Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1146 lines
32 KiB

/*++
Copyright (c) 1993-1999 Microsoft Corporation
Module Name:
avl.h
Abstract:
AVL tree template class implementation
Author:
Bill Bolosky [bolosky] 1993
Revision History:
--*/
enum AVLBalance {
AVLNew, // Not yet inserted in a tree
AVLLeft, // Left side is one deeper than the right
AVLBalanced, // Left and right sides are evenly balanced
AVLRight, // Right side is one deeper than left
};
template<class elementClass> class AVLElement;
template<class elementClass> class AVLTree {
public:
AVLTree(
unsigned preallocateSize = 0);
~AVLTree(void);
elementClass *findFirstLessThanOrEqualTo(
elementClass *element);
elementClass *findFirstGreaterThan(
elementClass *element);
elementClass *findFirstGreaterThanOrEqualTo(
elementClass *element);
elementClass *findMin(void);
elementClass *findMax(void);
int empty(void);
unsigned size(void);
void check(void);
BOOLEAN insert(
elementClass *element);
void remove(
elementClass *element);
void dumpPoolStats(void);
private:
AVLElement<elementClass> *tree;
Pool *avlElementPool;
unsigned insertions;
unsigned deletions;
unsigned singleRotations;
unsigned doubleRotations;
friend class AVLElement<elementClass>;
};
// The AVLElement class would normally be declared in the avl.cpp file, except that because it's
// a template, it needs to be in the header file. It can only be accessed (including creation and
// destruction) by the AVLTree friend class.
template<class elementClass> class AVLElement {
private:
AVLElement(void);
~AVLElement(void);
void initialize(void);
void insert(
AVLTree<elementClass> *intoTree,
elementClass *element);
void remove(
AVLTree<elementClass> *fromTree);
unsigned checkAndReturnDepth(
unsigned *countedElements);
int inTree(void);
int operator<=(
AVLElement<elementClass> *peer);
int operator<(
AVLElement<elementClass> *peer);
int operator==(
AVLElement<elementClass> *peer);
int operator>=(
AVLElement<elementClass> *peer);
int operator>(
AVLElement<elementClass> *peer);
AVLElement<elementClass>
*findFirstLessThanOrEqualTo(
elementClass *element);
AVLElement<elementClass>
*findFirstGreaterThan(
elementClass *element);
AVLElement<elementClass>
*findFirstGreaterThanOrEqualTo(
elementClass *element);
void rightAdded(
AVLTree<elementClass> *tree);
void leftAdded(
AVLTree<elementClass> *tree);
void singleRotate(
AVLTree<elementClass> *tree,
AVLElement<elementClass> *child,
AVLBalance whichSide);
void doubleRotate(
AVLTree<elementClass> *tree,
AVLElement<elementClass> *child,
AVLElement<elementClass> *grandchild,
AVLBalance whichSide);
void gotOneShorter(
AVLTree<elementClass> *tree,
AVLBalance whichSide);
AVLBalance balance;
AVLElement<elementClass> *left;
AVLElement<elementClass> *right;
AVLElement<elementClass> *parent;
elementClass *element;
friend class AVLTree<elementClass>;
};
template<class elementClass> elementClass *
AVLTree<elementClass>::findFirstLessThanOrEqualTo(
elementClass *element)
{
assert(element);
if (!tree)
return(NULL);
AVLElement<elementClass> *avlElement = tree->findFirstLessThanOrEqualTo(element);
if (avlElement) {
return(avlElement->element);
} else {
return(NULL);
}
}
template<class elementClass>
AVLTree<elementClass>::AVLTree(
unsigned preallocateSize)
{
tree = NULL;
insertions = deletions = singleRotations = doubleRotations = 0;
avlElementPool = new Pool(sizeof(AVLElement<elementClass>));
if (preallocateSize && (NULL != avlElementPool)) {
avlElementPool->preAllocate(preallocateSize);
}
}
template<class elementClass> AVLTree<elementClass>::~AVLTree(void)
{
assert(tree == NULL);
if (NULL != avlElementPool) {
delete avlElementPool;
}
}
//****************************************************************************
//* *
//* Function: findFirstLessThanOrEqualTo *
//* *
//* Syntax: AVLElement * findFirstLessThanOrEqualTo( *
//* elementClass * element) *
//* *
//* Input: elementClass * element: *
//* A pointer to an element to compare against while searching. *
//* *
//* Output: AVLElement *: *
//* The element in the tree that has a value less than or equal *
//* to the one specified, or NULL on failure. *
//* *
//* Synopsis: This function finds the element in the tree that has a value *
//* less than or equal to the one specified. *
//* *
//****************************************************************************
template<class elementClass> AVLElement<elementClass> *
AVLElement<elementClass>::findFirstLessThanOrEqualTo(elementClass * element)
{
AVLElement<elementClass> * retVal = NULL;
if (*this->element == element) {
// We have a direct match (equal to). It takes precidence over the
// "first less than" part.
return this;
}
if (*this->element < element) {
// The current element is smaller than the one specified.
