LCID lcID = PRIMARYLANGID(GetSystemDefaultLCID());
if (lcID != 0 && lcID == 0x00000009)
{
mg_bEnglishCompare = TRUE;
}
else
{
mg_bEnglishCompare = FALSE;
}
}
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CThreshold::CThreshold()
{
MY_OUTPUT(L"ENTER ***** CThreshold...", 4);
Init();
m_hmStatusType = HMSTATUS_THRESHOLD;
m_bValidLoad = FALSE;
MY_OUTPUT(L"EXIT ***** CThreshold...", 4);
}
CThreshold::~CThreshold()
{
MY_OUTPUT(L"ENTER ***** ~CThreshold...", 4);
g_pStartupSystem->RemovePointerFromMasterList(this);
Cleanup(FALSE);
if (m_szGUID)
{
delete [] m_szGUID;
m_szGUID = NULL;
}
m_bValidLoad = FALSE;
MY_OUTPUT(L"EXIT ***** ~CThreshold...", 4);
}
//
// Load a single Threshold
//
HRESULT CThreshold::LoadInstanceFromMOF(IWbemClassObject* pObj, CDataCollector *pParentDC, LPTSTR pszParentObjPath, BOOL bModifyPass/*FALSE*/)
{
long lTemp;
HRESULT hRes = S_OK;
BOOL bRetValue = TRUE;
MY_OUTPUT(L"ENTER ***** CThreshold::LoadInstanceFromMOF...", 4);
Cleanup(bModifyPass);
m_bValidLoad = TRUE;
if (bModifyPass == FALSE)
{
// This is the first initial read in of this
// Get the GUID property
// If this fails we will actually not go through with the creation of this object.
if (m_szGUID)
{
delete [] m_szGUID;
m_szGUID = NULL;
}
hRes = GetStrProperty(pObj, L"GUID", &m_szGUID);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
m_szParentObjPath = new TCHAR[wcslen(pszParentObjPath)+1];
MY_ASSERT(m_szParentObjPath); if (!m_szParentObjPath) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
wcscpy(m_szParentObjPath, pszParentObjPath);
m_pParentDC = pParentDC;
hRes = g_pStartupSystem->AddPointerToMasterList(this);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
}
hRes = GetStrProperty(pObj, L"Name", &m_szName);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetStrProperty(pObj, L"Description", &m_szDescription);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetStrProperty(pObj, L"PropertyName", &m_szPropertyName);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (!wcscmp(m_szPropertyName, L""))
{
delete [] m_szPropertyName;
m_szPropertyName = new TCHAR[wcslen(L"CollectionErrorCode")+1];
MY_ASSERT(m_szPropertyName); if (!m_szPropertyName) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
wcscpy(m_szPropertyName, L"CollectionErrorCode");
}
bRetValue = GetUint32Property(pObj, L"UseFlag", &lTemp);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (lTemp == 0)
{
m_bUseAverage = FALSE;
m_bUseDifference = FALSE;
}
else if (lTemp == 1)
{
m_bUseAverage = TRUE;
m_bUseDifference = FALSE;
}
else if (lTemp == 2)
{
m_bUseAverage = FALSE;
m_bUseDifference = TRUE;
}
else
{
m_bUseAverage = FALSE;
m_bUseDifference = FALSE;
MY_ASSERT(FALSE);
}
// hRes = GetBoolProperty(pObj, L"UseSum", &m_bUseSum);
// MY_HRESASSERT(hRes);
m_bUseSum = FALSE;
//[values {"<",">","=","!=",">=","<=","contains","!contains","always"}]
hRes = GetUint32Property(pObj, L"TestCondition", &m_lTestCondition);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetStrProperty(pObj, L"CompareValue", &m_szCompareValue);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
m_lCompareValue = wcstol(m_szCompareValue, NULL, 10);
m_ulCompareValue = wcstoul(m_szCompareValue, NULL, 10);
m_fCompareValue = (float) wcstod(m_szCompareValue, NULL);
m_dCompareValue = wcstod(m_szCompareValue, NULL);
m_i64CompareValue = _wtoi64(m_szCompareValue);
m_ui64CompareValue = 0;
ReadUI64(m_szCompareValue, m_ui64CompareValue);
hRes = GetUint32Property(pObj, L"ThresholdDuration", &m_lThresholdDuration);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
//[values {"CRITICAL","WARNING","INFO","RESET"}]
hRes = GetUint32Property(pObj, L"State", &m_lViolationToState);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetStrProperty(pObj, L"CreationDate", &m_szCreationDate);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetStrProperty(pObj, L"LastUpdate", &m_szLastUpdate);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = GetBoolProperty(pObj, L"Enabled", &m_bEnabled);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (bModifyPass == FALSE)
{
if (m_bEnabled==FALSE || m_pParentDC->m_bEnabled==FALSE || m_pParentDC->m_bParentEnabled==FALSE)
{
if (m_pParentDC->m_bEnabled==FALSE || m_pParentDC->m_bParentEnabled==FALSE)
m_bParentEnabled = FALSE;
// Since our parent is disabled, we will not be able to get into
// our OnAgentInterval function and send the disabled status later.
SetCurrState(HM_DISABLED);
FireEvent(TRUE);
}
}
else
{
if (m_pParentDC->m_deType==HM_EQDE)
{
if (m_bEnabled==FALSE || m_pParentDC->m_bEnabled==FALSE || m_pParentDC->m_bParentEnabled==FALSE)
{
SetCurrState(HM_DISABLED);
FireEvent(FALSE);
}
}
}
m_bValidLoad = TRUE;
MY_OUTPUT(L"EXIT ***** CThreshold::LoadInstanceFromMOF...", 4);
return S_OK;
error:
MY_ASSERT(FALSE);
Cleanup(FALSE);
m_bValidLoad = FALSE;
return hRes;
}
BOOL CThreshold::SkipClean(void)
{
IRSSTRUCT *pirs;
int i, iSize;
m_lNumberChanges = 0;
//
// Clear things before we start
//
m_lPrevState = m_lCurrState;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lPrevState = m_lCurrState;
pirs->lCurrState = m_lCurrState;
pirs->unknownReason = 0;
}
return TRUE;
}
//
// Evaluate this threshold against the property just collected
//
BOOL CThreshold::OnAgentInterval(ACTUALINSTLIST *actualInstList, PNSTRUCT *ppn, BOOL bRequireReset)
{
long state;
INSTSTRUCT *pinst;
IRSSTRUCT *pirs;
union hm_datatypes delta;
int i, iSize;
//
// Don't do anything if we are not loaded correctly.
//
if (m_bValidLoad == FALSE)
return FALSE;
m_lNumberChanges = 0;
//
// Don't do anything if we are already in the state we need to be in.
// DISABLED, SCHEDULEDOUT
//
if (((m_bEnabled==FALSE || m_bParentEnabled==FALSE) && m_lCurrState==HM_DISABLED) ||
(m_bParentScheduledOut==TRUE && m_lCurrState==HM_SCHEDULEDOUT))
{
// The DISABLED and SCHEDULEDOUT states override the UNKNWON. We may be transitioning.
if (((m_bEnabled==FALSE || m_bParentEnabled==FALSE) && m_lCurrState!=HM_DISABLED) ||
(m_bParentScheduledOut==TRUE && m_lCurrState!=HM_SCHEDULEDOUT))
{
// The DISABLED state overrides SCHEDULEDOUT. We may be transitioning.
if (((m_bEnabled==FALSE || m_bParentEnabled==FALSE) && m_lCurrState!=HM_DISABLED))
{
}
else
{
if (m_lPrevState != m_lCurrState)
{
m_lPrevState = m_lCurrState;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lPrevState = m_lCurrState;
pirs->lCurrState = m_lCurrState;
pirs->unknownReason = 0;
}
}
return TRUE;
}
}
else
{
if (m_lPrevState != m_lCurrState)
{
m_lPrevState = m_lCurrState;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lPrevState = m_lCurrState;
pirs->lCurrState = m_lCurrState;
pirs->unknownReason = 0;
}
}
return TRUE;
}
}
//
// Clear things before we start
//
m_lPrevState = m_lCurrState;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if ((m_lCurrState==HM_CRITICAL || m_lCurrState==HM_WARNING) && m_pParentDC->m_deType!=HM_EQDE)
{
pirs->lPrevState = pirs->lCurrState;
}
else
{
pirs->lPrevState = m_lCurrState;
pirs->lCurrState = m_lCurrState;
}
pirs->unknownReason = 0;
}
//
// This is where we are transitioning into the DISABLED State.
//
if (m_bEnabled==FALSE || m_bParentEnabled==FALSE)
{
SetCurrState(HM_DISABLED);
}
else if (m_bParentScheduledOut==TRUE)
{
SetCurrState(HM_SCHEDULEDOUT);
}
else
{
if (bRequireReset && (m_lCurrState==HM_WARNING || m_lCurrState==HM_CRITICAL))
return TRUE;
int x = ppn->instList.size();
int y = m_irsList.size();
// Check for something that should not be happening
if (x != y)
{
MY_OUTPUT(L"BAD BAD BAD - Vector sizes do not match!!!", 2);
MY_ASSERT(FALSE);
return TRUE;
}
//
// For each instance, evaluate what the current state is.
