Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1019 lines
26 KiB

// deque standard header
#pragma once
#ifndef _DEQUE_
#define _DEQUE_
#include <memory>
#include <stdexcept>
#pragma pack(push,8)
#pragma warning(push,3)
_STD_BEGIN
// TEMPLATE CLASS _Deque_map
template<class _Ty,
class _Alloc>
class _Deque_map
{ // ultimate base class for deque to hold allocator _Almap
protected:
_Deque_map(_Alloc _Al)
: _Almap(_Al)
{ // construct allocator from _Al
}
typedef typename _Alloc::_TEMPLATE_MEMBER rebind<_Ty>::other::pointer
_Tptr;
typename _Alloc::_TEMPLATE_MEMBER rebind<_Tptr>::other
_Almap; // allocator object for maps
};
// TEMPLATE CLASS _Deque_val
template<class _Ty,
class _Alloc>
class _Deque_val
: public _Deque_map<_Ty, _Alloc>
{ // base class for deque to hold allocator _Alval
protected:
_Deque_val(_Alloc _Al = _Alloc())
: _Deque_map<_Ty, _Alloc>(_Al), _Alval(_Al)
{ // construct allocator and base from _Al
}
typedef typename _Alloc::_TEMPLATE_MEMBER rebind<_Ty>::other
_Alty;
_Alty _Alval; // allocator object for stored elements
};
// TEMPLATE CLASS deque
template<class _Ty,
class _Ax = allocator<_Ty> >
class deque
: public _Deque_val<_Ty, _Ax>
{ // circular queue of pointers to blocks
public:
enum
{ // deque parameters
_DEQUEMAPSIZ = 8, /* minimum map size, at least 1 */
_DEQUESIZ = sizeof (_Ty) <= 1 ? 16
: sizeof (_Ty) <= 2 ? 8
: sizeof (_Ty) <= 4 ? 4
: sizeof (_Ty) <= 8 ? 2 : 1}; // elements per block
typedef deque<_Ty, _Ax> _Myt;
typedef _Deque_val<_Ty, _Ax> _Mybase;
typedef typename _Mybase::_Alty _Alloc;
typedef _Alloc allocator_type;
typedef typename _Alloc::size_type size_type;
typedef typename _Alloc::difference_type _Dift;
typedef _Dift difference_type;
typedef typename _Alloc::pointer _Tptr;
typedef typename _Alloc::const_pointer _Ctptr;
typedef _Tptr pointer;
typedef _Ctptr const_pointer;
typedef _POINTER_X(_Tptr, _Alloc) _Mapptr;
typedef typename _Alloc::reference _Reft;
typedef _Reft reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Alloc::value_type value_type;
// CLASS const_iterator
class const_iterator;
friend class const_iterator;
class const_iterator
: public _Ranit<_Ty, _Dift, _Ctptr, const_reference>
{ // iterator for nonmutable deque
public:
typedef random_access_iterator_tag iterator_category;
typedef _Ty value_type;
typedef _Dift difference_type;
typedef _Ctptr pointer;
typedef const_reference reference;
const_iterator()
: _Myoff(0), _Mydeque(0)
{ // construct with null deque pointer
}
const_iterator(difference_type _Off,
const deque<_Ty, _Alloc> *_Pdeque)
: _Myoff(_Off), _Mydeque(_Pdeque)
{ // construct with offset _Off in *_Pdeque
}
const_reference operator*() const
{ // return designated object
size_type _Block = _Myoff / _DEQUESIZ;
size_type _Off = _Myoff - _Block * _DEQUESIZ;
if (_Mydeque->_Mapsize <= _Block)
_Block -= _Mydeque->_Mapsize;
return ((_Mydeque->_Map)[_Block][_Off]);
}
_Ctptr operator->() const
{ // return pointer to class object
return (&**this);
}
const_iterator& operator++()
{ // preincrement
++_Myoff;
return (*this);
}
const_iterator operator++(int)
{ // postincrement
const_iterator _Tmp = *this;
++*this;
return (_Tmp);
}
const_iterator& operator--()
{ // predecrement
--_Myoff;
return (*this);
}
const_iterator operator--(int)
{ // postdecrement
const_iterator _Tmp = *this;
--*this;
return (_Tmp);
}
const_iterator& operator+=(difference_type _Off)
{ // increment by integer
_Myoff += _Off;
