Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1531 lines
45 KiB

/*++
Copyright (C) 1995-2001 Microsoft Corporation
Module Name:
PROVREG.CPP
Abstract:
Defines the acutal "Put" and "Get" functions for the
registry provider. The mapping string format is;
machine|regpath[|datafield]
Examples:
local|hkey_current_user\dave
local|hkey_current_user\dave|stringdata
local|hkey_local_machine\hardware\resourcemap\hardware abstraction layer\
pc compatible eisa/isa HAL|.raw("internal")(0)(2)("interrupt.vector")
LMPGM|hkey_local_machine\clone\clone\control|CurrentUser
History:
a-davj 9-27-95 Created.
--*/
#include "precomp.h"
#include <initguid.h>
#include "perfprov.h"
#include "cvariant.h"
#include "provreg.h"
#include <genutils.h>
#include <cominit.h>
#include <userenv.h>
#define NUM_FOR_LIST 4
#define NUM_FOR_PARTIAL 2
#define TYPE_OFFSET 0
#define BUS_OFFSET 1
#define PARTIAL_OFFSET 0
#define DATA_OFFSET 1
#define NUM_LIST_ONLY 2
#define MIN_REG_TOKENS 2
#define BOGUS 0
// for certain "resource" registry item it is necessary to specify which bus
// and what part of the data union is to be returned. These strings allow
// the mapping string to specify both using text
TCHAR * cpIntTypes[] = {
TEXT("Internal"),TEXT("Isa"),TEXT("Eisa"),TEXT("MicroChannel"),TEXT("TurboChannel"),
TEXT("PCIBus"),TEXT("VMEBus"),TEXT("NuBus"),TEXT("PCMCIABus"),TEXT("CBus"),
TEXT("MPIBus"),TEXT("MPSABus"),TEXT("MaximumInterfaceType")};
struct UnionOffset
{
TCHAR * tpName;
int iOffset;
int iType;
int iSize;
} Offsets[] =
{
{TEXT("Port.Start"),0,CmResourceTypePort,8},
{TEXT("Port.PhysicalAddress"),0,CmResourceTypePort,8},
{TEXT("Port.Physical Address"),0,CmResourceTypePort,8},
{TEXT("Port.Length"),8,CmResourceTypePort,4},
{TEXT("Interrupt.Level"),0,CmResourceTypeInterrupt,4},
{TEXT("Interrupt.Vector"),4,CmResourceTypeInterrupt,4},
{TEXT("Interrupt.Affinity"),8,CmResourceTypeInterrupt,4},
{TEXT("Memory.Start"),0,CmResourceTypeMemory,8},
{TEXT("Memory.PhysicalAddress"),0,CmResourceTypeMemory,8},
{TEXT("Memory.Physical Address"),0,CmResourceTypeMemory,8},
{TEXT("Memory.Length"),8,CmResourceTypeMemory,4},
{TEXT("Dma.Channel"),0,CmResourceTypeDma,4},
{TEXT("Dma.Port"),4,CmResourceTypeDma,4},
{TEXT("Dma.Reserved1"),8,CmResourceTypeDma,4},
{TEXT("DeviceSpecificData.DataSize"),0,CmResourceTypeDeviceSpecific,4},
{TEXT("DeviceSpecificData.Data Size"),0,CmResourceTypeDeviceSpecific,4},
{TEXT("DeviceSpecificData.Reserved1"),4,CmResourceTypeDeviceSpecific,4},
{TEXT("DeviceSpecificData.Reserved2"),8,CmResourceTypeDeviceSpecific,4}
};
// Define the names of the basic registry handles
struct BaseTypes
{
LPTSTR lpName;
HKEY hKey;
} Bases[] =
{
{TEXT("HKEY_CLASSES_ROOT") , HKEY_CLASSES_ROOT},
{TEXT("HKEY_CURRENT_USER") , HKEY_CURRENT_USER},
{TEXT("HKEY_LOCAL_MACHINE") , HKEY_LOCAL_MACHINE},
{TEXT("HKEY_USERS") , HKEY_USERS},
{TEXT("HKEY_PERFORMANCE_DATA") , HKEY_PERFORMANCE_DATA},
{TEXT("HKEY_CURRENT_CONFIG") , HKEY_CURRENT_CONFIG},
{TEXT("HKEY_DYN_DATA") , HKEY_DYN_DATA}};
//***************************************************************************
//
// BOOL CImpReg::bGetOffsetData
//
// DESCRIPTION:
//
// Getting data from a resource list requires four offsets while getting
// it from a single descriptor requires the last two offsets.
//
// PARAMETERS:
//
// dwReg Indicates if we are looking for a full or partial
// resource descriptor.
// ProvObj Object containing the property context string.
// iIntType interface type - could be a string such as "eisa"
// iBus bus number
// iPartial partial descriptor number - each full descriptor
// has several partial desc.
// iDataOffset Data Offset - each partial descriptor has data in
// a union and this is the byte offset. Could be a
// sting such as "Dma.Channel"
// iDataType Data type
// iSourceSize Size of data
// dwArray no longer used, should always be 0
//
// RETURN VALUE:
//
// TRUE if data is found
//
//***************************************************************************
BOOL CImpReg::bGetOffsetData(
IN DWORD dwReg,
IN CProvObj & ProvObj,
OUT IN int & iIntType,
OUT IN int & iBus,
OUT IN int & iPartial,
OUT IN int & iDataOffset,
OUT IN int & iDataType,
OUT IN int & iSourceSize,
DWORD dwArray)
{
int iNumRequired, iListOffset;
int iLastToken = ProvObj.iGetNumTokens()-1;
// determine the number needed for the type of data being requested
if(dwReg == REG_RESOURCE_LIST)
iNumRequired = NUM_FOR_LIST;
else
iNumRequired = NUM_FOR_PARTIAL;
if(ProvObj.iGetNumExp(iLastToken) < iNumRequired)
return FALSE;
// Get the first two descriptors that are only needed in the list case.