//
MY_ASSERT(ppn->instList.size() == m_irsList.size());
iSize = ppn->instList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<ppn->instList.size());
pinst = &ppn->instList[i];
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
// Things to do the first evaluation that happens.
if (ppn->type == CIM_REAL32)
{
if (pirs->fPrevValue == MAX_FLOAT)
{
if (m_bUseAverage)
pirs->fPrevValue = pinst->avgValue.fValue;
else
pirs->fPrevValue = pinst->currValue.fValue;
}
}
else if (ppn->type == CIM_REAL64)
{
if (pirs->dPrevValue == MAX_DOUBLE)
{
if (m_bUseAverage)
pirs->dPrevValue = pinst->avgValue.dValue;
else
pirs->dPrevValue = pinst->currValue.dValue;
}
}
else if (ppn->type == CIM_SINT64)
{
if (pirs->i64PrevValue == MAX_I64)
{
if (m_bUseAverage)
pirs->i64PrevValue = pinst->avgValue.i64Value;
else
pirs->i64PrevValue = pinst->currValue.i64Value;
}
}
else if (ppn->type == CIM_UINT64)
{
if (pirs->ui64PrevValue == MAX_UI64)
{
if (m_bUseAverage)
pirs->ui64PrevValue = pinst->avgValue.ui64Value;
else
pirs->ui64PrevValue = pinst->currValue.ui64Value;
}
}
else if (ppn->type == CIM_UINT32)
{
if (pirs->ulPrevValue == MAX_ULONG)
{
if (m_bUseAverage)
pirs->ulPrevValue = pinst->avgValue.ulValue;
else
pirs->ulPrevValue = pinst->currValue.ulValue;
}
}
else
{
if (pirs->lPrevValue == MAX_LONG)
{
if (m_bUseAverage)
pirs->lPrevValue = pinst->avgValue.lValue;
else
pirs->lPrevValue = pinst->currValue.lValue;
}
}
if (ppn->type == CIM_REAL32)
{
pirs->fPrevPrevValue = pirs->fPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevPrevValue = pirs->dPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevPrevValue = pirs->i64PrevValue;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevPrevValue = pirs->ui64PrevValue;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevPrevValue = pirs->ulPrevValue;
}
else
{
pirs->lPrevPrevValue = pirs->lPrevValue;
}
if ((pirs->lCurrState!=HM_CRITICAL && pirs->lCurrState!=HM_WARNING && pirs->lCurrState!=HM_RESET) ||
m_lViolationToState!=pirs->lCurrState)
{
if (pirs->lCurrState!=HM_GOOD)
pirs->lCurrState = HM_GOOD;
if (m_bUseDifference)
{
if (m_bUseAverage)
{
if (ppn->type == CIM_REAL32)
{
if (pinst->avgValue.fValue < pirs->fPrevValue)
delta.fValue = pirs->fPrevValue-pinst->avgValue.fValue;
else
delta.fValue = pinst->avgValue.fValue-pirs->fPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
if (pinst->avgValue.dValue < pirs->dPrevValue)
delta.dValue = pirs->dPrevValue-pinst->avgValue.dValue;
else
delta.dValue = pinst->avgValue.dValue-pirs->dPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
if (pinst->avgValue.i64Value < pirs->i64PrevValue)
delta.i64Value = pirs->i64PrevValue-pinst->avgValue.i64Value;
else
delta.i64Value = pinst->avgValue.i64Value-pirs->i64PrevValue;
}
else if (ppn->type == CIM_UINT64)
{
if (pinst->avgValue.ui64Value < pirs->ui64PrevValue)
delta.ui64Value = pirs->ui64PrevValue-pinst->avgValue.ui64Value;
else
delta.ui64Value = pinst->avgValue.ui64Value-pirs->ui64PrevValue;
}
else if (ppn->type == CIM_UINT32)
{
if (pinst->avgValue.ulValue < pirs->ulPrevValue)
delta.ulValue = pirs->ulPrevValue-pinst->avgValue.ulValue;
else
delta.ulValue = pinst->avgValue.ulValue-pirs->ulPrevValue;
}
else
{
if (pinst->avgValue.lValue < pirs->lPrevValue)
delta.lValue = pirs->lPrevValue-pinst->avgValue.lValue;
else
delta.lValue = pinst->avgValue.lValue-pirs->lPrevValue;
}
CrossTest(ppn, pirs, L"", delta, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->avgValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->avgValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->avgValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->avgValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->avgValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->avgValue.lValue;
}
}
else
{
if (ppn->type == CIM_REAL32)
{
if (pinst->currValue.fValue < pirs->fPrevValue)
delta.fValue = pirs->fPrevValue-pinst->currValue.fValue;
else
delta.fValue = pinst->currValue.fValue-pirs->fPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
if (pinst->currValue.dValue < pirs->dPrevValue)
delta.dValue = pirs->dPrevValue-pinst->currValue.dValue;
else
delta.dValue = pinst->currValue.dValue-pirs->dPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
if (pinst->currValue.i64Value < pirs->i64PrevValue)
delta.i64Value = pirs->i64PrevValue-pinst->currValue.i64Value;
else
delta.i64Value = pinst->currValue.i64Value-pirs->i64PrevValue;
}
else if (ppn->type == CIM_UINT64)
{
if (pinst->currValue.ui64Value < pirs->ui64PrevValue)
delta.ui64Value = pirs->ui64PrevValue-pinst->currValue.ui64Value;
else
delta.ui64Value = pinst->currValue.ui64Value-pirs->ui64PrevValue;
}
else if (ppn->type == CIM_UINT32)
{
if (pinst->currValue.ulValue < pirs->ulPrevValue)
delta.ulValue = pirs->ulPrevValue-pinst->currValue.ulValue;
else
delta.ulValue = pinst->currValue.ulValue-pirs->ulPrevValue;
}
else
{
if (pinst->currValue.lValue < pirs->lPrevValue)
delta.lValue = pirs->lPrevValue-pinst->currValue.lValue;
else
delta.lValue = pinst->currValue.lValue-pirs->lPrevValue;
}
CrossTest(ppn, pirs, L"", delta, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->currValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->currValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->currValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->currValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->currValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->currValue.lValue;
}
}
}
else
{
if (m_bUseAverage)
{
CrossTest(ppn, pirs, L"", pinst->avgValue, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->avgValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->avgValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->avgValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->avgValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->avgValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->avgValue.lValue;
}
}
else
{
CrossTest(ppn, pirs, pinst->szCurrValue, pinst->currValue, pinst);
}
}
}
else
{
if (m_bUseDifference)
{
if (m_bUseAverage)
{
if (ppn->type == CIM_REAL32)
{
if (pinst->avgValue.fValue < pirs->fPrevValue)
delta.fValue = pirs->fPrevValue-pinst->avgValue.fValue;
else
delta.fValue = pinst->avgValue.fValue-pirs->fPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
if (pinst->avgValue.dValue < pirs->dPrevValue)
delta.dValue = pirs->dPrevValue-pinst->avgValue.dValue;
else
delta.dValue = pinst->avgValue.dValue-pirs->dPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
if (pinst->avgValue.i64Value < pirs->i64PrevValue)
delta.i64Value = pirs->i64PrevValue-pinst->avgValue.i64Value;
else
delta.i64Value = pinst->avgValue.i64Value-pirs->i64PrevValue;
}
else if (ppn->type == CIM_UINT64)
{
if (pinst->avgValue.ui64Value < pirs->ui64PrevValue)
delta.ui64Value = pirs->ui64PrevValue-pinst->avgValue.ui64Value;
else
delta.ui64Value = pinst->avgValue.ui64Value-pirs->ui64PrevValue;
}
else if (ppn->type == CIM_UINT32)
{
if (pinst->avgValue.ulValue < pirs->ulPrevValue)
delta.ulValue = pirs->ulPrevValue-pinst->avgValue.ulValue;
else
delta.ulValue = pinst->avgValue.ulValue-pirs->ulPrevValue;
}
else
{
if (pinst->avgValue.lValue < pirs->lPrevValue)
delta.lValue = pirs->lPrevValue-pinst->avgValue.lValue;
else
delta.lValue = pinst->avgValue.lValue-pirs->lPrevValue;
}
RearmTest(ppn, pirs, L"", delta, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->avgValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->avgValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->avgValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->avgValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->avgValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->avgValue.lValue;
}
}
else
{
if (ppn->type == CIM_REAL32)
{
if (pinst->currValue.fValue < pirs->fPrevValue)
delta.fValue = pirs->fPrevValue-pinst->currValue.fValue;
else
delta.fValue = pinst->currValue.fValue-pirs->fPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
if (pinst->currValue.dValue < pirs->dPrevValue)
delta.dValue = pirs->dPrevValue-pinst->currValue.dValue;
else
delta.dValue = pinst->currValue.dValue-pirs->dPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
if (pinst->currValue.i64Value < pirs->i64PrevValue)
delta.i64Value = pirs->i64PrevValue-pinst->currValue.i64Value;
else
delta.i64Value = pinst->currValue.i64Value-pirs->i64PrevValue;
}
else if (ppn->type == CIM_UINT64)
{
if (pinst->currValue.ui64Value < pirs->ui64PrevValue)
delta.ui64Value = pirs->ui64PrevValue-pinst->currValue.ui64Value;
else
delta.ui64Value = pinst->currValue.ui64Value-pirs->ui64PrevValue;
}
else if (ppn->type == CIM_UINT32)
{
if (pinst->currValue.ulValue < pirs->ulPrevValue)
delta.ulValue = pirs->ulPrevValue-pinst->currValue.ulValue;
else
delta.ulValue = pinst->currValue.ulValue-pirs->ulPrevValue;
}
else
{
if (pinst->currValue.lValue < pirs->lPrevValue)
delta.lValue = pirs->lPrevValue-pinst->currValue.lValue;
else
delta.lValue = pinst->currValue.lValue-pirs->lPrevValue;
}
RearmTest(ppn, pirs, L"", delta, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->currValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->currValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->currValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->currValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->currValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->currValue.lValue;
}
}
}
else
{
if (m_bUseAverage)
{
RearmTest(ppn, pirs, L"", pinst->avgValue, pinst);
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pinst->avgValue.fValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pinst->avgValue.dValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pinst->avgValue.i64Value;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pinst->avgValue.ui64Value;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pinst->avgValue.ulValue;
}
else
{
pirs->lPrevValue = pinst->avgValue.lValue;
}
}
else
{
RearmTest(ppn, pirs, pinst->szCurrValue, pinst->currValue, pinst);
}
}
}
}
//
// Set the state to the worst of all instances
//
m_lNumberNormals = 0;
m_lNumberWarnings = 0;
m_lNumberCriticals = 0;
m_lNumberChanges = 0;
m_lCurrState = -1;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
state = pirs->lCurrState;
if (state > m_lCurrState)
{
m_lCurrState = state;
}
if (state == HM_GOOD)
{
m_lNumberNormals++;
}
if (state == HM_WARNING)
{
m_lNumberWarnings++;
}
if (state == HM_CRITICAL)
{
m_lNumberCriticals++;
}
if (pirs->lPrevState != pirs->lCurrState)
{
//MY_OUTPUT2(L"CHANGE state=%d", state, 4);
m_lNumberChanges++;
}
}
// Maybe we don't have anything underneith
if (m_lCurrState == -1)
{
m_lCurrState = HM_GOOD;
if (m_lPrevState != m_lCurrState)
{
m_lNumberChanges = 1;
}
}
}
//
// the INFO state is not a state that we can transition to, but we just send out the message.