return (*this);
}
const_iterator operator+(difference_type _Off) const
{ // return this + integer
const_iterator _Tmp = *this;
return (_Tmp += _Off);
}
const_iterator& operator-=(difference_type _Off)
{ // decrement by integer
return (*this += -_Off);
}
const_iterator operator-(difference_type _Off) const
{ // return this - integer
const_iterator _Tmp = *this;
return (_Tmp -= _Off);
}
difference_type operator-(const const_iterator& _Right) const
{ // return difference of iterators
return (_Myoff - _Right._Myoff);
}
const_reference operator[](difference_type _Off) const
{ // subscript
return (*(*this + _Off));
}
bool operator==(const const_iterator& _Right) const
{ // test for iterator equality
return (_Mydeque == _Right._Mydeque && _Myoff == _Right._Myoff);
}
bool operator!=(const const_iterator& _Right) const
{ // test for iterator inequality
return (!(*this == _Right));
}
bool operator<(const const_iterator& _Right) const
{ // test if this < _Right
return (_Myoff < _Right._Myoff);
}
bool operator>(const const_iterator& _Right) const
{ // test if this > _Right
return (_Right < *this);
}
bool operator<=(const const_iterator& _Right) const
{ // test if this <= _Right
return (!(_Right < *this));
}
bool operator>=(const const_iterator& _Right) const
{ // test if this >= _Right
return (!(*this < _Right));
}
friend const_iterator operator+(difference_type _Off,
const const_iterator& _Right)
{ // return iterator + integer
return (_Right + _Off);
}
protected:
difference_type _Myoff; // offset of element in deque
const deque<_Ty, _Alloc> *_Mydeque; // pointer to deque
};
// CLASS iterator
class iterator;
friend class iterator;
class iterator
: public const_iterator
{ // iterator for mutable deque
public:
typedef random_access_iterator_tag iterator_category;
typedef _Ty value_type;
typedef _Dift difference_type;
typedef _Tptr pointer;
typedef _Reft reference;
iterator()
{ // construct with null deque pointer
}
iterator(difference_type _Off, const deque<_Ty, _Alloc> *_Pdeque)
: const_iterator(_Off, _Pdeque)
{ // construct with offset _Off in *_Pdeque
}
reference operator*() const
{ // return designated object
size_type _Block = _Myoff / _DEQUESIZ;
size_type _Off = _Myoff - _Block * _DEQUESIZ;
if (_Mydeque->_Mapsize <= _Block)
_Block -= _Mydeque->_Mapsize;
return ((_Mydeque->_Map)[_Block][_Off]);
}
_Tptr operator->() const
{ // return pointer to class object
return (&**this);
}
iterator& operator++()
{ // preincrement
++_Myoff;
return (*this);
}
iterator operator++(int)
{ // postincrement
iterator _Tmp = *this;
++*this;
return (_Tmp);
}
iterator& operator--()
{ // predecrement
--_Myoff;
return (*this);
}
iterator operator--(int)
{ // postdecrement
iterator _Tmp = *this;
--*this;
return (_Tmp);
}
iterator& operator+=(difference_type _Off)
{ // increment by integer
_Myoff += _Off;
return (*this);
}
iterator operator+(difference_type _Off) const
{ // return this + integer
iterator _Tmp = *this;
return (_Tmp += _Off);
}
iterator& operator-=(difference_type _Off)
{ // decrement by integer
return (*this += -_Off);
}
iterator operator-(difference_type _Off) const
{ // return this - integer
iterator _Tmp = *this;
return (_Tmp -= _Off);
}
difference_type operator-(const iterator& _Right) const
{ // return difference of iterators
return (_Myoff - _Right._Myoff);
}
reference operator[](difference_type _Off) const
{ // subscript
return (*(*this + _Off));
}