if(dwReg == REG_RESOURCE_LIST)
{
// the first offset can either be a string such as "EISA" or a
// numeric offset.
if(ProvObj.IsExpString(iLastToken,TYPE_OFFSET))
iIntType = iLookUpInt(ProvObj.sGetStringExp(iLastToken,TYPE_OFFSET));
else
iIntType = ProvObj.iGetIntExp(iLastToken,TYPE_OFFSET,dwArray);
iBus = ProvObj.iGetIntExp(iLastToken,BUS_OFFSET,dwArray);
if(iBus == -1 || iIntType == -1)
return FALSE;
iListOffset = NUM_LIST_ONLY;
}
else
iListOffset = 0;
// Get the last two offsets which are for identenfying which partial
// descriptor and the last is for specifying the offset inside the
// union.
iPartial = ProvObj.iGetIntExp(iLastToken,PARTIAL_OFFSET+iListOffset,dwArray);
// The data offset can be a string such as "Dma.Port".
iDataType = -1; // not necessarily an error, see the function
// GetResourceDescriptorData for more info.
iSourceSize = 0;
if(ProvObj.IsExpString(iLastToken,DATA_OFFSET+iListOffset))
iDataOffset = iLookUpOffset(ProvObj.sGetStringExp(iLastToken,
DATA_OFFSET+iListOffset),
iDataType,iSourceSize);
else
iDataOffset = ProvObj.iGetIntExp(iLastToken,DATA_OFFSET+iListOffset,dwArray);
if(iPartial == -1 || iDataOffset == -1)
return FALSE;
return TRUE;
}
//***************************************************************************
//
// CImpReg::CImpReg
//
// DESCRIPTION:
//
// Constructor.
//
// PARAMETERS:
//
//***************************************************************************
CImpReg::CImpReg()
{
wcscpy(wcCLSID,L"{FE9AF5C0-D3B6-11CE-A5B6-00AA00680C3F}");
// To disable dmreg, uncomment hDMRegLib = NULL;
// To disable dmreg, uncomment return;
hDMRegLib = NULL; //LoadLibrary("DMREG.DLL");
m_hRoot = NULL;
m_hToken = NULL;
m_bLoadedProfile = false;
if(IsNT())
{
SCODE sc = WbemCoImpersonateClient();
if(sc == S_OK)
{
sc = LoadProfile(m_hToken, m_hRoot);
if(sc == S_OK)
m_bLoadedProfile = true;
WbemCoRevertToSelf();
}
}
return;
}
//***************************************************************************
//
// CImpReg::~CImpReg
//
// DESCRIPTION:
//
// Destructor.
//
//***************************************************************************
CImpReg::~CImpReg()
{
if(hDMRegLib)
FreeLibrary(hDMRegLib);
if(m_bLoadedProfile)
UnloadUserProfile(m_hToken, m_hRoot);
if(m_hToken)
CloseHandle(m_hToken);
}
//***************************************************************************
//
// CImpReg::ConvertGetDataFromDesc
//
// DESCRIPTION:
//
// Extracts the data when it is in either the REG_RESOURCE_LIST or
// REG_FULL_RESOURCE_DESCRIPTOR format. The REG_RESOURCE_LIST has a list
// of "full resource" blocks and so in that case it is necessary to first
// determine which block to extract from and after that the code is common.
//
// PARAMETERS:
//
// cVar reference to CVariant that get set with the result
// pData raw data
// dwRegType Indicates if we are looking for a full or partial
// resource descriptor.
// dwBufferSize not used
// ProvObj Object containing the property context string.
//
// RETURN VALUE:
//
// S_OK all is well
// WBEM_E_INVALID_PARAMETER couldnt find the data. Probably a bad context
// string
// otherwise, error converting the data in SetData()
//***************************************************************************
SCODE CImpReg::ConvertGetDataFromDesc(
OUT CVariant & cVar,
IN void * pData,
IN DWORD dwRegType,
IN DWORD dwBufferSize,
IN CProvObj & ProvObj)
{
int iIntType, iBus, iPartial, iDataOffset,iDataType,iSourceSize;
ULONG uCnt;
PCM_FULL_RESOURCE_DESCRIPTOR pFull;
PCM_PARTIAL_RESOURCE_DESCRIPTOR pPartial;
// Get the various operator values. A typical provider string would
// be "..|.raw("internal")(0)(2)("interrupt.vector")
if(!bGetOffsetData(dwRegType,ProvObj,iIntType,iBus,iPartial,
iDataOffset,iDataType, iSourceSize, BOGUS))
return WBEM_E_INVALID_PARAMETER;
// if list, get the right full resource block.
if(dwRegType == REG_RESOURCE_LIST)
{
PCM_RESOURCE_LIST pList = (PCM_RESOURCE_LIST)pData;
pFull = &pList->List[0];
for(uCnt=0; uCnt < pList->Count; uCnt++)
if(pFull->InterfaceType == iIntType && pFull->BusNumber == (unsigned)iBus)
break; // found it!
else
pFull = GetNextFull(pFull);
if(uCnt == pList->Count)
return WBEM_E_INVALID_PARAMETER; // specified invalid type or bus number
}
else
pFull = (PCM_FULL_RESOURCE_DESCRIPTOR)pData;
// Get the partial resource descriptor. Each full
// descriptor is a list of partial descriptors. If the
// last expression was of the form ("interrupt.vector"),
// then all the partial blocks that arn't interrupt data
// will be ignored. If the last expression just has a
// number, then the type of block is ignored.