//
if (m_lCurrState == HM_INFO)
{
m_lCurrState = HM_GOOD;
}
else
{
FireEvent(FALSE);
}
return TRUE;
}
//
// If there has been a change in the state then send an event
//
BOOL CThreshold::FireEvent(BOOL bForce)
{
BOOL bRetValue = TRUE;
IWbemClassObject* pInstance = NULL;
HRESULT hRes;
IRSSTRUCT *pirs;
int i, iSize;
MY_OUTPUT(L"ENTER ***** CThreshold::FireEvent...", 2);
// A quick test to see if anything has really changed!
// Proceed if there have been changes
if (m_lViolationToState==HM_RESET && bForce==FALSE && m_lNumberChanges!=0)
{
if (m_lPrevState==HM_DISABLED || m_lPrevState==HM_SCHEDULEDOUT ||
m_lCurrState==HM_DISABLED || m_lCurrState==HM_SCHEDULEDOUT)
{
}
else
{
m_lPrevState = m_lCurrState;
iSize = m_irsList.size();
for (i = 0; i < iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lPrevState = m_lCurrState;
pirs->lCurrState = m_lCurrState;
pirs->unknownReason = 0;
}
m_lNumberChanges = 0;
return TRUE;
}
}
else
{
if (bForce || (m_lNumberChanges!=0 && m_lPrevState!=m_lCurrState))
{
}
else
{
return FALSE;
}
}
// Don't send if no-one is listening!
if (g_pThresholdEventSink == NULL)
{
return bRetValue;
}
MY_OUTPUT2(L"EVENT: Threshold State Change=%d", m_lCurrState, 4);
// Update time if there has been a change
wcscpy(m_szDTTime, m_szDTCurrTime);
wcscpy(m_szTime, m_szCurrTime);
hRes = GetHMThresholdStatusInstance(&pInstance, TRUE);
if (FAILED(hRes))
{
MY_HRESASSERT(hRes);
MY_OUTPUT(L"failed to get instance!", 1);
return FALSE;
}
else
{
//
// Place Extrinstic event in vector for sending at end of interval.
// All get sent at once.
//
mg_TEventList.push_back(pInstance);
}
MY_OUTPUT(L"EXIT ***** CThreshold::FireEvent...", 2);
return bRetValue;
}
BOOL CThreshold::CrossTest(PNSTRUCT *ppn, IRSSTRUCT *pirs, LPTSTR szTestValue, union hm_datatypes testValue, INSTSTRUCT *pinst)
{
HRESULT hRes = S_OK;
TCHAR szTemp[128] = {0};
BOOL bViolated = FALSE;
int i;
BOOL bAllDigits;
LPTSTR pszCompareValueUpper = NULL;
LPTSTR pszTestValueUpper = NULL;
int rc = 0;
char buffer[50];
MY_OUTPUT(L"ENTER ***** CrossTest...", 1);
if (pinst->bNull)
{
// pirs->lCurrState = HM_CRITICAL;
// pirs->unknownReason = HMRES_NULLVALUE;
pirs->lCrossCountTry = 0;
return TRUE;
}
if (m_lTestCondition == HM_LT)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)<0)
{
bViolated = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bViolated = (i64Value < m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue < m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue < m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value < m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value < m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bViolated = (testValue.ulValue < m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue < m_lCompareValue);
}
}
else if (m_lTestCondition == HM_GT)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)>0)
{
bViolated = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bViolated = (i64Value > m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue > m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue > m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value > m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value > m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bViolated = (testValue.ulValue > m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue > m_lCompareValue);
}
}
else if (m_lTestCondition == HM_EQ)
{
if (ppn->type == CIM_STRING)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)==0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)==0)
{
bViolated = TRUE;
}
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)==0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue == m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue == m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value == m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value == m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bViolated = (testValue.ulValue == m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue == m_lCompareValue);
}
}
else if (m_lTestCondition == HM_NE)
{
if (ppn->type == CIM_STRING)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)!=0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)!=0)
{
bViolated = TRUE;
}
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)!=0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue != m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue != m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value != m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value != m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bViolated = (testValue.ulValue != m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue != m_lCompareValue);
}
}
else if (m_lTestCondition == HM_GE)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>=0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)>=0)
{
bViolated = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bViolated = (i64Value >= m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>=0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue >= m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue >= m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value >= m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value >= m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
// Must be an integer type
bViolated = (testValue.ulValue >= m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue >= m_lCompareValue);
}
}
else if (m_lTestCondition == HM_LE)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<=0)
{
bViolated = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)<=0)
{
bViolated = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bViolated = (i64Value <= m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<=0)
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bViolated = (testValue.fValue <= m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bViolated = (testValue.dValue <= m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bViolated = (testValue.i64Value <= m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bViolated = (testValue.ui64Value <= m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bViolated = (testValue.ulValue <= m_ulCompareValue);
}
else
{
// Must be an integer type
bViolated = (testValue.lValue <= m_lCompareValue);
}
}
else if (m_lTestCondition == HM_CONTAINS)
{
if (ppn->type == CIM_STRING)
{
pszCompareValueUpper = _wcsdup(m_szCompareValue);
MY_ASSERT(pszCompareValueUpper); if (!pszCompareValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszCompareValueUpper);
pszTestValueUpper = _wcsdup(szTestValue);
MY_ASSERT(pszTestValueUpper); if (!pszTestValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszTestValueUpper);
if (wcsstr(pszTestValueUpper, pszCompareValueUpper))
{
bViolated = TRUE;
}
free(pszCompareValueUpper);
pszCompareValueUpper = NULL;
free(pszTestValueUpper);
pszTestValueUpper = NULL;
}
else if (ppn->type == CIM_DATETIME)
{
if (wcsstr(szTestValue, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
_gcvt((double)testValue.fValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL64)
{
_gcvt(testValue.dValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_SINT64)
{
_i64tow(testValue.i64Value, szTemp, 10 );
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_UINT64)
{
_ui64tow((int)testValue.ui64Value, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_UINT32)
{
_ultow(testValue.ulValue, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else
{
// Must be an integer type
_ltow(testValue.lValue, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
}
else if (m_lTestCondition == HM_NOTCONTAINS)
{
if (ppn->type == CIM_STRING)
{
pszCompareValueUpper = _wcsdup(m_szCompareValue);
MY_ASSERT(pszCompareValueUpper); if (!pszCompareValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszCompareValueUpper);
pszTestValueUpper = _wcsdup(szTestValue);
MY_ASSERT(pszTestValueUpper); if (!pszTestValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszTestValueUpper);
if (!wcsstr(pszTestValueUpper, pszCompareValueUpper))
{
bViolated = TRUE;
}
free(pszCompareValueUpper);
pszCompareValueUpper = NULL;
free(pszTestValueUpper);
pszTestValueUpper = NULL;
}
else if (ppn->type == CIM_DATETIME)
{
if (!wcsstr(szTestValue, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
_gcvt((double)testValue.fValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_REAL64)
{
_gcvt(testValue.dValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_SINT64)
{
_i64tow(testValue.i64Value, szTemp, 10 );
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_UINT64)
{
_ui64tow((int)testValue.ui64Value, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else if (ppn->type == CIM_UINT32)
{
_ultow(testValue.ulValue, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
else
{
// Must be an integer type
_ltow(testValue.lValue, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bViolated = TRUE;
}
}
}
else if (m_lTestCondition == HM_ALWAYS)
{
bViolated = TRUE;
}
else
{
MY_ASSERT(FALSE);
}
//
// Also see if the duration test has been met
//
if (bViolated)
{
if (m_lThresholdDuration==0 || (m_lThresholdDuration <= pirs->lCrossCountTry))
{
pirs->lCurrState = m_lViolationToState;
}
pirs->lCrossCountTry++;
}
else
{
pirs->lCrossCountTry = 0;
}
MY_OUTPUT(L"EXIT ***** CrossTest...", 1);
return TRUE;
error:
MY_ASSERT(FALSE);
if (pszCompareValueUpper)
free(pszCompareValueUpper);
if (pszTestValueUpper)
free(pszTestValueUpper);
Cleanup(FALSE);
m_bValidLoad = FALSE;
return FALSE;
}
BOOL CThreshold::RearmTest(PNSTRUCT *ppn, IRSSTRUCT *pirs, LPTSTR szTestValue, union hm_datatypes testValue, INSTSTRUCT *pinst)
{
HRESULT hRes = S_OK;
TCHAR szTemp[128] = {0};
BOOL bReset = FALSE;
int i;
BOOL bAllDigits;
LPTSTR pszCompareValueUpper = NULL;
LPTSTR pszTestValueUpper = NULL;
int rc = 0;
char buffer[50];
MY_OUTPUT(L"ENTER ***** RearmTest...", 1);
//XXXIf too much of this code look duplicated from the Crosstest finction, try to
//combine the two, and pass in what need!!!