friend iterator operator+(difference_type _Off,
const iterator& _Right)
{ // return iterator + integer
return (_Right + _Off);
}
};
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
deque()
: _Mybase(), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct empty deque
}
explicit deque(const _Alloc& _Al)
: _Mybase(_Al), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct empty deque with allocator
}
explicit deque(size_type _Count)
: _Mybase(), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct from _Count * _Ty()
_Construct_n(_Count, _Ty());
}
deque(size_type _Count, const _Ty& _Val)
: _Mybase(), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct from _Count * _Val
_Construct_n(_Count, _Val);
}
deque(size_type _Count, const _Ty& _Val, const _Alloc& _Al)
: _Mybase(_Al), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct from _Count * _Val with allocator
_Construct_n(_Count, _Val);
}
deque(const _Myt& _Right)
: _Mybase(_Right._Alval), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct by copying _Right
_TRY_BEGIN
insert(begin(), _Right.begin(), _Right.end());
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
template<class _It>
deque(_It _First, _It _Last)
: _Mybase(), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct from [_First, _Last)
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _It>
deque(_It _First, _It _Last, const _Alloc& _Al)
: _Mybase(_Al), _Map(0),
_Mapsize(0), _Myoff(0), _Mysize(0)
{ // construct from [_First, _Last) with allocator
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _It>
void _Construct(_It _Count, _It _Val, _Int_iterator_tag)
{ // initialize from _Count * _Val
_Construct_n((size_type)_Count, (_Ty)_Val);
}
template<class _It>
void _Construct(_It _First, _It _Last, input_iterator_tag)
{ // initialize from [_First, _Last), input iterators
_TRY_BEGIN
insert(begin(), _First, _Last);
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
void _Construct_n(size_type _Count, const _Ty& _Val)
{ // construct from _Count * _Val
_TRY_BEGIN
_Insert_n(begin(), _Count, _Val);
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
~deque()
{ // destroy the deque
_Tidy();
}
_Myt& operator=(const _Myt& _Right)
{ // assign _Right
if (this == &_Right)
;
else if (_Right.size() == 0)
clear();
else if (_Right.size() <= size())
{ // new sequence not longer, assign elements and erase unused
iterator _Mid = copy(_Right.begin(), _Right.end(), begin());
erase(_Mid, end());
}
else
{ // new sequence longer, assign elements and append rest
const_iterator _Mid = _Right.begin() + size();
copy(_Right.begin(), _Mid, begin());
insert(end(), _Mid, _Right.end());
}
return (*this);
}
iterator begin()
{ // return iterator for beginning of mutable sequence
return (iterator(_Myoff, this));
}
const_iterator begin() const
{ // return iterator for beginning of nonmutable sequence
return (const_iterator(_Myoff, this));
}
iterator end()
{ // return iterator for end of mutable sequence
return (iterator(_Myoff + _Mysize, this));
}
const_iterator end() const
{ // return iterator for end of nonmutable sequence
return (const_iterator(_Myoff + _Mysize, this));
}
reverse_iterator rbegin()
{ // return iterator for beginning of reversed mutable sequence
return (reverse_iterator(end()));
}
const_reverse_iterator rbegin() const
{ // return iterator for beginning of reversed nonmutable sequence
return (const_reverse_iterator(end()));
}
reverse_iterator rend()