unsigned uSoFar = 0;
pPartial = pFull->PartialResourceList.PartialDescriptors;
unsigned uLimit = pFull->PartialResourceList.Count;
for(uCnt = 0; uCnt < (unsigned)uLimit; uCnt++)
{
if(iDataType == -1 || iDataType == pPartial->Type)
{
if(uSoFar == (unsigned)iPartial)
break; // got it!
uSoFar++;
}
pPartial = GetNextPartial(pPartial);
}
if(uCnt == uLimit)
return WBEM_E_INVALID_PARAMETER; // specified invalid block
// Copy the data into a variant
char * cpTemp = (char *)&pPartial->u.Dma.Channel + iDataOffset;
if(iSourceSize == 1)
return cVar.SetData(cpTemp,VT_UI1);
else if(iSourceSize == 2)
return cVar.SetData(cpTemp,VT_I2);
else if(iSourceSize == 4)
return cVar.SetData(cpTemp,VT_I4);
else
return cVar.SetData(cpTemp,VT_I8); //todo fix this VT_I8 dont work!!!
}
//***************************************************************************
//
// SCODE CImpReg::ConvertGetDataFromSimple
//
// DESCRIPTION:
//
// Converts that data returned by the registry into the closest VARIANT
// type.
//
// PARAMETERS:
//
// cVar Reference to CVariant where result is to be put
// pData pointer to data
// dwRegType registry type, ex, REG_MUTISZ
// dwBufferSize size of data
// pClassInt Pointer to class object
// PropName Property name.
//
// RETURN VALUE:
//
// S_OK all is well
// else could fail if the "Get" on the property fails,
// or if the data conversion fails in SetData.
//***************************************************************************
SCODE CImpReg::ConvertGetDataFromSimple(
OUT CVariant & cVar,
IN void * pData,
IN DWORD dwRegType,
IN DWORD dwBufferSize,
IN IWbemClassObject FAR * pClassInt,
IN BSTR PropName)
{
TCHAR tTemp[1];
TCHAR * pTemp;
SCODE sc = S_OK;
int nSize;
char * cpTo, * cpFrom;
long vtProp;
// Note that the current winnt.h file defines the constants
// REG_DWORD_LITTLE_ENDIAN and REG_DWORD as being the same.
// The compiler considers this an error in a switch statement and so
// there is this "if" to ensure that they are handled the same even
// if someday the constants become different
if(dwRegType == REG_DWORD_LITTLE_ENDIAN)
dwRegType = REG_DWORD;
switch(dwRegType)
{
case REG_SZ:
sc = cVar.SetData(pData, VT_BSTR,dwBufferSize);
break;
case REG_EXPAND_SZ:
nSize = ExpandEnvironmentStrings((TCHAR *)pData,tTemp,1) + 1;
pTemp = new TCHAR[nSize+1];
if(pTemp == NULL)
return WBEM_E_OUT_OF_MEMORY;
ExpandEnvironmentStrings((TCHAR *)pData,pTemp,nSize+1);
sc = cVar.SetData(pTemp, VT_BSTR, nSize+1);
delete pTemp;
break;
case REG_BINARY:
if(pClassInt)
{
sc = pClassInt->Get(PropName,0,NULL,&vtProp,NULL);
if(sc != S_OK)
return sc;
}
else
vtProp = VT_UI1 | VT_ARRAY;
if((vtProp & VT_ARRAY) == 0)
sc = WBEM_E_FAILED; // Incompatible types
else
sc = cVar.SetData(pData,vtProp, dwBufferSize);
break;
case REG_DWORD:
sc = cVar.SetData(pData,VT_I4);
break;
case REG_DWORD_BIG_ENDIAN:
sc = cVar.SetData(pData,VT_I4);
cpTo = (char *)cVar.GetDataPtr();
cpFrom = (char *)pData;
cpTo[0] = cpFrom[3];
cpTo[1] = cpFrom[2];
cpTo[2] = cpFrom[1];
cpTo[3] = cpFrom[0];
break;
case REG_MULTI_SZ:
sc = cVar.SetData(pData, VT_BSTR | VT_ARRAY, dwBufferSize);
break;
default:
sc = WBEM_E_TYPE_MISMATCH;
}
return sc;
}
//***************************************************************************
//
// SCODE CImpReg::ConvertSetData
//
// DESCRIPTION:
//
// Takes WBEM type data and converts it into the proper
// form for storage in the registry. There are two distinct
// case: Binary array data and normal data.
//
// PARAMETERS:
//
// cVar Contains the source
// **ppData pointer which will be set to point to some allocate
// data. Note that the data allocated should be freed
// using CoTaskMemFree
// pdwRegType desired registry type
// pdwBufferSize size of allocated data
//
// RETURN VALUE:
//
// S_OK all is well
// WBEM_E_TYPE_MISMATCH invalied type
// else error is set by GetData()
//
//***************************************************************************
SCODE CImpReg::ConvertSetData(
IN CVariant & cVar,
OUT void **ppData,
IN DWORD * pdwRegType,
OUT DWORD * pdwBufferSize)
{
void * pRet = NULL;
SCODE sc;
switch (cVar.GetType() & ~VT_ARRAY)
{
case VT_I1:
case VT_UI1:
case VT_I2:
case VT_UI2:
case VT_I4:
case VT_UI4:
case VT_BOOL:
case VT_INT:
case VT_UINT:
// convert data into DWORD format which is equivalent to
// the REG_DWORD.