if (pinst->bNull)
{
// pirs->lCurrState = HM_CRITICAL;
// pirs->unknownReason = HMRES_NULLVALUE;
pirs->lCurrState = HM_GOOD;
pirs->lCrossCountTry = 0;
return TRUE;
}
if (m_lTestCondition == HM_LT)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>=0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)>=0)
{
bReset = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bReset = (i64Value >= m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>=0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue >= m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue >= m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value >= m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value >= m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue >= m_ulCompareValue);
}
else
{
// Must be an integer type
bReset = (testValue.lValue >= m_lCompareValue);
}
}
else if (m_lTestCondition == HM_GT)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<=0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)<=0)
{
bReset = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bReset = (i64Value <= m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<=0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue <= m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue <= m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value <= m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value <= m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue <= m_ulCompareValue);
}
else
{
// Must be an integer type
bReset = (testValue.lValue <= m_lCompareValue);
}
}
else if (m_lTestCondition == HM_EQ)
{
if (ppn->type == CIM_STRING)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)!=0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)!=0)
{
bReset = TRUE;
}
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)==0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue != m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue != m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value != m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value != m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue != m_ulCompareValue);
}
else
{
bReset = (testValue.lValue != m_lCompareValue);
}
}
else if (m_lTestCondition == HM_NE)
{
if (ppn->type == CIM_STRING)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)==0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)==0)
{
bReset = TRUE;
}
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)==0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue == m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue == m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value == m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value == m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue == m_ulCompareValue);
}
else
{
// Must be an integer type
bReset = (testValue.lValue == m_lCompareValue);
}
}
else if (m_lTestCondition == HM_GE)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)<0)
{
bReset = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bReset = (i64Value < m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)<0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue < m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue < m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value < m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value < m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue < m_ulCompareValue);
}
else
{
// Must be an integer type
bReset = (testValue.lValue < m_lCompareValue);
}
}
else if (m_lTestCondition == HM_LE)
{
if (ppn->type == CIM_STRING)
{
bAllDigits = FALSE;
i = 0;
while (szTestValue[i])
{
if (i==0)
bAllDigits = TRUE;
if (!iswdigit(szTestValue[i]))
{
bAllDigits = FALSE;
break;
}
i++;
}
if (bAllDigits == FALSE)
{
if (mg_bEnglishCompare == TRUE)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>0)
{
bReset = TRUE;
}
}
else
{
if (_wcsicoll(szTestValue, m_szCompareValue)>0)
{
bReset = TRUE;
}
}
}
else
{
__int64 i64Value = _wtoi64(szTestValue);
bReset = (i64Value > m_i64CompareValue);
}
}
else if (ppn->type == CIM_DATETIME)
{
if (_wcsicmp(szTestValue, m_szCompareValue)>0)
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
bReset = (testValue.fValue > m_fCompareValue);
}
else if (ppn->type == CIM_REAL64)
{
bReset = (testValue.dValue > m_dCompareValue);
}
else if (ppn->type == CIM_SINT64)
{
bReset = (testValue.i64Value > m_i64CompareValue);
}
else if (ppn->type == CIM_UINT64)
{
bReset = (testValue.ui64Value > m_ui64CompareValue);
}
else if (ppn->type == CIM_UINT32)
{
bReset = (testValue.ulValue > m_ulCompareValue);
}
else
{
// Must be an integer type
bReset = (testValue.lValue > m_lCompareValue);
}
}
else if (m_lTestCondition == HM_CONTAINS)
{
if (ppn->type == CIM_STRING)
{
pszCompareValueUpper = _wcsdup(m_szCompareValue);
MY_ASSERT(pszCompareValueUpper); if (!pszCompareValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszCompareValueUpper);
pszTestValueUpper = _wcsdup(szTestValue);
MY_ASSERT(pszTestValueUpper); if (!pszTestValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszTestValueUpper);
if (!wcsstr(pszTestValueUpper, pszCompareValueUpper))
{
bReset = TRUE;
}
free(pszCompareValueUpper);
pszCompareValueUpper = NULL;
free(pszTestValueUpper);
pszTestValueUpper = NULL;
}
else if (ppn->type == CIM_DATETIME)
{
if (!wcsstr(szTestValue, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
_gcvt((double)testValue.fValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL64)
{
_gcvt(testValue.dValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_SINT64)
{
_i64tow(testValue.i64Value, szTemp, 10 );
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_UINT64)
{
_ui64tow((int)testValue.ui64Value, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_UINT32)
{
// Must be an integer type
_ultow(testValue.ulValue, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else
{
// Must be an integer type
_ltow(testValue.lValue, szTemp, 10);
if (!wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
}
else if (m_lTestCondition == HM_NOTCONTAINS)
{
if (ppn->type == CIM_STRING)
{
pszCompareValueUpper = _wcsdup(m_szCompareValue);
MY_ASSERT(pszCompareValueUpper); if (!pszCompareValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszCompareValueUpper);
pszTestValueUpper = _wcsdup(szTestValue);
MY_ASSERT(pszTestValueUpper); if (!pszTestValueUpper) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
_wcsupr(pszTestValueUpper);
if (wcsstr(pszTestValueUpper, pszCompareValueUpper))
{
bReset = TRUE;
}
free(pszCompareValueUpper);
pszCompareValueUpper = NULL;
free(pszTestValueUpper);
pszTestValueUpper = NULL;
}
else if (ppn->type == CIM_DATETIME)
{
if (wcsstr(szTestValue, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL32)
{
_gcvt((double)testValue.fValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_REAL64)
{
_gcvt(testValue.dValue, 7, buffer);
rc = MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, buffer, strlen(buffer), szTemp, 128);
szTemp[rc] = NULL;
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_SINT64)
{
_i64tow(testValue.i64Value, szTemp, 10 );
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_UINT64)
{
_ui64tow((int)testValue.ui64Value, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else if (ppn->type == CIM_UINT32)
{
_ultow(testValue.ulValue, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
else
{
// Must be an integer type
_ltow(testValue.lValue, szTemp, 10);
if (wcsstr(szTemp, m_szCompareValue))
{
bReset = TRUE;
}
}
}
else if (m_lTestCondition == HM_ALWAYS)
{
}
else
{
MY_ASSERT(FALSE);
}
//
// Now see if the duration test has been met
//
if (bReset)
{
pirs->lCurrState = HM_GOOD;
pirs->lCrossCountTry = 0;
}
else
{
}
MY_OUTPUT(L"EXIT ***** RearmTest...", 1);
return TRUE;
error:
MY_ASSERT(FALSE);
if (pszCompareValueUpper)
free(pszCompareValueUpper);
if (pszTestValueUpper)
free(pszTestValueUpper);
Cleanup(FALSE);
m_bValidLoad = FALSE;
return FALSE;
}
LPTSTR CThreshold::GetPropertyName(void)
{
return m_szPropertyName;
}
HRESULT CThreshold::GetHMThresholdStatusInstance(IWbemClassObject** ppThresholdInstance, BOOL bEventBased)
{
TCHAR szTemp[1024];
IWbemClassObject* pClass = NULL;
BSTR bsString = NULL;
HRESULT hRes;
DWORD dwNameLen = MAX_COMPUTERNAME_LENGTH + 2;
TCHAR szComputerName[MAX_COMPUTERNAME_LENGTH + 2];
MY_OUTPUT(_T("ENTER ***** GetHMSystemStatusInstance..."), 1);
if (bEventBased)
{
bsString = SysAllocString(L"MicrosoftHM_ThresholdStatusEvent");
}
else
{
bsString = SysAllocString(L"MicrosoftHM_ThresholdStatus");
}
MY_ASSERT(bsString); if (!bsString) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
hRes = g_pIWbemServices->GetObject(bsString, 0L, NULL, &pClass, NULL);
SysFreeString(bsString);
bsString = NULL;
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = pClass->SpawnInstance(0, ppThresholdInstance);
pClass->Release();
pClass = NULL;
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (m_bValidLoad == FALSE)
{
hRes = PutStrProperty(*ppThresholdInstance, L"GUID", m_szGUID);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = PutUint32Property(*ppThresholdInstance, L"State", HM_CRITICAL);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (g_hResLib == NULL || !LoadString(g_hResLib, HMRES_THRESHOLD_LOADFAIL, szTemp, 1024))
{
wcscpy(szTemp, L"Threshold failed to load.");
}
hRes = PutStrProperty(*ppThresholdInstance, L"Message", szTemp);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = PutStrProperty(*ppThresholdInstance, L"Name", L"...");
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
}
else
{
hRes = PutStrProperty(*ppThresholdInstance, L"GUID", m_szGUID);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = PutStrProperty(*ppThresholdInstance, L"ParentGUID", m_pParentDC->m_szGUID);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = PutStrProperty(*ppThresholdInstance, L"Name", m_szName);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (GetComputerName(szComputerName, &dwNameLen))
{
hRes = PutStrProperty(*ppThresholdInstance, L"SystemName", szComputerName);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
}
else
{
hRes = PutStrProperty(*ppThresholdInstance, L"SystemName", L"LocalMachine");
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
}
hRes = PutStrProperty(*ppThresholdInstance, L"TimeGeneratedGMT", m_szDTTime);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
hRes = PutStrProperty(*ppThresholdInstance, L"LocalTimeFormatted", m_szTime);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
if (m_lCurrState==HM_RESET || (m_lViolationToState==HM_RESET && m_lCurrState==HM_COLLECTING))
hRes = PutUint32Property(*ppThresholdInstance, L"State", HM_GOOD);
else
hRes = PutUint32Property(*ppThresholdInstance, L"State", m_lCurrState);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
}
MY_OUTPUT(_T("EXIT ***** GetHMSystemStatusInstance..."), 1);
return hRes;
error:
MY_ASSERT(FALSE);
if (bsString)
SysFreeString(bsString);
if (pClass)
pClass->Release();
Cleanup(FALSE);
m_bValidLoad = FALSE;
return hRes;
}
// For a single GetObject
HRESULT CThreshold::SendHMThresholdStatusInstance(IWbemObjectSink* pSink, LPTSTR pszGUID)
{
MY_ASSERT(pSink!=NULL);
//
// Is this the one we are looking for?
//
if (!_wcsicmp(m_szGUID, pszGUID))
{
//XXX if (m_bValidLoad == FALSE)
//XXX return WBEM_E_INVALID_OBJECT;
return SendHMThresholdStatusInstances(pSink);
}
else
{
return WBEM_S_DIFFERENT;
}
}
// This one is for enumeration of all HMThresholdStatus Instances outside of the hierarchy.
// Just the flat list.
HRESULT CThreshold::SendHMThresholdStatusInstances(IWbemObjectSink* pSink)
{
HRESULT hRes = S_OK;
IWbemClassObject* pInstance = NULL;
MY_OUTPUT(L"ENTER ***** SendHMThresholdStatusInstances...", 2);
//XXX if (m_bValidLoad == FALSE)
//XXX return WBEM_E_INVALID_OBJECT;
if (pSink == NULL)
{
MY_OUTPUT(L"CDC::SendInitialHMMachStatInstances-Invalid Sink", 1);
return WBEM_E_FAILED;
}
hRes = GetHMThresholdStatusInstance(&pInstance, FALSE);
if (SUCCEEDED(hRes))
{
hRes = pSink->Indicate(1, &pInstance);
if (FAILED(hRes) && hRes!=WBEM_E_SERVER_TOO_BUSY && hRes!=WBEM_E_CALL_CANCELLED && hRes!=WBEM_E_TRANSPORT_FAILURE)
{
MY_HRESASSERT(hRes);
MY_OUTPUT(L"SendHMThresholdStatusInstances-failed to send status!", 1);
}
pInstance->Release();
pInstance = NULL;
}
else
{
MY_HRESASSERT(hRes);
MY_OUTPUT(L":SendHMThresholdStatusInstances-failed to get instance!", 1);
}
MY_OUTPUT(L"EXIT ***** SendHMThresholdStatusInstances...", 2);
return hRes;
}
#ifdef SAVE
// For a single GetObject
HRESULT CThreshold::SendHMThresholdStatusInstanceInstance(ACTUALINSTLIST *actualInstList, PNSTRUCT *ppn, IWbemObjectSink* pSink, LPTSTR pszGUID)
{
MY_OUTPUT(L"ENTER ***** SendHMThresholdStatusInstance...", 1);
//
// Is this the one we are looking for?