{ // return iterator for end of reversed mutable sequence
return (reverse_iterator(begin()));
}
const_reverse_iterator rend() const
{ // return iterator for end of reversed nonmutable sequence
return (const_reverse_iterator(begin()));
}
void resize(size_type _Newsize)
{ // determine new length, padding with _Ty() elements as needed
resize(_Newsize, _Ty());
}
void resize(size_type _Newsize, _Ty _Val)
{ // determine new length, padding with _Val elements as needed
if (size() < _Newsize)
_Insert_n(end(), _Newsize - size(), _Val);
else if (_Newsize < size())
erase(begin() + _Newsize, end());
}
size_type size() const
{ // return length of sequence
return (_Mysize);
}
size_type max_size() const
{ // return maximum possible length of sequence
return (this->_Alval.max_size());
}
bool empty() const
{ // test if sequence is empty
return (size() == 0);
}
allocator_type get_allocator() const
{ // return allocator object for values
return (this->_Alval);
}
const_reference at(size_type _Pos) const
{ // subscript nonmutable sequence with checking
if (size() <= _Pos)
_Xran();
return (*(begin() + _Pos));
}
reference at(size_type _Pos)
{ // subscript mutable sequence with checking
if (size() <= _Pos)
_Xran();
return (*(begin() + _Pos));
}
const_reference operator[](size_type _Pos) const
{ // subscript nonmutable sequence
return (*(begin() + _Pos));
}
reference operator[](size_type _Pos)
{ // subscript mutable sequence
return (*(begin() + _Pos));
}
reference front()
{ // return first element of mutable sequence
return (*begin());
}
const_reference front() const
{ // return first element of nonmutable sequence
return (*begin());
}
reference back()
{ // return last element of mutable sequence
return (*(end() - 1));
}
const_reference back() const
{ // return last element of nonmutable sequence
return (*(end() - 1));
}
void push_front(const _Ty& _Val)
{ // insert element at beginning
if (_Myoff % _DEQUESIZ == 0
&& _Mapsize <= (_Mysize + _DEQUESIZ) / _DEQUESIZ)
_Growmap(1);
size_type _Newoff = _Myoff != 0 ? _Myoff
: _Mapsize * _DEQUESIZ;
size_type _Block = --_Newoff / _DEQUESIZ;
if (_Map[_Block] == 0)
_Map[_Block] = this->_Alval.allocate(_DEQUESIZ, (void *)0);
this->_Alval.construct(_Map[_Block] + _Newoff % _DEQUESIZ, _Val);
_Myoff = _Newoff;
++_Mysize;
}
void pop_front()
{ // erase element at beginning
if (!empty())
{ // something to erase, do it
size_type _Block = _Myoff / _DEQUESIZ;
this->_Alval.destroy(_Map[_Block] + _Myoff % _DEQUESIZ);
if (_Mapsize * _DEQUESIZ <= ++_Myoff)
_Myoff = 0;
if (--_Mysize == 0)
_Myoff = 0;
}
}
void push_back(const _Ty& _Val)
{ // insert element at end
if ((_Myoff + _Mysize) % _DEQUESIZ == 0
&& _Mapsize <= (_Mysize + _DEQUESIZ) / _DEQUESIZ)
_Growmap(1);
size_type _Newoff = _Myoff + _Mysize;
size_type _Block = _Newoff / _DEQUESIZ;
if (_Mapsize <= _Block)
_Block -= _Mapsize;
if (_Map[_Block] == 0)
_Map[_Block] = this->_Alval.allocate(_DEQUESIZ, (void *)0);
this->_Alval.construct(_Map[_Block] + _Newoff % _DEQUESIZ, _Val);
++_Mysize;
}
void pop_back()
{ // erase element at end
if (!empty())
{ // something to erase, do it
size_type _Newoff = _Mysize + _Myoff - 1;
size_type _Block = _Newoff / _DEQUESIZ;
if (_Mapsize <= _Block)
_Block -= _Mapsize;
this->_Alval.destroy(_Map[_Block] + _Newoff % _DEQUESIZ);
if (--_Mysize == 0)
_Myoff = 0;
}
}
template<class _It>
void assign(_It _First, _It _Last)
{ // assign [_First, _Last)