*pdwRegType = (cVar.IsArray()) ? REG_BINARY : REG_DWORD;
sc = cVar.GetData(ppData,*pdwRegType,pdwBufferSize);
break;
case VT_I8:
case VT_UI8:
case VT_LPSTR:
case VT_LPWSTR:
case VT_R4:
case VT_R8:
case VT_CY:
case VT_DATE:
case VT_BSTR:
*pdwRegType = (cVar.IsArray()) ? REG_MULTI_SZ : REG_SZ;
sc = cVar.GetData(ppData,*pdwRegType,pdwBufferSize);
break;
default:
sc = WBEM_E_TYPE_MISMATCH;
}
return sc;
}
//***************************************************************************
//
// void CImpReg::EndBatch
//
// DESCRIPTION:
//
// Called at the end of a batch of Refrest/Update Property calls. Free up
// any cached handles and then delete the handle cache.
//
// PARAMETERS:
//
// lFlags flags, not used
// pClassInt class object, not used
// *pObj pointer to our cache, free it
// bGet indicates if a Refresh or Put was being done
//
//***************************************************************************
void CImpReg::EndBatch(
long lFlags,
IWbemClassObject FAR * pClassInt,
CObject *pObj,
BOOL bGet)
{
if(pObj != NULL)
{
Free(0,(CHandleCache *)pObj);
delete pObj;
}
}
//***************************************************************************
//
// void CImpReg::Free
//
// DESCRIPTION:
//
// Frees up cached registry handles starting with position
// iStart till the end. After freeing handles, the cache object
// member function is used to delete the cache entries.
//
// PARAMETERS:
//
// iStart Where to start freeing. 0 indicates that whole
// cache should be emptied
// pCache Cache to be freed
//
//***************************************************************************
void CImpReg::Free(
IN int iStart,
IN CHandleCache * pCache)
{
HKEY hClose;
int iCurr; long lRet;
for(iCurr = pCache->lGetNumEntries()-1; iCurr >= iStart; iCurr--)
{
hClose = (HKEY)pCache->hGetHandle(iCurr);
if(hClose != NULL)
if(hDMRegLib && !pCache->IsRemote())
lRet = pClose(hClose);
else
lRet = RegCloseKey(hClose);
}
pCache->Delete(iStart); // get cache to delete the entries
}
//***************************************************************************
//
// PCM_FULL_RESOURCE_DESCRIPTOR CImpReg::GetNextFull
//
// DESCRIPTION:
//
// Returns a pointer to the next full resource descritor block. Used
// when stepping through resource data.
//
// PARAMETERS:
//
// pCurr points to current location.
//
// RETURN VALUE:
//
// see description.
//***************************************************************************
PCM_FULL_RESOURCE_DESCRIPTOR CImpReg::GetNextFull(
IN PCM_FULL_RESOURCE_DESCRIPTOR pCurr)
{
unsigned uCount;
PCM_PARTIAL_RESOURCE_DESCRIPTOR pPartial;
// Get a pointer to the first partial descriptor and then step
// through each of the partial descriptor blocks.
pPartial = &pCurr->PartialResourceList.PartialDescriptors[0];
for(uCount = 0; uCount < pCurr->PartialResourceList.Count; uCount++)
pPartial = GetNextPartial(pPartial);
return (PCM_FULL_RESOURCE_DESCRIPTOR)pPartial;
}
//***************************************************************************
//
// PCM_PARTIAL_RESOURCE_DESCRIPTOR CImpReg::GetNextPartial
//
// DESCRIPTION:
//
// Returns a pointer to the next partial resource descritor block. Used
// when stepping through resource data.
//
// PARAMETERS:
//
// pCurr Current location.
//
// RETURN VALUE:
//
// see description.
//***************************************************************************
PCM_PARTIAL_RESOURCE_DESCRIPTOR CImpReg::GetNextPartial(
IN PCM_PARTIAL_RESOURCE_DESCRIPTOR pCurr)
{
char * cpTemp = (char *)pCurr;
cpTemp += sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR);
if(pCurr->Type == CmResourceTypeDeviceSpecific)
cpTemp += pCurr->u.DeviceSpecificData.DataSize;
return (PCM_PARTIAL_RESOURCE_DESCRIPTOR)cpTemp;
}
//***************************************************************************
//
// int CImpReg::GetRoot
//
// DESCRIPTION:
//
// Gets the starting registry key. The key can be on either the local
// machine or a remote one. If there are handles in the cache, then
// the starting key can be retrieved from it in so far as the paths match.
//
// PARAMETERS:
//
// pKey Set to point to the root key
// Path registry path
// pNewMachine Machine name
// pCache Handle cache object
// iNumSkip Set to the number of tokens that matched
//
// RETURN VALUE:
//
//
//***************************************************************************
int CImpReg::GetRoot(
OUT HKEY * pKey,
IN CProvObj & Path,
IN const TCHAR * pNewMachine,
OUT IN CHandleCache * pCache,
OUT int & iNumSkip)
{
int iCnt;
*pKey = NULL;
iNumSkip = 0;
int iRet;
HKEY hRoot = NULL;
const TCHAR * pNewRoot = Path.sGetFullToken(0);
if(pNewRoot == NULL || pNewMachine == NULL)
return ERROR_UNKNOWN; // bad mapping string
// If there are handles in the cache, then they may be used if and
// only if the machines names and root keys match.
if(pCache->lGetNumEntries() > 0)
{
const TCHAR * pOldMachine = pCache->sGetString(0);
const TCHAR * pOldRoot = pCache->sGetString(1);
if(pOldMachine == NULL || pOldRoot == NULL)
return ERROR_UNKNOWN;
if(lstrcmpi(pOldMachine,pNewMachine) ||
lstrcmpi(pOldRoot,pNewRoot))
// Either machine or root key has changed, in either
// case, free all the cached handles and get a new root.