//
if (!_wcsicmp(m_szGUID, pszGUID))
{
SendHMThresholdStatusInstanceInstances(actualInstList, ppn, pSink);
return TRUE;
}
MY_OUTPUT(L"EXIT ***** SendHMThresholdStatusInstance...", 1);
return FALSE;
}
// This one is for enumeration of all HMThresholdStatus Instances outside of the hierarchy.
// Just the flat list.
HRESULT CThreshold::SendHMThresholdStatusInstanceInstances(ACTUALINSTLIST *actualInstList, PNSTRUCT *ppn, IWbemObjectSink* pSink)
{
int i, iSize;
IRSSTRUCT *pirs;
INSTSTRUCT *pinst;
HRESULT hRes = S_OK;
IWbemClassObject* pObj = NULL;
ACTUALINSTSTRUCT *pActualInst;
MY_OUTPUT(L"ENTER ***** SendHMSystemStatusInstances...", 2);
if (pSink == NULL)
{
MY_OUTPUT(L"CDP::SendInitialHMMachStatInstances-Invalid Sink", 1);
return WBEM_E_INVALID_PARAMETER;
}
//XXXABC
// MY_ASSERT(m_irsList.size() == actualInstList->size());
if (_wcsicmp(m_szPropertyName, L"CollectionInstanceCount") &&
_wcsicmp(m_szPropertyName, L"CollectionErrorCode") &&
_wcsicmp(m_szPropertyName, L"CollectionErrorDescription"))
{
MY_ASSERT(m_irsList.size() == actualInstList->size());
}
iSize = m_irsList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<ppn->instList.size());
pinst = &ppn->instList[i];
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (!_wcsicmp(m_szPropertyName, L"CollectionInstanceCount") ||
!_wcsicmp(m_szPropertyName, L"CollectionErrorCode") ||
!_wcsicmp(m_szPropertyName, L"CollectionErrorDescription"))
{
pActualInst = NULL;
}
else
{
pActualInst = &(*actualInstList)[i];
}
// Provide HMMachStatus Instance
hRes = GetHMThresholdStatusInstanceInstance(pActualInst, ppn, pinst, pirs, &pObj, FALSE);
if (SUCCEEDED(hRes))
{
hRes = pSink->Indicate(1, &pObj);
if (FAILED(hRes) && hRes != WBEM_E_SERVER_TOO_BUSY)
{
MY_HRESASSERT(hRes);
MY_OUTPUT(L"SendHMSystemStatusInstances-failed to send status!", 1);
}
pObj->Release();
pObj = NULL;
}
else
{
MY_HRESASSERT(hRes);
MY_OUTPUT(L":SendHMSystemStatusInstances-failed to get instance!", 1);
}
}
MY_OUTPUT(L"EXIT ***** SendHMSystemStatusInstances...", 2);
return hRes;
}
#endif
long CThreshold::GetCurrState(void)
{
return m_lCurrState;
}
HRESULT CThreshold::FindAndModThreshold(BSTR szGUID, IWbemClassObject* pObj)
{
HRESULT hRes = S_OK;
//
// Is this us we are looking for?
//
if (!_wcsicmp(m_szGUID, szGUID))
{
hRes = LoadInstanceFromMOF(pObj, NULL, L"", TRUE);
return hRes;
}
return WBEM_S_DIFFERENT;
}
LPTSTR CThreshold::GetGUID(void)
{
return m_szGUID;
}
BOOL CThreshold::SetParentEnabledFlag(BOOL bEnabled)
{
m_bParentEnabled = bEnabled;
return TRUE;
}
BOOL CThreshold::SetParentScheduledOutFlag(BOOL bScheduledOut)
{
m_bParentScheduledOut = bScheduledOut;
return TRUE;
}
BOOL CThreshold::SetCurrState(HM_STATE state, BOOL bForce/*=FALSE*/, int reason/* = 0*/)
{
int i, iSize;
IRSSTRUCT *pirs;
if (m_pParentDC->m_deType==HM_EQDE && (m_bEnabled==FALSE || m_bParentEnabled==FALSE))
{
if (m_lCurrState!=HM_DISABLED)
{
m_lCurrState = HM_DISABLED;
m_lNumberChanges++;
}
return TRUE;
}
m_lNumberChanges = 0;
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (pirs->lCurrState != state)
{
m_lNumberChanges++;
}
pirs->lCurrState = state;
pirs->unknownReason = reason;
}
if (iSize==0 || bForce)
{
if (m_lCurrState!=state || bForce)
{
m_lNumberChanges++;
}
}
m_lCurrState = state;
return TRUE;
}
BOOL CThreshold::SetBackPrev(PNSTRUCT *ppn)
{
int i, iSize;
IRSSTRUCT *pirs;
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (ppn->type == CIM_REAL32)
{
pirs->fPrevValue = pirs->fPrevPrevValue;
}
else if (ppn->type == CIM_REAL64)
{
pirs->dPrevValue = pirs->dPrevPrevValue;
}
else if (ppn->type == CIM_SINT64)
{
pirs->i64PrevValue = pirs->i64PrevPrevValue;
}
else if (ppn->type == CIM_UINT64)
{
pirs->ui64PrevValue = pirs->ui64PrevPrevValue;
}
else if (ppn->type == CIM_UINT32)
{
pirs->ulPrevValue = pirs->ulPrevPrevValue;
}
else
{
pirs->lPrevValue = pirs->lPrevPrevValue;
}
}
return TRUE;
}
BOOL CThreshold::ResetResetThreshold(void)
{
int i, iSize;
IRSSTRUCT *pirs;
m_lCurrState = HM_RESET;
m_lPrevState = HM_RESET;
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lCurrState = HM_RESET;
pirs->lPrevState = HM_RESET;
pirs->unknownReason = 0;
}
m_lNumberChanges = 0;
return TRUE;
}
BOOL CThreshold::GetChange(void)
{
if (m_lNumberChanges!=0 && m_lPrevState!=m_lCurrState)
{
return TRUE;
}
else
{
return FALSE;
}
}
BOOL CThreshold::GetEnabledChange(void)
{
BOOL bChanged = FALSE;
if ((m_bEnabled==FALSE || m_bParentEnabled==FALSE) && m_lCurrState!=HM_DISABLED)
{
bChanged = TRUE;
}
if ((m_bEnabled==TRUE && m_bParentEnabled==TRUE) && m_lCurrState==HM_DISABLED)
{
bChanged = TRUE;
}
return bChanged;
}
HRESULT CThreshold::AddInstance(LPTSTR pszID)
{
HRESULT hRes = S_OK;
GUID guid;
IRSSTRUCT irs;
irs.szInstanceID = new TCHAR[wcslen(pszID)+2];
MY_ASSERT(irs.szInstanceID); if (!irs.szInstanceID) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
wcscpy(irs.szInstanceID, pszID);
// yyyymmddhhmmss.ssssssXUtc; X = GMT(+ or -), Utc = 3 dig. offset from UTC.")]
wcscpy(irs.szDTTime, m_szDTCurrTime);
wcscpy(irs.szTime, m_szCurrTime);
hRes = CoCreateGuid(&guid);
MY_HRESASSERT(hRes); if (hRes!=S_OK) goto error;
irs.szStatusGUID = new TCHAR[100];
MY_ASSERT(irs.szStatusGUID); if (!irs.szStatusGUID) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
StringFromGUID2(guid, irs.szStatusGUID, 100);
irs.lCurrState = HM_COLLECTING;
irs.lPrevState = HM_COLLECTING;
irs.unknownReason = 0;
irs.lCrossCountTry = 0;
irs.fPrevValue = MAX_FLOAT;
irs.dPrevValue = MAX_DOUBLE;
irs.i64PrevValue = MAX_I64;
irs.ui64PrevValue = MAX_UI64;
irs.lPrevValue = MAX_LONG;
irs.ulPrevValue = MAX_ULONG;
irs.bNeeded = TRUE;
m_irsList.push_back(irs);
return S_OK;
error:
MY_ASSERT(FALSE);
Cleanup(FALSE);
m_bValidLoad = FALSE;
return hRes;
}
BOOL CThreshold::ClearInstList(void)
{
int i, iSize;
IRSSTRUCT *pirs;
iSize = m_irsList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (pirs->szInstanceID)
{
delete [] pirs->szInstanceID;
}
if (pirs->szStatusGUID)
{
delete [] pirs->szStatusGUID;
}
}
m_irsList.clear();
return TRUE;
}
#ifdef SAVE
//
// Do string replacement for the Message property
//
BOOL CThreshold::FormatMessage(IWbemClassObject* pIRSInstance, IWbemClassObject *pEmbeddedInstance)
{
// TCHAR szMsg[1024];
BSTR PropName = NULL;
LPTSTR pszMsg = NULL;
SAFEARRAY *psaNames = NULL;
long lNum;
HRESULT hRes;
LPTSTR pszDest;
LPTSTR pszUpperMsg;
LPTSTR pszNewMsg;
LPTSTR pStr;
LPTSTR pStrStart;
TOKENSTRUCT tokenElmnt;
TOKENSTRUCT *pTokenElmnt;
REPSTRUCT repElmnt;
REPSTRUCT *pRepElmnt;
REPSTRUCT *pRepElmnt2;
REPLIST replacementList;
int i, iSize, iSizeNeeded, j;
// long lMessageRID;
long lLower, lUpper;
// long iLBound, iUBound;
// IUnknown* vUnknown;
static TOKENLIST tokenList;
// int iRet;
TOKENLIST embeddedInstTokenList;
//
// We only need to build the set of tokens one time, then from then on
// we just need to fill in the values for what the replacement strings are.
//
if (tokenList.size() == 0)
{
//
// First we build the set of tokens that we are looking for. Each property that
// is in the ThresholdStatusInstance. We build that set of strings,
// and the values to replace with.
//
//
// Now go through ThresholdInstance, which is where the Message String
// actually lives. Get that set of properties for the Instances.
//
psaNames = NULL;
hRes = pIRSInstance->GetNames(NULL, WBEM_FLAG_NONSYSTEM_ONLY, NULL, &psaNames);
if (SUCCEEDED(hRes))
{
// Get the number of properties.