_Assign(_First, _Last, _Iter_cat(_First));
}
template<class _It>
void _Assign(_It _Count, _It _Val, _Int_iterator_tag)
{ // assign _Count * _Val
_Assign_n((size_type)_Count, (_Ty)_Val);
}
template<class _It>
void _Assign(_It _First, _It _Last, input_iterator_tag)
{ // assign [_First, _Last), input iterators
erase(begin(), end());
insert(begin(), _First, _Last);
}
void assign(size_type _Count, const _Ty& _Val)
{ // assign _Count * _Val
_Assign_n(_Count, _Val);
}
iterator insert(iterator _Where, const _Ty& _Val)
{ // insert _Val at _Where
if (_Where == begin())
{ // insert at front
push_front(_Val);
return (begin());
}
else if (_Where == end())
{ // insert at back
push_back(_Val);
return (end() - 1);
}
else
{ // insert inside sequence
iterator _Mid;
size_type _Off = _Where - begin();
_Ty _Tmp = _Val; // in case _Val is in sequence
if (_Off < size() / 2)
{ // closer to front, push to front then copy
push_front(front());
_Mid = begin() + _Off;
copy(begin() + 2, _Mid + 1, begin() + 1);
}
else
{ // closer to back, push to back then copy
push_back(back());
_Mid = begin() + _Off;
copy_backward(_Mid, end() - 2, end() - 1);
}
*_Mid = _Tmp; // store inserted value
return (_Mid);
}
}
void insert(iterator _Where, size_type _Count, const _Ty& _Val)
{ // insert _Count * _Val at _Where
_Insert_n(_Where, _Count, _Val);
}
template<class _It>
void insert(iterator _Where, _It _First, _It _Last)
{ // insert [_First, _Last) at _Where
_Insert(_Where, _First, _Last, _Iter_cat(_First));
}
template<class _It>
void _Insert(iterator _Where, _It _Count, _It _Val,
_Int_iterator_tag)
{ // insert _Count * _Val at _Where
_Insert_n(_Where, (size_type)_Count, (_Ty)_Val);
}
template<class _It>
void _Insert(iterator _Where, _It _First, _It _Last,
input_iterator_tag)
{ // insert [_First, _Last) at _Where, input iterators
size_type _Off = _Where - begin();
for (; _First != _Last; ++_First, ++_Off)
insert(begin() + _Off, *_First);
}
template<class _It>
void _Insert(iterator _Where, _It _First, _It _Last,
bidirectional_iterator_tag)
{ // insert [_First, _Last) at _Where, bidirectional iterators
size_type _Count = 0;
_Distance(_First, _Last, _Count);
size_type _Num;
size_type _Off = _Where - begin();
size_type _Rem = _Mysize - _Off;
if (_Off < _Rem)
if (_Off < _Count) // closer to front
{ // insert longer than prefix
_It _Mid = _First;
advance(_Mid, _Count - _Off);
for (_It _Next = _Mid; _First != _Next; )
push_front(*--_Next); // push head of insert
for (_Num = _Off; 0 < _Num; --_Num)
push_front(begin()[_Count - 1]); // push prefix
copy(_Mid, _Last, begin() + _Count); // copy rest of insert
}
else
{ // insert not longer than prefix
for (_Num = _Count; 0 < _Num; --_Num)
push_front(begin()[_Count - 1]); // push part of prefix
iterator _Mid = begin() + _Count;
copy(_Mid + _Count, _Mid + _Off, _Mid); // copy rest of prefix
copy(_First, _Last, begin() + _Off); // copy in insert
}
else
if (_Rem < _Count) // closer to back
{ // insert longer than suffix
_It _Mid = _First;
advance(_Mid, _Rem);
for (_It _Next = _Mid; _Next != _Last; ++_Next)
push_back(*_Next); // push tail of insert
for (_Num = 0; _Num < _Rem; ++_Num)
push_back(begin()[_Off + _Num]); // push suffix
copy(_First, _Mid, begin() + _Off); // copy rest of insert
}
else
{ // insert not longer than suffix
for (_Num = 0; _Num < _Count; ++_Num)
push_back(begin()[_Off + _Rem
- _Count + _Num]); // push part of suffix
iterator _Mid = begin() + _Off;