Free(0,pCache);
else
{
// Machine and root are in common. Determine how much
// else is in common, free what isnt in common, and return
// the subkey share a common path.
iNumSkip = pCache->lGetNumMatch(2,1,Path);
Free(2+iNumSkip,pCache);
*pKey = (HKEY)pCache->hGetHandle(1+iNumSkip);
return ERROR_SUCCESS;
}
}
// Got to get the root key. First, use the second token to determine
// which predefined key to use. That would be something like;
// HKEY_CURRENT_USER.
int iSize= sizeof(Bases) / sizeof(struct BaseTypes);
for(iCnt = 0; iCnt < iSize; iCnt++)
if(!lstrcmpi(pNewRoot,Bases[iCnt].lpName))
{
hRoot = Bases[iCnt].hKey;
break;
}
if(hRoot == HKEY_CURRENT_USER && m_bLoadedProfile)
hRoot = m_hRoot;
if(hRoot == NULL)
return ERROR_UNKNOWN;
// Now use the first key to determine if it is the local machine or
// another.
if(lstrcmpi(pNewMachine,TEXT("LOCAL")))
{
// Connect to a remote machine.
int iRet;
pCache->SetRemote(TRUE);
// Note that RegConnectRegistry requires a NON constant name
// pointer (ARG!) and thus a temp string must be created!!
TString sTemp;
sTemp = pNewMachine;
iRet = RegConnectRegistry(sTemp, hRoot,pKey);
sTemp.Empty();
if(iRet == 0)
iRet = pCache->lAddToList(pNewMachine,NULL); // dont need to free this
if(iRet == 0)
iRet = pCache->lAddToList(pNewRoot,*pKey); // do free this.
return iRet;
}
else
{
// Local registry. Save tokens and handles. By adding NULL to the
// cache, the handle will not be freed.
pCache->SetRemote(FALSE);
iRet = pCache->lAddToList(pNewMachine,NULL);
if(iRet == 0)
iRet = pCache->lAddToList(pNewRoot,NULL); // standard handles dont need to be freed
*pKey = hRoot;
}
return iRet;
}
//***************************************************************************
//
// int CImpReg::iLookUpInt
//
// DESCRIPTION:
//
// Searches (case insensitive) the list of interface types and
// returns the index of the match or -1 if no match.
//
// PARAMETERS:
//
// tpTest name to search for
//
// RETURN VALUE:
//
// see description.
//***************************************************************************
int CImpReg::iLookUpInt(
const TCHAR * tpTest)
{
int iCnt,iSize;
iSize = sizeof(cpIntTypes) / sizeof(TCHAR *);
for(iCnt = 0; iCnt < iSize; iCnt++)
if(tpTest != NULL && !lstrcmpi(tpTest,cpIntTypes[iCnt]))
return iCnt;
return -1;
}
//***************************************************************************
//
// int CImpReg::iLookUpOffset
//
// DESCRIPTION:
//
// Searches (case insensitive) the list data types held in
// resource descripters.
//
// PARAMETERS:
//
// tpTest String to look for
// iType Set to the type
// iTypeSize Set to the type's size
//
// RETURN VALUE:
//
// Returns index if match is found (-1 for failure) and also
// sets the referneces that specifiy which type and the type's
// size.
//
//
//***************************************************************************
int CImpReg::iLookUpOffset(
IN const TCHAR * tpTest,
OUT int & iType,
OUT int & iTypeSize)
{
int iCnt, iSize;
iSize = sizeof(Offsets) / sizeof(struct UnionOffset);
for(iCnt = 0; iCnt < iSize; iCnt++)
if(tpTest != NULL && !lstrcmpi(tpTest,Offsets[iCnt].tpName))
{
iType = Offsets[iCnt].iType;
iTypeSize = Offsets[iCnt].iSize;
return Offsets[iCnt].iOffset;
}
return -1;
}
//***************************************************************************
//
// int CImpReg::OpenKeyForWritting
//
// DESCRIPTION:
//
// Opens a registry for updates. Since updates are writes, it is
// possible that the key may need to be created. Since DM reg
// does not support RegCreateKey, then it must be called and the
// resulting key closed for the new key case.
//
// PARAMETERS:
//
// hCurr Parent key
// pName sub key to be opened/created
// pNew pointer to opened/created key
// pCache handle cache.
//
// RETURN VALUE:
//
// 0 if OK,
// else set by RegOpenKey or RegCreateKey
//
//***************************************************************************
int CImpReg::OpenKeyForWritting(
HKEY hCurr,
LPTSTR pName,
HKEY * pNew,
CHandleCache * pCache)
{
int iRet;
iRet = RegOpenKeyEx(hCurr,pName,0,KEY_WRITE,pNew);
if(iRet == 0) // all done should be normal case.
return 0;
iRet = RegOpenKeyEx(hCurr,pName,0,KEY_SET_VALUE,pNew);
if(iRet == 0) // all done should be normal case.
return 0;
// Try creating the key. If not using DM reg, just use the key from
// here
iRet = RegCreateKey(hCurr,pName,pNew);
if(hDMRegLib!=NULL && !pCache->IsRemote() && iRet == 0)
{
// Close the key and reopen
RegCloseKey(*pNew);
iRet = pOpen(hCurr,pName,0,0,KEY_QUERY_VALUE,pNew);
}
return iRet;
}
//***************************************************************************
//
// SCODE CImpReg::ReadRegData
//
// DESCRIPTION:
//
// Allocates a buffer and reads the registry. If the buffer is not large
// enough, then it is reallocated and reread.
//
// PARAMETERS:
//
// hKey Registry Key
// pName Value Name
// dwRegType Set to the type
// dwSize set to the size
// pData set to the allocated data. This must be freed via
// CoTaskmemFree()
// pCache Handle Cache.