SafeArrayGetLBound(psaNames, 1, &lLower);
SafeArrayGetUBound(psaNames, 1, &lUpper);
// For each property...
for (long l=lLower; l<=lUpper; l++)
{
// Get this property.
hRes = SafeArrayGetElement(psaNames, &l, &PropName);
if (SUCCEEDED(hRes))
{
// Will want to skip some that don't make sense.
if (!wcscmp(PropName, L"Message"))
{
SysFreeString(PropName);
PropName = NULL;
continue;
}
else if (!wcscmp(PropName, L"ResetMessage"))
{
SysFreeString(PropName);
PropName = NULL;
continue;
}
else if (!wcscmp(PropName, L"EmbeddedInstance"))
{
SysFreeString(PropName);
PropName = NULL;
continue;
}
tokenElmnt.szOrigToken = new TCHAR[wcslen(PropName)+1];
wcscpy(tokenElmnt.szOrigToken, PropName);
tokenElmnt.szToken = new TCHAR[wcslen(PropName)+3];
wcscpy(tokenElmnt.szToken, L"%");
wcscat(tokenElmnt.szToken, PropName);
wcscat(tokenElmnt.szToken, L"%");
_wcsupr(tokenElmnt.szToken);
tokenElmnt.szReplacementText = NULL;
tokenList.push_back(tokenElmnt);
SysFreeString(PropName);
PropName = NULL;
}
}
SafeArrayDestroy(psaNames);
}
}
//
// Populate the list of properties on the embedded instance that came from the
// Data Collector.
//
if (_wcsicmp(m_szPropertyName, L"CollectionInstanceCount") &&
_wcsicmp(m_szPropertyName, L"CollectionErrorCode") &&
_wcsicmp(m_szPropertyName, L"CollectionErrorDescription"))
{
psaNames = NULL;
MY_ASSERT(pEmbeddedInstance);
hRes = pEmbeddedInstance->GetNames(NULL, WBEM_FLAG_NONSYSTEM_ONLY, NULL, &psaNames);
if (SUCCEEDED(hRes))
{
// Get the number of properties.
SafeArrayGetLBound(psaNames, 1, &lLower);
SafeArrayGetUBound(psaNames, 1, &lUpper);
// For each property...
for (long l=lLower; l<=lUpper; l++)
{
// Get this property.
hRes = SafeArrayGetElement(psaNames, &l, &PropName);
if (SUCCEEDED(hRes))
{
tokenElmnt.szOrigToken = new TCHAR[wcslen(PropName)+1];
wcscpy(tokenElmnt.szOrigToken, PropName);
tokenElmnt.szToken = new TCHAR[wcslen(PropName)+20];
wcscpy(tokenElmnt.szToken, L"%");
wcscat(tokenElmnt.szToken, L"EmbeddedInstance.");
wcscat(tokenElmnt.szToken, PropName);
wcscat(tokenElmnt.szToken, L"%");
_wcsupr(tokenElmnt.szToken);
tokenElmnt.szReplacementText = NULL;
embeddedInstTokenList.push_back(tokenElmnt);
SysFreeString(PropName);
PropName = NULL;
}
}
SafeArrayDestroy(psaNames);
}
}
//
// Now we can fill in the values to use for the replacement strings.
//
//
// Now go through each ThresholdInstance, which is where the Message String
// actually lives. Get that set of properties of the Instance,
// And do the message formatting while there.
//
//
// Get the replacement strings for this instance
//
iSize = tokenList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<tokenList.size());
pTokenElmnt = &tokenList[i];
if (pTokenElmnt->szReplacementText != NULL)
{
delete [] pTokenElmnt->szReplacementText;
}
if (!wcscmp(pTokenElmnt->szToken, L"%TESTCONDITION%"))
{
hRes = GetUint32Property(pIRSInstance, pTokenElmnt->szOrigToken, &lNum);
MY_HRESASSERT(hRes);
MY_ASSERT(lNum<9);
pStr = new TCHAR[wcslen(condition[lNum])+1];
wcscpy(pStr, condition[lNum]);
}
else if (!wcscmp(pTokenElmnt->szToken, L"%STATE%"))
{
hRes = GetUint32Property(pIRSInstance, pTokenElmnt->szOrigToken, &lNum);
MY_HRESASSERT(hRes);
MY_ASSERT(lNum<10);
pStr = new TCHAR[wcslen(state[lNum])+1];
wcscpy(pStr, state[lNum]);
}
else
{
hRes = GetAsStrProperty(pIRSInstance, pTokenElmnt->szOrigToken, &pStr);
}
pTokenElmnt->szReplacementText = pStr;
MY_HRESASSERT(hRes);
}
//
// Get the replacement strings for this instance - Embedded
//
iSize = embeddedInstTokenList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<embeddedInstTokenList.size());
pTokenElmnt = &embeddedInstTokenList[i];
if (pTokenElmnt->szReplacementText != NULL)
{
delete [] pTokenElmnt->szReplacementText;
}
MY_ASSERT(pEmbeddedInstance);
hRes = GetAsStrProperty(pEmbeddedInstance, pTokenElmnt->szOrigToken, &pStr);
pTokenElmnt->szReplacementText = pStr;
MY_HRESASSERT(hRes);
}
//
// Now we have both lists of tokens that have replacement
// strings that go with them and the replacement strings
// that go with them
//
//
// Do formatting of Message. We replace all Variable Tags.
// Sample string -
// "Drive %InstanceName% is full. Currently at %CurrentValue%%."
//
//
// Get the origional un-formatted message first.
// To make case in-sensitive, do a _strdup and then a _wcsupr on the string
// to scan run the code on it, and then free the duplicated string.
//
// If it uses resource IDs, then get that string first, then format that!!!
hRes = GetStrProperty(pIRSInstance, L"Message", &pszMsg);
MY_HRESASSERT(hRes);
// if (!wcscmp(pszMsg, L""))
// {
// delete [] pszMsg;
// hRes = GetUint32Property(pIRSInstance, L"MessageStringRID", &lMessageRID);
// MY_HRESASSERT(hRes);
// if (m_hResLib == NULL)
// {
// wcscpy(szMsg , L"Resource DLL not found");
// }
// else
// {
// TCHAR szMsg[1024];
// int iRet;
// iRet = LoadString(m_hResLib, lMessageRID, szMsg, 1024);
// if (iRet == 0)
// {
// wcscpy(szMsg , L"Resource string not found");
// }
// }
// pszMsg = new TCHAR[wcslen(szMsg)+2];
// wcscpy(pszMsg , szMsg);
// }
// else
// {
// hRes = GetStrProperty(pIRSInstance, L"Message", &pszMsg);
// MY_HRESASSERT(hRes);
// }
pszUpperMsg = _wcsdup(pszMsg);
_wcsupr(pszUpperMsg);
//
// First loop through and find every token that needs replacing.
// Put that info into the replacement list.
//
// We will do strstr() for each special token until there are no more to find
// for each. At each find we will store the offset into the string of what
// we found. Then we sort by what came first.
//
// Quick test to see if it is worth searching
if (wcschr(pszUpperMsg, '%'))
{
iSize = tokenList.size();
pStrStart = pszUpperMsg;
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<tokenList.size());
pTokenElmnt = &tokenList[i];
pStr = wcsstr(pStrStart, pTokenElmnt->szToken);
if (pStr != NULL)
{
repElmnt.pStartStr = pszMsg+(pStr-pszUpperMsg);
repElmnt.len = wcslen(pTokenElmnt->szToken);
repElmnt.pszReplacementText = pTokenElmnt->szReplacementText;
replacementList.push_back(repElmnt);
i--;
pStrStart = pStr+1;
}
else
{
pStrStart = pszUpperMsg;
}
}
// Embedded stuff
iSize = embeddedInstTokenList.size();
pStrStart = pszUpperMsg;
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<embeddedInstTokenList.size());
pTokenElmnt = &embeddedInstTokenList[i];
pStr = wcsstr(pStrStart, pTokenElmnt->szToken);
if (pStr != NULL)
{
repElmnt.pStartStr = pszMsg+(pStr-pszUpperMsg);
repElmnt.len = wcslen(pTokenElmnt->szToken);
repElmnt.pszReplacementText = pTokenElmnt->szReplacementText;
replacementList.push_back(repElmnt);
i--;
pStrStart = pStr+1;
}
else
{
pStrStart = pszUpperMsg;
}
}
//
// Need to look for replacement strings that have not been replaced.
// Simply search for %EmbeddedCollectedInstance. and find the end % for each
// Replace them with <null>
//
if (!pEmbeddedInstance)
{
pStrStart = pszUpperMsg;
while (TRUE)
{
pStr = wcsstr(pStrStart, L"%EMBEDDEDCOLLECTEDINSTANCE.");
if (pStr != NULL)
{
repElmnt.pStartStr = pszMsg+(pStr-pszUpperMsg);
pStr2 = pStr;
while (pStr2++)
{
if (*pStr2=='%' || iswspace(*pStr2))
break;
}
if (*pStr2=='%')
{
repElmnt.len = (pStr2-pStr)+1;
repElmnt.pszReplacementText = L"<null>";
replacementList.push_back(repElmnt);
}
pStrStart = pStr+1;
}
else
{
break;
}
}
}
}
iSize = replacementList.size();
if (iSize != 0)
{
//
// Next, sort the replacement list from the first string to
// be replaced, to the last. Shell sort, Knuth, Vol13, pg. 84.
//
for (int gap=iSize/2; 0<gap; gap/=2)
{
for (i=gap; i<iSize; i++)
{
for (j=i-gap; 0<=j; j-=gap)
{
MY_ASSERT(j+gap<replacementList.size());
pRepElmnt = &replacementList[j+gap];
MY_ASSERT(j<replacementList.size());
pRepElmnt2 = &replacementList[j];
if (pRepElmnt->pStartStr < pRepElmnt2->pStartStr)
{
MY_ASSERT(j<replacementList.size());
repElmnt = replacementList[j];
MY_ASSERT(j+gap<replacementList.size());
replacementList[j] = replacementList[j+gap];
MY_ASSERT(j+gap<replacementList.size());
replacementList[j+gap] = repElmnt;
}
}
}
}
//
// Next, figure out the size needed for the Message with
// everything replaced.
//
iSizeNeeded = wcslen(pszMsg)+1;
iSize = replacementList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<replacementList.size());
pRepElmnt = &replacementList[i];
iSizeNeeded -= pRepElmnt->len;
iSizeNeeded += wcslen(pRepElmnt->pszReplacementText);
}
pszNewMsg = new TCHAR[iSizeNeeded];
*pszNewMsg = '\0';
//
// Next, we loop through and do the actual replacements.
// "Drive %InstanceName% is full. Currently at %CurrentValue%%."