copy_backward(_Mid, _Mid + _Rem - _Count,
_Mid + _Rem); // copy rest of prefix
copy(_First, _Last, _Mid); // copy in values
}
}
iterator erase(iterator _Where)
{ // erase element at _Where
return (erase(_Where, _Where + 1));
}
iterator erase(iterator _First, iterator _Last)
{ // erase [_First, _Last)
size_type _Count = _Last - _First;
size_type _Off = _First - begin();
if (_Off < (size_type)(end() - _Last))
{ // closer to front
copy_backward(begin(), _First, _Last); // copy over hole
for (; 0 < _Count; --_Count)
pop_front(); // pop copied elements
}
else
{ // closer to back
copy(_Last, end(), _First); // copy over hole
for (; 0 < _Count; --_Count)
pop_back(); // pop copied elements
}
return (_Off == 0 ? begin() : begin() + _Off);
}
void clear()
{ // erase all
_Tidy();
}
void swap(_Myt& _Right)
{ // exchange contents with _Right
if (_Alval == _Right._Alval)
{ // same allocator, swap control information
std::swap(_Map, _Right._Map);
std::swap(_Mapsize, _Right._Mapsize);
std::swap(_Myoff, _Right._Myoff);
std::swap(_Mysize, _Right._Mysize);
}
else
{ // different allocator, do multiple assigns
_Myt _Ts = *this; *this = _Right, _Right = _Ts;
}
}
friend void swap(_Myt& _Left, _Myt& _Right)
{ // swap _Left and _Right deques
_Left.swap(_Right);
}
protected:
void _Assign_n(size_type _Count, const _Ty& _Val)
{ // assign _Count * _Val
_Ty _Tmp = _Val; // in case _Val is in sequence
erase(begin(), end());
_Insert_n(begin(), _Count, _Tmp);
}
void _Insert_n(iterator _Where, size_type _Count, const _Ty& _Val)
{ // insert _Count * _Val at _Where
iterator _Mid;
size_type _Num;
size_type _Off = _Where - begin();
size_type _Rem = _Mysize - _Off;
if (_Off < _Rem)
if (_Off < _Count) // closer to front
{ // insert longer than prefix
for (_Num = _Count - _Off; 0 < _Num; --_Num)
push_front(_Val); // push excess values
for (_Num = _Off; 0 < _Num; --_Num)
push_front(begin()[_Count - 1]); // push prefix
_Mid = begin() + _Count;
fill(_Mid, _Mid + _Off, _Val); // fill in rest of values
}
else
{ // insert not longer than prefix
for (_Num = _Count; 0 < _Num; --_Num)
push_front(begin()[_Count - 1]); // push part of prefix
_Mid = begin() + _Count;
_Ty _Tmp = _Val; // in case _Val is in sequence
copy(_Mid + _Count, _Mid + _Off, _Mid); // copy rest of prefix
fill(begin() + _Off, _Mid + _Off, _Tmp); // fill in values
}
else
if (_Rem < _Count) // closer to back
{ // insert longer than suffix
for (_Num = _Count - _Rem; 0 < _Num; --_Num)
push_back(_Val); // push excess values
for (_Num = 0; _Num < _Rem; ++_Num)
push_back(begin()[_Off + _Num]); // push suffix
_Mid = begin() + _Off;
fill(_Mid, _Mid + _Rem, _Val); // fill in rest of values
}
else
{ // insert not longer than prefix
for (_Num = 0; _Num < _Count; ++_Num)
push_back(begin()[_Off + _Rem
- _Count + _Num]); // push part of prefix
_Mid = begin() + _Off;
_Ty _Tmp = _Val; // in case _Val is in sequence
copy_backward(_Mid, _Mid + _Rem - _Count,
_Mid + _Rem); // copy rest of prefix
fill(_Mid, _Mid + _Count, _Tmp); // fill in values
}
}
void _Xlen() const
{ // report length error
_THROW(length_error, "deque<T> too long");
}
void _Xran() const
{ // report range error
_THROW(out_of_range, "invalid deque<T> subscript");
}
void _Growmap(size_type _Count)
{ // grow map by _Count pointers
if (max_size() / _DEQUESIZ - _Mapsize < _Count)
_Xlen(); // result too long
size_type _Inc = _Mapsize / 2; // try to grow by 50%
if (_Inc < _DEQUEMAPSIZ)
_Inc = _DEQUEMAPSIZ;
