Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

291 lines
6.8 KiB

/***
*atan.c - arctangent of x and x/y
*
* Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
*Revision History:
* 8-15-91 GDP written
* 12-30-91 GDP support IEEE exceptions
* 3-27-92 GDP support UNDERFLOW
* 02-06-95 JWM Mac merge
* 10-07-97 RDL Added IA64.
*
*******************************************************************************/
#include <math.h>
#include <trans.h>
#if defined(_M_IA64)
#pragma function(atan, atan2)
#endif
static double _atanhlp(double x);
static double const a[4] = {
0.0,
0.52359877559829887308, /* pi/6 */
1.57079632679489661923, /* pi/2 */
1.04719755119659774615 /* pi/3 */
};
/* constants */
static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */
static double const PI_OVER_TWO = 1.57079632679489661923;
static double const PI = 3.14159265358979323846;
static double const TWO_M_SQRT3 = 0.26794919243112270647;
static double const SQRT3_M_ONE = 0.73205080756887729353;
static double const SQRT3 = 1.73205080756887729353;
/* chose MAX_ARG s.t. 1/MAX_ARG does not underflow */
static double const MAX_ARG = 4.494232837155790e+307;
/* constants for rational approximation */
static double const p0 = -0.13688768894191926929e+2;
static double const p1 = -0.20505855195861651981e+2;
static double const p2 = -0.84946240351320683534e+1;
static double const p3 = -0.83758299368150059274e+0;
static double const q0 = 0.41066306682575781263e+2;
static double const q1 = 0.86157349597130242515e+2;
static double const q2 = 0.59578436142597344465e+2;
static double const q3 = 0.15024001160028576121e+2;
static double const q4 = 0.10000000000000000000e+1;
#define Q(g) (((((g) + q3) * (g) + q2) * (g) + q1) * (g) + q0)
#define R(g) ((((p3 * (g) + p2) * (g) + p1) * (g) + p0) * (g)) / Q(g)
/***
*double atan(double x) - arctangent
*
*Purpose:
*
*Entry:
*
*Exit:
*
*Exceptions:
* P, I
\*******************************************************************************/
double atan(double x)
{
uintptr_t savedcw;
double result;
/* save user fp control word */
savedcw = _maskfp();
/* check for infinity or NAN */
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
result = PI_OVER_TWO;
break;
case T_NINF:
result = -PI_OVER_TWO;
break;
case T_QNAN:
return _handle_qnan1(OP_ATAN,x,savedcw);
default: //T_SNAN
return _except1(FP_I,OP_ATAN,x,_s2qnan(x),savedcw);
}
}
if (x == 0.0)
RETURN(savedcw,x);
result = _atanhlp(x);
RETURN_INEXACT1(OP_ATAN,x,result,savedcw);
}
/***
*double atan2(double x, double y) - arctangent (x/y)
*
*Purpose:
*
*Entry:
*
*Exit:
*
*Exceptions:
* NAN or both args 0: DOMAIN error
*******************************************************************************/
double atan2(double v, double u)
{
uintptr_t savedcw;
double result;
/* save user fp control word */
savedcw = _maskfp();
/* check for infinity or NAN */
if (IS_D_SPECIAL(v) || IS_D_SPECIAL(u)){
if (IS_D_SNAN(v) || IS_D_SNAN(u)){
return _except2(FP_I,OP_ATAN2,v,u,_d_snan2(v,u),savedcw);
}
if (IS_D_QNAN(v) || IS_D_QNAN(u)){
return _handle_qnan2(OP_ATAN2,v,u,savedcw);
}
if ((IS_D_INF(v) || IS_D_MINF(v)) &&
(IS_D_INF(u) || IS_D_MINF(u))){
return _except2(FP_I,OP_ATAN2,v,u,QNAN_ATAN2,savedcw);
}
/* the other combinations of infinities will be handled
* later by the division v/u
*/
}
if (u == 0) {
if (v == 0) {
return _except2(FP_I,OP_ATAN2,v,u,QNAN_ATAN2,savedcw);
}
else {
result = PI_OVER_TWO;
}
}
else if (INTEXP(v) - INTEXP(u) > MAXEXP - 3) {
/* v/u overflow */
result = PI_OVER_TWO;
}
else {
double arg = v/u;
if (ABS(arg) < D_MIN) {
if (v == 0.0 || IS_D_INF(u) || IS_D_MINF(u)) {
result = (u < 0) ? PI : 0;
if (v < 0) {
result = -result;
}
if (result == 0) {
RETURN(savedcw, result);
}
else {
RETURN_INEXACT2(OP_ATAN2,v,u,result,savedcw);
}
}
else {
double v1, u1;
int vexp, uexp;
int exc_flags;
//
// in this case an underflow has occurred
// re-compute the result in order to raise
// an IEEE underflow exception
//
if (u < 0) {
result = v < 0 ? -PI: PI;
RETURN_INEXACT2(OP_ATAN2,v,u,result,savedcw);
}
v1 = _decomp(v, &vexp);
u1 = _decomp(u, &uexp);
result = _add_exp(v1/u1, vexp-uexp+IEEE_ADJUST);
result = ABS(result);
if (v < 0) {
result = -result;
}
// this is not a perfect solution. In the future
// we may want to have a way to let the division
// generate an exception and propagate the IEEE result
// to the user's handler
exc_flags = FP_U;
if (_statfp() & ISW_INEXACT) {
exc_flags |= FP_P;
}
return _except2(exc_flags,OP_ATAN2,v,u,result,savedcw);
}
}
else {
result = _atanhlp( ABS(arg) );
}
}
/* set sign of the result */
if (u < 0) {
result = PI - result;
}
if (v < 0) {
result = -result;
}
RETURN_INEXACT2(OP_ATAN2,v,u,result,savedcw);
}
/***
*double _atanhlp(double x) - arctangent helper
*
*Purpose:
* Compute arctangent of x, assuming x is a valid, non infinite
* number.
* The algorithm (reduction / rational approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
*
*******************************************************************************/
static double _atanhlp(double x)
{
double f,g,result;
int n;
f = ABS(x);
if (f > MAX_ARG) {
// if this step is ommited, 1.0/f might underflow in the
// following block
return x > 0.0 ? PI_OVER_TWO : -PI_OVER_TWO;
}
if (f > 1.0) {
f = 1.0/f;
n = 2;
}
else {
n = 0;
}
if (f > TWO_M_SQRT3) {
f = (((SQRT3_M_ONE * f - .5) - .5) + f) / (SQRT3 + f);
n++;
}
if (ABS(f) < EPS) {
result = f;
}
else {
g = f*f;
result = f + f * R(g);
}
if (n > 1)
result = -result;
result += a[n];
if (x < 0.0)
result = -result;
return result;
}