//
pszDest = pszMsg;
iSize = replacementList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<replacementList.size());
pRepElmnt = &replacementList[i];
*(pRepElmnt->pStartStr) = '\0';
wcscat(pszNewMsg, pszDest);
wcscat(pszNewMsg, pRepElmnt->pszReplacementText);
//XXXWould memcpy be faster??? memcpy(pszDest, source, charCnt*sizeof(TCHAR));
pszDest = pRepElmnt->pStartStr+pRepElmnt->len;
}
wcscat(pszNewMsg, pszDest);
PutStrProperty(pIRSInstance, L"Message", pszNewMsg);
delete [] pszNewMsg;
replacementList.clear();
}
else
{
PutStrProperty(pIRSInstance, L"Message", pszMsg);
}
delete [] pszMsg;
free(pszUpperMsg);
// Free up the temporary token list
iSize = embeddedInstTokenList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<embeddedInstTokenList.size());
pTokenElmnt = &embeddedInstTokenList[i];
if (pTokenElmnt->szToken)
delete [] pTokenElmnt->szToken;
if (pTokenElmnt->szOrigToken)
delete [] pTokenElmnt->szOrigToken;
if (pTokenElmnt->szReplacementText)
delete [] pTokenElmnt->szReplacementText;
}
embeddedInstTokenList.clear();
return TRUE;
}
#endif
BOOL CThreshold::Init(void)
{
MY_OUTPUT(L"ENTER ***** CThreshold::Init...", 4);
m_bParentScheduledOut = FALSE;
m_lNumberNormals = 0;
m_lNumberWarnings = 0;
m_lNumberCriticals = 0;
m_lNumberChanges = 0;
m_lCompareValue = -99999;
m_lCurrState = HM_COLLECTING;
m_lPrevState = HM_COLLECTING;
m_szGUID = NULL;
m_szParentObjPath = NULL;
m_pParentDC = NULL;
m_szName = NULL;
m_szDescription = NULL;
m_szPropertyName = NULL;
m_szCompareValue = NULL;
m_szCreationDate = NULL;
m_szLastUpdate = NULL;
// m_szMessage = NULL;
// m_szResetMessage = NULL;
// m_lID = 0;
m_bUseAverage = FALSE;
m_bUseDifference = FALSE;
m_bUseSum = FALSE;
m_lTestCondition = 0;
m_lThresholdDuration = 0;
m_lViolationToState = 9;
m_lStartupDelay = 0;
m_bEnabled = TRUE;
m_bParentEnabled = TRUE;
// yyyymmddhhmmss.ssssssXUtc; X = GMT(+ or -), Utc = 3 dig. offset from UTC.")]
wcscpy(m_szDTTime, m_szDTCurrTime);
wcscpy(m_szTime, m_szCurrTime);
MY_OUTPUT(L"EXIT ***** CThreshold::Init...", 4);
return TRUE;
}
BOOL CThreshold::Cleanup(BOOL bSavePrevSettings)
{
int i, iSize;
IRSSTRUCT *pirs;
MY_OUTPUT(L"ENTER ***** CThreshold::Cleanup...", 4);
if (bSavePrevSettings == FALSE)
{
if (m_szParentObjPath)
{
delete [] m_szParentObjPath;
m_szParentObjPath = NULL;
}
}
if (m_szName)
{
delete [] m_szName;
m_szName = NULL;
}
if (m_szDescription)
{
delete [] m_szDescription;
m_szDescription = NULL;
}
if (m_szPropertyName)
{
delete [] m_szPropertyName;
m_szPropertyName = NULL;
}
if (m_szCompareValue)
{
delete [] m_szCompareValue;
m_szCompareValue = NULL;
}
if (m_szCreationDate)
{
delete [] m_szCreationDate;
m_szCreationDate = NULL;
}
if (m_szLastUpdate)
{
delete [] m_szLastUpdate;
m_szLastUpdate = NULL;
}
// if (m_szMessage)
// {
// delete [] m_szMessage;
// m_szMessage = NULL;
// }
// if (m_szResetMessage)
// {
// delete [] m_szResetMessage;
// m_szResetMessage = NULL;
// }
if (bSavePrevSettings)
{
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lCrossCountTry = 0;
pirs->fPrevValue = MAX_FLOAT;
pirs->dPrevValue = MAX_DOUBLE;
pirs->i64PrevValue = MAX_I64;
pirs->ui64PrevValue = MAX_UI64;
pirs->lPrevValue = MAX_LONG;
pirs->ulPrevValue = MAX_ULONG;
}
}
else
{
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (pirs->szInstanceID)
{
delete [] pirs->szInstanceID;
}
if (pirs->szStatusGUID)
{
delete [] pirs->szStatusGUID;
}
}
m_irsList.clear();
}
MY_OUTPUT(L"EXIT ***** CThreshold::Cleanup...", 4);
return TRUE;
}
//
// For when moving from one parent to another
//
#ifdef SAVE
BOOL CThreshold::ModifyAssocForMove(CBase *pNewParentBase)
{
HRESULT hRes;
TCHAR szTemp[1024];
TCHAR szNewTemp[1024];
BSTR instName;
IWbemContext *pCtx = 0;
IWbemCallResult *pResult = 0;
IWbemClassObject* pObj = NULL;
IWbemClassObject* pNewObj = NULL;
MY_OUTPUT(L"ENTER ***** CDataGroup::ModifyAssocForMove...", 4);
MY_OUTPUT2(L"m_szGUID=%s", m_szGUID, 4);
//
// Figure out the new parent path
//
if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_EQDE)
{
wcscpy(szNewTemp, L"\\\\.\\root\\cimv2\\MicrosoftHealthMonitor:MicrosoftHM_EventQueryDataCollectorConfiguration.GUID=\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PGDE)
{
wcscpy(szNewTemp, L"\\\\.\\root\\cimv2\\MicrosoftHealthMonitor:MicrosoftHM_PolledGetObjectDataCollectorConfiguration.GUID=\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PMDE)
{
wcscpy(szNewTemp, L"\\\\.\\root\\cimv2\\MicrosoftHealthMonitor:MicrosoftHM_PolledMethodDataCollectorConfiguration.GUID=\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PQDE)
{
wcscpy(szNewTemp, L"\\\\.\\root\\cimv2\\MicrosoftHealthMonitor:MicrosoftHM_PolledQueryDataCollectorConfiguration.GUID=\"");
}
else
{
MY_ASSERT(FALSE);
}
lstrcat(szNewTemp, pNewParentBase->m_szGUID);
lstrcat(szNewTemp, L"\"");
//
// Delete the association from my parent to me.
//
wcscpy(szTemp, L"\\\\.\\root\\cimv2\\MicrosoftHealthMonitor:MicrosoftHealthMonitor:MicrosoftHM_ThresholdConfiguration.GUID=\\\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\"");
instName = SysAllocString(L"MicrosoftHM_ConfigurationAssociation");
if ((hRes = g_pIWbemServices->GetObject(instName, 0L, NULL, &pObj, NULL)) != S_OK)
{
MY_HRESASSERT(hRes);
}
SysFreeString(instName);
if (pObj)
{
hRes = pObj->SpawnInstance(0, &pNewObj);
pObj->Release();
PutStrProperty(pNewObj, L"ChildPath", szTemp);
PutStrProperty(pNewObj, L"ParentPath", szNewTemp);
hRes = g_pIWbemServices->PutInstance(pNewObj, 0, NULL, &pResult);
pNewObj->Release();
pNewObj = NULL;
}
DeleteThresholdConfig(TRUE);
if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_EQDE)
{
wcscpy(szNewTemp, L"MicrosoftHM_EventQueryDataCollectorConfiguration.GUID=\\\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PGDE)
{
wcscpy(szNewTemp, L"MicrosoftHM_PolledGetObjectDataCollectorConfiguration.GUID=\\\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PMDE)
{
wcscpy(szNewTemp, L"MicrosoftHM_PolledMethodDataCollectorConfiguration.GUID=\\\"");
}
else if (pNewParentBase->m_hmStatusType == HMSTATUS_DATACOLLECTOR &&
((CDataCollector *)pNewParentBase)->m_deType == HM_PQDE)
{
wcscpy(szNewTemp, L"MicrosoftHM_PolledQueryDataCollectorConfiguration.GUID=\\\"");
}
else
{
MY_ASSERT(FALSE);
}
lstrcat(szNewTemp, pNewParentBase->m_szGUID);
lstrcat(szNewTemp, L"\\\"");
if (m_szParentObjPath)
{
delete [] m_szParentObjPath;
}
m_szParentObjPath = new TCHAR[wcslen(szNewTemp)+1];
wcscpy(m_szParentObjPath, szNewTemp);
m_pParentDC = (CDataCollector *)pNewParentBase;
MY_OUTPUT(L"EXIT ***** CDataGroup::ModifyAssocForMove...", 4);
return TRUE;
}
#endif
BOOL CThreshold::ReceiveNewChildForMove(CBase *pBase)
{
MY_ASSERT(FALSE);
return FALSE;
}
BOOL CThreshold::DeleteChildFromList(LPTSTR pszGUID)
{
MY_ASSERT(FALSE);
return FALSE;
}
BOOL CThreshold::DeleteThresholdConfig(BOOL bDeleteAssocOnly)
{
HRESULT hRes = S_OK;
TCHAR szTemp[1024];
BSTR instName = NULL;
LPTSTR pszStr = NULL;
MY_OUTPUT(L"ENTER ***** CThreshold::DeleteThresholdConfig...", 4);
MY_OUTPUT2(L"m_szGUID=%s", m_szGUID, 4);
//
// Delete the association from my parent to me.
// For some reason, we have to try twice, as we can't count on what will be there.