if (_Count < _Inc && _Mapsize <= max_size() / _DEQUESIZ - _Inc)
_Count = _Inc;
size_type _Myboff = _Myoff / _DEQUESIZ;
_Mapptr _Newmap = this->_Almap.allocate(_Mapsize + _Count, (void *)0);
_Mapptr _Myptr = _Newmap + _Myboff;
_Myptr = _Uninitialized_copy(_Map + _Myboff,
_Map + _Mapsize, _Myptr, _Almap); // copy from initial to end
if (_Myboff <= _Count)
{ // increment greater than offset of initial block
_Myptr = _Uninitialized_copy(_Map,
_Map + _Myboff, _Myptr, _Almap); // copy rest of old
_Uninitialized_fill_n(_Myptr, _Count - _Myboff,
(_Tptr)0, _Almap); // clear suffix of new
_Uninitialized_fill_n(_Newmap, _Myboff,
(_Tptr)0, _Almap); // clear prefix of new
}
else
{ // increment not greater than offset of initial block
_Uninitialized_copy(_Map,
_Map + _Count, _Myptr, _Almap); // copy more old to end
_Myptr = _Uninitialized_copy(_Map + _Count,
_Map + _Myboff, _Newmap, _Almap); // copy rest of old
_Uninitialized_fill_n(_Myptr, _Count,
(_Tptr)0, _Almap); // clear rest to initial block
}
_Destroy_range(_Map + _Myboff, _Map + _Mapsize, _Almap);
this->_Almap.deallocate(_Map, _Mapsize); // free storage for old
_Map = _Newmap; // point at new
_Mapsize += _Count;
}
void _Tidy()
{ // free all storage
while (!empty())
pop_back();
for (size_type _Count = _Mapsize; 0 < _Count; )
{ // free storage for a block and destroy pointer
this->_Alval.deallocate(*(_Map + --_Count), _DEQUESIZ);
this->_Almap.destroy(_Map + _Count);
}
this->_Almap.deallocate(_Map, _Mapsize); // free storage for map
_Mapsize = 0;
_Map = 0;
}
_Mapptr _Map; // pointer to array of pointers to blocks
size_type _Mapsize; // size of map array
size_type _Myoff; // offset of initial element
size_type _Mysize; // current length of sequence
};
// deque TEMPLATE OPERATORS
template<class _Ty,
class _Alloc> inline
bool operator==(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test for deque equality
return (_Left.size() == _Right.size()
&& equal(_Left.begin(), _Left.end(), _Right.begin()));
}
template<class _Ty,
class _Alloc> inline
bool operator!=(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test for deque inequality
return (!(_Left == _Right));
}
template<class _Ty,
class _Alloc> inline
bool operator<(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test if _Left < _Right for deques
return (lexicographical_compare(_Left.begin(), _Left.end(),
_Right.begin(), _Right.end()));
}
template<class _Ty,
class _Alloc> inline
bool operator<=(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test if _Left <= _Right for deques
return (!(_Right < _Left));
}
template<class _Ty,
class _Alloc> inline
bool operator>(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test if _Left > _Right for deques
return (_Right < _Left);
}
template<class _Ty,
class _Alloc> inline
bool operator>=(const deque<_Ty, _Alloc>& _Left,
const deque<_Ty, _Alloc>& _Right)
{ // test if _Left >= _Right for deques
return (!(_Left < _Right));
}
_STD_END
#pragma warning(pop)
#pragma pack(pop)
#endif /* _DEQUE_ */
/*
* Copyright (c) 1992-2001 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/
/*
* This file is derived from software bearing the following
* restrictions:
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this
* software and its documentation for any purpose is hereby
* granted without fee, provided that the above copyright notice
* appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
V3.10:0009 */