//
// RETURN VALUE:
//
// Return: Registry value. Also sets the size and type of the registry data
//
//***************************************************************************
SCODE CImpReg::ReadRegData(
IN HKEY hKey,
IN const TCHAR * pName,
OUT DWORD & dwRegType,
OUT DWORD & dwSize,
OUT void ** pData,
IN CHandleCache * pCache)
{
void * pRet;
int iRet;
// Initially the buffer is set to hold INIT_SIZE
// bytes. If that isnt enough, the query will be
// repeated a second time
dwSize = INIT_SIZE;
pRet = (unsigned char *)CoTaskMemAlloc(dwSize);
if(pRet == NULL)
{
return WBEM_E_OUT_OF_MEMORY;
}
if(hDMRegLib && !pCache->IsRemote())
iRet = pQueryValue(hKey, (TCHAR *) pName, 0l, &dwRegType, (LPBYTE)pRet,&dwSize);
else
iRet = RegQueryValueEx(hKey, pName, 0l, &dwRegType,
(LPBYTE)pRet,&dwSize);
// If we failed for lack of space, retry once.
if(iRet == ERROR_MORE_DATA)
{
pRet= (char *)CoTaskMemRealloc(pRet, dwSize);
if(pRet == NULL)
{
return WBEM_E_OUT_OF_MEMORY;
}
if(hDMRegLib && !pCache->IsRemote())
iRet = pQueryValue(hKey, (TCHAR *) pName, 0l, &dwRegType,
(LPBYTE)pRet,&dwSize);
else
iRet = RegQueryValueEx(hKey, pName, 0l, &dwRegType,
(LPBYTE)pRet, &dwSize);
}
*pData = pRet;
return iRet;
}
//***************************************************************************
//
// SCODE CImpReg::RefreshProperty
//
// DESCRIPTION:
//
// Gets the value of a single property from the registry.
//
// PARAMETERS:
//
// lFlags flags. Not currently used
// pClassInt Instance object
// PropName Property name
// ProvObj Object containing the property context string.
// pPackage Caching object
// pVar Points to value to set
// bTesterDetails Provide extra info for testers
//
// RETURN VALUE:
//
// S_OK
// WBEM_E_INVALID_PARAMETER
// or others??
//***************************************************************************
SCODE CImpReg::RefreshProperty(
long lFlags,
IWbemClassObject FAR * pClassInt,
BSTR PropName,
CProvObj & ProvObj,
CObject * pPackage,
CVariant * pVar, BOOL bTesterDetails)
{
int iCnt;
int iNumSkip; // number of handles already provided by cache.
CHandleCache * pCache = (CHandleCache *)pPackage;
DWORD dwRegType,dwBufferSize;
void * pData = NULL;
const TCHAR * pName;
HKEY hCurr,hNew;
SCODE sc;
// Do a second parse on the provider string. The initial parse
// is done by the calling routine and it's first token is
// the path. The path token is then parsed
// into RegPath and it will have a token for each part of the
// registry path.
CProvObj RegPath(ProvObj.sGetFullToken(1),SUB_DELIM,true);
sc = RegPath.dwGetStatus(1);
if(sc != S_OK)
return WBEM_E_INVALID_PARAMETER;
// Get a handle to a place in the reg path. Note that it might be just
// a root key (such as HKEY_LOCAL_MACHINE) or it might be a subkey
// if the cache contains some open handles that can be used.
sc = GetRoot(&hCurr,RegPath,ProvObj.sGetFullToken(0),
pCache,iNumSkip);
if(sc != ERROR_SUCCESS)
return sc;
// Go down the registry path till we get to the key
for(iCnt = 1+iNumSkip; iCnt < RegPath.iGetNumTokens(); iCnt ++)
{
int iRet;
if(hDMRegLib && !pCache->IsRemote())
iRet = pOpen(hCurr,RegPath.sGetToken(iCnt),0,0,KEY_QUERY_VALUE,&hNew);
else
iRet = RegOpenKeyEx(hCurr,RegPath.sGetToken(iCnt),0,KEY_READ,&hNew);
if(iRet != ERROR_SUCCESS)
{
sc = iRet; // bad path!
return sc;
}
hCurr = hNew;
sc = pCache->lAddToList(RegPath.sGetToken(iCnt),hNew);
if(sc != ERROR_SUCCESS)
return sc;
}
// If it is a named value, get a pointer to the name
if(ProvObj.iGetNumTokens() > MIN_REG_TOKENS)
pName = ProvObj.sGetToken(MIN_REG_TOKENS);
else
pName = NULL;
// Time to get the data.
sc = ReadRegData(hCurr, pName,dwRegType, dwBufferSize, &pData,pCache);
if(sc == S_OK && dwBufferSize == 0)
sc = 2;
if(sc == S_OK)
{
CVariant cVar;
if(dwRegType == REG_RESOURCE_LIST || dwRegType == REG_FULL_RESOURCE_DESCRIPTOR)
sc = ConvertGetDataFromDesc(cVar,pData,dwRegType,dwBufferSize,ProvObj);
else
sc = ConvertGetDataFromSimple(cVar,pData,dwRegType,dwBufferSize,pClassInt,PropName);
if(sc == S_OK)
sc = cVar.DoPut(lFlags,pClassInt,PropName,pVar);
}
if(pData != NULL)
CoTaskMemFree(pData);
return sc;
}
//***************************************************************************
//
// SCODE CImpReg::StartBatch
//
// DESCRIPTION:
//
// Called at the start of a batch of Refrest/Update Property calls. Initialize
// the handle cache.
//
// PARAMETERS:
//
// lFlags flags
// pClassInt Points to an instance object
// pObj Misc object pointer
// bGet TRUE if we will be getting data.