//
wcscpy(szTemp, L"MicrosoftHM_ConfigurationAssociation.ChildPath=\"\\\\\\\\.\\\\root\\\\cimv2\\\\MicrosoftHealthMonitor:MicrosoftHM_ThresholdConfiguration.GUID=\\\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\\\"\",ParentPath=\"\\\\\\\\.\\\\root\\\\cimv2\\\\MicrosoftHealthMonitor:");
lstrcat(szTemp, m_szParentObjPath);
lstrcat(szTemp, L"\"");
instName = SysAllocString(szTemp);
MY_ASSERT(instName); if (!instName) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
if ((hRes = g_pIWbemServices->DeleteInstance(instName, 0L, NULL, NULL)) != S_OK)
{
SysFreeString(instName);
instName = NULL;
wcscpy(szTemp, L"MicrosoftHM_ConfigurationAssociation.ChildPath=\"\\\\\\\\.\\\\root\\\\cimv2\\\\MicrosoftHealthMonitor:MicrosoftHM_ThresholdConfiguration.GUID=\\\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\\\"\",ParentPath=\"\\\\\\\\.\\\\root\\\\cimv2\\\\MicrosoftHealthMonitor:");
lstrcat(szTemp, L"MicrosoftHM_DataCollectorConfiguration.");
pszStr = wcsstr(m_szParentObjPath, L"GUID");
lstrcat(szTemp, pszStr);
lstrcat(szTemp, L"\"");
instName = SysAllocString(szTemp);
MY_ASSERT(instName); if (!instName) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
if ((hRes = g_pIWbemServices->DeleteInstance(instName, 0L, NULL, NULL)) != S_OK)
{
MY_OUTPUT2(L"Threshold delete failure GUID=%s", instName, 4);
}
}
SysFreeString(instName);
instName = NULL;
if (bDeleteAssocOnly)
{
return TRUE;
}
//
// Delete our exact instance
//
wcscpy(szTemp, L"MicrosoftHM_ThresholdConfiguration.GUID=\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\"");
instName = SysAllocString(szTemp);
MY_ASSERT(instName); if (!instName) {hRes = WBEM_E_OUT_OF_MEMORY; goto error;}
if ((hRes = g_pIWbemServices->DeleteInstance(instName, 0L, NULL, NULL)) != S_OK)
{
MY_HRESASSERT(hRes);
MY_OUTPUT2(L"Threshold delete failure GUID=%s", instName, 4);
}
SysFreeString(instName);
instName = NULL;
//
// Get rid of any associations to actions for this
//
g_pSystem->DeleteAllConfigActionAssoc(m_szGUID);
MY_OUTPUT(L"EXIT ***** CThreshold::DeleteThresholdConfig...", 4);
return TRUE;
error:
MY_ASSERT(FALSE);
if (instName)
SysFreeString(instName);
Cleanup(FALSE);
m_bValidLoad = FALSE;
return FALSE;
}
HRESULT CThreshold::Copy(ILIST* pConfigList, LPTSTR pszOldParentGUID, LPTSTR pszNewParentGUID)
{
GUID guid;
TCHAR szTemp[1024];
TCHAR szNewGUID[1024];
IWbemClassObject* pInst = NULL;
IWbemClassObject* pInstCopy = NULL;
IWbemClassObject* pInstAssocCopy = NULL;
IWbemClassObject* pObj = NULL;
HRESULT hRetRes = S_OK;
BSTR Language = NULL;
BSTR Query = NULL;
IEnumWbemClassObject *pEnum;
ULONG uReturned;
IWbemContext *pCtx = 0;
LPTSTR pszParentPath = NULL;
LPTSTR pszChildPath = NULL;
LPTSTR pStr = NULL;
MY_OUTPUT(L"ENTER ***** CThreshold::Copy...", 1);
if (m_bValidLoad == FALSE)
return WBEM_E_INVALID_OBJECT;
//
// Get the origional starting point HMConfiguration instance.
//
wcscpy(szTemp, L"MicrosoftHM_Configuration.GUID=\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\"");
hRetRes = GetWbemObjectInst(&g_pIWbemServices, szTemp, NULL, &pInst);
if (!pInst)
{
MY_HRESASSERT(hRetRes);
return hRetRes;
}
//
// Clone the instance, and change the GUID
//
hRetRes = pInst->Clone(&pInstCopy);
if (FAILED(hRetRes))
{
MY_HRESASSERT(hRetRes);
pInst->Release();
pInst = NULL;
return hRetRes;
}
hRetRes = CoCreateGuid(&guid);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
StringFromGUID2(guid, szNewGUID, 100);
hRetRes = PutStrProperty(pInstCopy, L"GUID", szNewGUID);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
pConfigList->push_back(pInstCopy);
//
// Add instance of HMConfigurationAssociation where we are the child,
// using the parent GUID passed in.
// Change the GUIDs of both the Parent and Child.
// also make sure that the machine name is not in the path, and is relative!
//
if (pszOldParentGUID != NULL)
{
Language = SysAllocString(L"WQL");
MY_ASSERT(Language); if (!Language) {hRetRes = WBEM_E_OUT_OF_MEMORY; goto error;}
wcscpy(szTemp, L"REFERENCES OF {MicrosoftHM_Configuration.GUID=\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\"} WHERE ResultClass=MicrosoftHM_ConfigurationAssociation Role=ChildPath");
Query = SysAllocString(szTemp);
MY_ASSERT(Query); if (!Query) {hRetRes = WBEM_E_OUT_OF_MEMORY; goto error;}
// Initialize IEnumWbemClassObject pointer
pEnum = 0;
// Issue query
hRetRes = g_pIWbemServices->ExecQuery(Language, Query, WBEM_FLAG_FORWARD_ONLY, 0, &pEnum);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
SysFreeString(Query);
Query = NULL;
SysFreeString(Query);
Language = NULL;
// Retrieve object in result set
pObj = NULL;
uReturned = 0;
hRetRes = pEnum->Next(0, 1, &pObj, &uReturned);
if (uReturned == 0)
{
hRetRes = WBEM_E_INVALID_OBJECT_PATH; goto error;
}
//
// Change the GUIDs
//
hRetRes = GetStrProperty(pObj, L"ParentPath", &pszParentPath);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
hRetRes = GetStrProperty(pObj, L"ChildPath", &pszChildPath);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
pStr = wcschr(pszParentPath, '\"');
if (pStr)
{
pStr++;
wcsncpy(pStr, pszNewParentGUID, wcslen(pszNewParentGUID));
}
else
{
hRetRes = WBEM_E_INVALID_OBJECT_PATH; goto error;
}
pStr = wcschr(pszChildPath, '\"');
if (pStr)
{
pStr++;
wcsncpy(pStr, szNewGUID, wcslen(szNewGUID));
}
else
{
hRetRes = WBEM_E_INVALID_OBJECT_PATH; goto error;
}
hRetRes = pObj->Clone(&pInstAssocCopy);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
hRetRes = PutStrProperty(pInstAssocCopy, L"ParentPath", pszParentPath);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
hRetRes = PutStrProperty(pInstAssocCopy, L"ChildPath", pszChildPath);
MY_HRESASSERT(hRetRes); if (hRetRes!=S_OK) goto error;
pConfigList->push_back(pInstAssocCopy);
// Release it.
pObj->Release();
pObj = NULL;
pEnum->Release();
pEnum = NULL;
delete [] pszParentPath;
pszParentPath = NULL;
delete [] pszChildPath;
pszChildPath = NULL;
}
pInst->Release();
pInst = NULL;
MY_OUTPUT(L"EXIT ***** CThreshold::Copy...", 1);
return S_OK;
error:
MY_ASSERT(FALSE);
if (pInst)
pInst->Release();
if (pObj)
pObj->Release();
if (pEnum)
pEnum->Release();
if (Query)
SysFreeString(Query);
if (Language)
SysFreeString(Language);
if (pszParentPath)
delete [] pszParentPath;
if (pszChildPath)
delete [] pszChildPath;
Cleanup(FALSE);
m_bValidLoad = FALSE;
return hRetRes;
}
CBase *CThreshold::FindImediateChildByName(LPTSTR pszName)
{
MY_ASSERT(FALSE);
return NULL;
}
BOOL CThreshold::GetNextChildName(LPTSTR pszChildName, LPTSTR pszOutName)
{
MY_ASSERT(FALSE);
return NULL;
}
CBase *CThreshold::FindPointerFromName(LPTSTR pszName)
{
MY_ASSERT(FALSE);
return NULL;
}
long CThreshold::PassBackStateIfChangedPerInstance(LPTSTR pszInstName)
{
int i, iSize;
IRSSTRUCT *pirs;
BOOL bFound = FALSE;
long state = -1;
iSize = m_irsList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (!wcscmp(pirs->szInstanceID, pszInstName))
{
if (pirs->lPrevState != pirs->lCurrState)
{
state = pirs->lCurrState;
bFound = TRUE;
break;
}
}
}
return state;
}
long CThreshold::PassBackWorstStatePerInstance(LPTSTR pszInstName)
{
int i, iSize;
IRSSTRUCT *pirs;
BOOL bFound = FALSE;
long state = -1;
iSize = m_irsList.size();
for (i=0; i<iSize; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
if (!wcscmp(pirs->szInstanceID, pszInstName))
{
state = pirs->lCurrState;
bFound = TRUE;
break;
}
}
return state;
}
BOOL CThreshold::SetPrevState(HM_STATE state)
{
int i, iSize;
IRSSTRUCT *pirs;
iSize = m_irsList.size();
for (i = 0; i < iSize ; i++)
{
MY_ASSERT(i<m_irsList.size());
pirs = &m_irsList[i];
pirs->lCurrState = state;
pirs->lPrevState = state;
}
m_lNumberChanges = 0;
m_lCurrState = state;
return TRUE;
}
BOOL CThreshold::SendReminderActionIfStateIsSame(IWbemObjectSink* pActionEventSink, IWbemObjectSink* pActionTriggerEventSink, IWbemClassObject* pActionInstance, IWbemClassObject* pActionTriggerInstance, unsigned long ulTriggerStates)
{
MY_ASSERT(FALSE);
return FALSE;
}
HRESULT CThreshold::CheckForBadLoad(void)
{
HRESULT hRetRes = S_OK;
IWbemClassObject* pObj = NULL;
TCHAR szTemp[1024];
IWbemClassObject* pInstance = NULL;
if (m_bValidLoad == FALSE)
{
wcscpy(szTemp, L"MicrosoftHM_ThresholdConfiguration.GUID=\"");
lstrcat(szTemp, m_szGUID);
lstrcat(szTemp, L"\"");
hRetRes = GetWbemObjectInst(&g_pIWbemServices, szTemp, NULL, &pObj);
if (!pObj)
{
MY_HRESASSERT(hRetRes);
return S_FALSE;
}
hRetRes = LoadInstanceFromMOF(pObj, NULL, L"", TRUE);
// Here is where we can try and send out a generic SOS if the load failed each time!!!
if (hRetRes != S_OK)
{
if (GetHMThresholdStatusInstance(&pInstance, TRUE) == S_OK)
{
mg_TEventList.push_back(pInstance);
}
}
else
{
if (GetHMThresholdStatusInstance(&pInstance, TRUE) == S_OK)
{
mg_TEventList.push_back(pInstance);
}
m_pParentDC->ResetState(TRUE, TRUE);
}
MY_HRESASSERT(hRetRes);
pObj->Release();
pObj = NULL;
return hRetRes;
}
return S_OK;
}