//
// RETURN VALUE:
//
// S_OK all is well
// WBEM_E_OUT_OF_MEMORY
//***************************************************************************
SCODE CImpReg::StartBatch(
long lFlags,
IWbemClassObject FAR * pClassInt,
CObject **pObj,
BOOL bGet)
{
*pObj = new CHandleCache;
return (*pObj) ? S_OK : WBEM_E_OUT_OF_MEMORY;
}
//***************************************************************************
//
// SCODE CImpReg::UpdateProperty
//
// DESCRIPTION:
//
// Sets the value of a single property into the registry.
//
// PARAMETERS:
//
// lFlags not used
// pClassInt pointer to instance object
// PropName property name
// ProvObj Object containing the property context string.
// pPackage pointer to the handle cache
// pVar value to be set
//
// RETURN VALUE:
//
// S_OK if ok,
// otherwise misc errors.
//***************************************************************************
SCODE CImpReg::UpdateProperty(
IN long lFlags,
IN IWbemClassObject FAR * pClassInt,
IN BSTR PropName,
IN CProvObj & ProvObj,
IN CObject * pPackage,
IN CVariant * pVar)
{
int iCnt;
SCODE sc;
void * pData;
TString sProv;
CHandleCache * pCache = (CHandleCache *)pPackage;
const TCHAR * pName;
int iNumSkip;
HKEY hCurr,hNew;
DWORD dwRegType, dwBufferSize;
// Do a second parse on the provider string. The initial parse
// is done by the calling routine and it's first token is
// the path. The path token is then parsed
// into RegPath and it will have a token for each part of the
// registry path.
CProvObj RegPath(ProvObj.sGetFullToken(1),SUB_DELIM,true);
sc = RegPath.dwGetStatus(1);
if(sc != WBEM_NO_ERROR)
return sc;
// Get a handle to a place in the reg path. Note that it might be just
// a root key (such as HKEY_LOCAL_MACHINE) or it might be a subkey
// if the cache contains some open handles that can be used.
sc = GetRoot(&hCurr,RegPath,ProvObj.sGetFullToken(0),
pCache,iNumSkip);
if(sc != ERROR_SUCCESS)
return sc;
// Go down the registry path, creating keys if necessary
for(iCnt = 1+iNumSkip; iCnt < RegPath.iGetNumTokens(); iCnt ++)
{
int iRet;
iRet = OpenKeyForWritting(hCurr,(LPTSTR)RegPath.sGetToken(iCnt),
&hNew, pCache);
if(iRet != ERROR_SUCCESS)
{
sc = iRet;
return sc;
}
hCurr = hNew;
sc = pCache->lAddToList(RegPath.sGetToken(iCnt),hNew);
if(sc != ERROR_SUCCESS)
return sc;
}
// If it is a named value, get a pointer to the name
if(ProvObj.iGetNumTokens() > MIN_REG_TOKENS)
pName = ProvObj.sGetToken(MIN_REG_TOKENS);
else
pName = NULL;
// Get the data and set it
CVariant cVar;
if(pClassInt)
{
sc = pClassInt->Get(PropName,0,cVar.GetVarPtr(),NULL,NULL);
}
else if(pVar)
{
sc = OMSVariantChangeType(cVar.GetVarPtr(),
pVar->GetVarPtr(),0, pVar->GetType());
}
else
sc = WBEM_E_FAILED;
if(sc != S_OK)
return sc;
sc = ConvertSetData(cVar, &pData, &dwRegType, &dwBufferSize);
if(sc == S_OK)
{
if(hDMRegLib && !pCache->IsRemote())
sc = pSetValue(hCurr, pName, 0l,
dwRegType, (LPBYTE)pData, dwBufferSize);
else
sc = RegSetValueEx(hCurr, pName, 0l,
dwRegType, (LPBYTE)pData, dwBufferSize);
CoTaskMemFree(pData);
}
return sc;
}
//***************************************************************************
//
// SCODE CImpReg::MakeEnum
//
// DESCRIPTION:
//
// Creates a CEnumRegInfo object which can be used for enumeration
//
// PARAMETERS:
//
// pClass Pointer to the class object.
// ProvObj Object containing the property context string.
// ppInfo Set to point to an collection object which has
// the keynames of the instances.
//
// RETURN VALUE:
//
// S_OK all is well,
// WBEM_E_INVALID_PARAMETER bad context string
// WBEM_E_OUT_OF_MEMORY
// WBEM_E_FAILED couldnt open the root key
// or RegConnectRegistry failure,
// or RegOpenKeyEx failure
//
//***************************************************************************
SCODE CImpReg::MakeEnum(
IWbemClassObject * pClass,
CProvObj & ProvObj,
CEnumInfo ** ppInfo)
{
HKEY hRoot = NULL;
HKEY hKey = NULL;
HKEY hRemoteKey = NULL;
// Parse the class context
if(ProvObj.iGetNumTokens() < 2)
return WBEM_E_INVALID_PARAMETER;
TCHAR * pTemp = new TCHAR[lstrlen(ProvObj.sGetToken(1))+1];
if(pTemp == NULL)
return WBEM_E_OUT_OF_MEMORY;
lstrcpy(pTemp,ProvObj.sGetToken(1));
// Point to the root name and path. These initially in a single string
// and separated by a '\'. find the backslash and replace with a null
LPTSTR pRoot = pTemp;
LPTSTR pPath;
for(pPath = pRoot; *pPath; pPath++)
if(*pPath == TEXT('\\'))
break;
if(*pPath == NULL || pPath[1] == NULL)
{
pPath = NULL;
}
else
{
*pPath = NULL;
pPath ++;
}
// Got to get the root key. First, use the second token to determine
// which predefined key to use. That would be something like;
// HKEY_CURRENT_USER.
int iSize= sizeof(Bases) / sizeof(struct BaseTypes), iCnt;
for(iCnt = 0; iCnt < iSize; iCnt++)
if(!lstrcmpi(pRoot,Bases[iCnt].lpName))
{
hRoot = Bases[iCnt].hKey;
break;
}
if(hRoot == NULL)
{
delete pTemp;
return WBEM_E_FAILED;
}
if(hRoot == HKEY_CURRENT_USER && m_bLoadedProfile && !lstrcmpi(ProvObj.sGetToken(0),TEXT("local")))
hRoot = m_hRoot;
// If the machine is remote, hook up to it. Note that RegConnectRegistry
// requires a non constant arg for the machine name and so a temp string
// must be created.
if(lstrcmpi(ProvObj.sGetToken(0),TEXT("local")))
{
TCHAR * pMachine = new TCHAR[lstrlen(ProvObj.sGetToken(0))+1];
if(pMachine == NULL)
{
delete pTemp;
return WBEM_E_FAILED;
}
lstrcpy(pMachine,ProvObj.sGetToken(0));
int iRet = RegConnectRegistry(pMachine,hRoot,&hRemoteKey);
delete pMachine;
if(iRet != 0)
{
delete pTemp;
return iRet;
}
hRoot = hRemoteKey;
}
// Open the key down to be used for enumeration!
int iRet;
if(hDMRegLib && hRemoteKey == NULL)
iRet = pOpen(hRoot,pPath,0,0,KEY_ALL_ACCESS,&hKey);
else
iRet = RegOpenKeyEx(hRoot,pPath,0,KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS ,&hKey);
delete pTemp; // all done
if(iRet == ERROR_BAD_IMPERSONATION_LEVEL)
return WBEM_E_ACCESS_DENIED;
if(iRet != 0)
return WBEM_E_FAILED;
if(hDMRegLib && hRemoteKey == NULL)
*ppInfo = new CEnumRegInfo(hKey,hRemoteKey,pClose);
else
*ppInfo = new CEnumRegInfo(hKey,hRemoteKey,NULL);
return (*ppInfo) ? S_OK : WBEM_E_OUT_OF_MEMORY;
}
//***************************************************************************
//
// SCODE CImpReg::GetKey
//
// DESCRIPTION:
//
// Gets the key name of an entry in the enumeration list.
//
// PARAMETERS:
//
// pInfo Collection list
// iIndex Index in the collection
// ppKey Set to the string. MUST BE FREED with "delete"
//
// RETURN VALUE:
//
// S_OK if all is well
// WBEM_E_FAILED end of data
// WBEM_E_OUT_OF_MEMORY
//***************************************************************************
SCODE CImpReg::GetKey(
CEnumInfo * pInfo,
int iIndex,
LPWSTR * ppKey)
{
CEnumRegInfo * pRegInfo = (CEnumRegInfo *)pInfo;
BOOL bUseDM = (hDMRegLib && pRegInfo->GetRemoteKey() == NULL);
int iSize = 100;
LPTSTR pData = NULL;
*ppKey = NULL;
long lRet = ERROR_MORE_DATA;
while(lRet == ERROR_MORE_DATA && iSize < 1000)
{
FILETIME ft;
iSize *= 2;
if(pData)
delete pData;
pData = new TCHAR[iSize];
if(pData == NULL)
return WBEM_E_OUT_OF_MEMORY;
DWORD dwSize = iSize;
if(bUseDM)
lRet = pEnumKey(pRegInfo->GetKey(),iIndex,pData,&dwSize,NULL,NULL,NULL,&ft);
else
lRet = RegEnumKeyEx(pRegInfo->GetKey(),iIndex,pData,&dwSize,NULL,NULL,NULL,&ft);
}
if(lRet == 0)
{
// got data. if we are in unicode, just use the current buffer, otherwise
// we have to convert
#ifdef UNICODE
*ppKey = pData;
return S_OK;
#else
*ppKey = new WCHAR[lstrlen(pData)+1];
if(*ppKey == NULL)
{
delete pData;
return WBEM_E_OUT_OF_MEMORY;
}
mbstowcs(*ppKey,pData,lstrlen(pData)+1);
delete pData;
return S_OK;
#endif
}
delete pData;
return WBEM_E_FAILED;
}
//***************************************************************************
//
// CEnumRegInfo::CEnumRegInfo
//
// DESCRIPTION:
//
// Constructor.
//
// PARAMETERS:
//
// hKey Registry Key
// hRemoteKey Remote registry key
// pClose pointer to function used to close the handle
//
//***************************************************************************
CEnumRegInfo::CEnumRegInfo(
HKEY hKey,
HKEY hRemoteKey,
PCLOSE pClose)
{
m_pClose = pClose;
m_hKey = hKey;
m_hRemoteKey = hRemoteKey;
}
//***************************************************************************
//
// CEnumRegInfo::~CEnumRegInfo
//
// DESCRIPTION:
//
// Destructor.
//
//***************************************************************************
CEnumRegInfo::~CEnumRegInfo()
{
long lRet;
if(m_pClose != NULL && m_hRemoteKey == NULL)
lRet = m_pClose(m_hKey);
else
lRet = RegCloseKey(m_hKey);
if(m_hRemoteKey)
lRet = RegCloseKey(m_hRemoteKey);
}
//***************************************************************************
//
// CImpRegProp::CImpRegProp
//
// DESCRIPTION:
//
// Constructor.
//
//***************************************************************************
CImpRegProp::CImpRegProp()
{
m_pImpDynProv = new CImpReg();
}
//***************************************************************************
//
// CImpRegProp::~CImpRegProp
//
// DESCRIPTION:
//
// Destructor.
//
//***************************************************************************
CImpRegProp::~CImpRegProp()
{
if(m_pImpDynProv)
delete m_pImpDynProv;
}