// This might be it, but try to find a bigger one.
if (right != NULL) {
retVal = right->findFirstLessThanOrEqualTo(element);
}
// If nothing below us (to the right) was found, then we are the
// next smallest one.
if (retVal == NULL) {
return this;
}
else {
return retVal;
}
}
else {
// The current element is bigger than the one specified.
// We have to find a smaller one.
if (left != NULL) {
return left->findFirstLessThanOrEqualTo(element);
}
else {
return NULL;
}
}
}
template<class elementClass> elementClass *
AVLTree<elementClass>::findFirstGreaterThan(
elementClass *element)
{
assert(element);
if (!tree)
return(NULL);
AVLElement<elementClass> *avlElement = tree->findFirstGreaterThan(element);
if (avlElement) {
return(avlElement->element);
} else {
return(NULL);
}
}
//****************************************************************************
//* *
//* Function: findFirstGreaterThan *
//* *
//* Syntax: AVLElement * findFirstGreaterThan(elementClass * element) *
//* *
//* Input: elementClass * element: *
//* A pointer to an element to compare against while searching. *
//* *
//* Output: AVLElement *: *
//* The element in the tree that has a vlaue greater than the *
//* one specified, or NULL on failure. *
//* *
//* Synopsis: This function finds the element in the tree that has a value *
//* greater than the one specified. *
//* *
//****************************************************************************
template<class elementClass> AVLElement<elementClass> *
AVLElement<elementClass>::findFirstGreaterThan(elementClass * element)
{
AVLElement<elementClass> * retVal = NULL;
if (*this->element > element) {
// The current element is bigger than the one specified.
// This might be it, but try to find a smaller one.
if (left != NULL) {
retVal = left->findFirstGreaterThan(element);
}
// If nothing below us (to the left) was found, then we are the
// next biggest one.
if (retVal == NULL) {
return this;
}
else {
return retVal;
}
}
else {
// The current element is smaller than (or equal) the one specified.
// We have to find a bigger one.
if (right != NULL) {
return right->findFirstGreaterThan(element);
}
else {
return NULL;
}
}
}
template<class elementClass> elementClass *
AVLTree<elementClass>::findFirstGreaterThanOrEqualTo(
elementClass *element)
{
assert(element);
if (!tree)
return(NULL);
AVLElement<elementClass> *avlElement = tree->findFirstGreaterThanOrEqualTo(element);
if (avlElement) {
return(avlElement->element);
} else {
return(NULL);
}
}
//****************************************************************************
//* *
//* Function: findFirstGreaterThanOrEqualTo *
//* *
//* Syntax: AVLElement * findFirstGreaterThanOrEqualTo(elementClass * element)
//* *
//* Input: elementClass * element: *
//* A pointer to an element to compare against while searching. *
//* *
//* Output: AVLElement *: *
//* The element in the tree that has a vlaue greater than or *
//* equal to the one specified, or NULL on failure. *
//* *
//* Synopsis: This function finds the element in the tree that has a value *
//* greater than or equal to the one specified. *
//* *
//****************************************************************************
template<class elementClass> AVLElement<elementClass> *
AVLElement<elementClass>::findFirstGreaterThanOrEqualTo(elementClass * element)
{
if (*this->element == element) {
// We have a direct match (equal to). It takes precidence over the
// "first less than" part.
return this;
}
AVLElement<elementClass> * retVal = NULL;
if (*this->element > element) {
// The current element is bigger than the one specified.
// This might be it, but try to find a smaller one.
if (left != NULL) {
retVal = left->findFirstGreaterThanOrEqualTo(element);
}
// If nothing below us (to the left) was found, then we are the
// next biggest one.
if (retVal == NULL) {
return this;
} else {
return retVal;
}
} else {
// The current element is strictly smaller than the one specified.
// We have to find a bigger one.
if (right != NULL) {
return right->findFirstGreaterThanOrEqualTo(element);
} else {
return NULL;
}
}
}
template<class elementClass> int
AVLTree<elementClass>::empty(void)
{
assert((tree == NULL) == (insertions == deletions));
return(tree == NULL);
}
template<class elementClass> unsigned
AVLTree<elementClass>::size(void)
{
assert(insertions >= deletions);
assert((tree == NULL) == (insertions == deletions));
return(insertions - deletions);
}
template<class elementClass> elementClass *
AVLTree<elementClass>::findMin(void)
{
if (!tree) {
return(NULL);
}
AVLElement<elementClass> *candidate = tree;
while (candidate->left) {
assert(*candidate->left->element <= candidate->element);
candidate = candidate->left;
}
return(candidate->element);
}
template<class elementClass> elementClass *
AVLTree<elementClass>::findMax(void)
{
if (!tree) {
return(NULL);
}
AVLElement<elementClass> *candidate = tree;
while (candidate->right) {
assert(*candidate->right->element >= candidate->element);
candidate = candidate->right;
}
return(candidate->element);
}
template<class elementClass> void
AVLTree<elementClass>::check(void)
{
AVLElement<elementClass> * currElement = NULL;
AVLElement<elementClass> * nextElement = NULL;
AVLElement<elementClass> * oldElement = NULL;
unsigned countedElements = 0;
if (tree) {
assert(tree->parent == NULL);
unsigned overallDepth = tree->checkAndReturnDepth(&countedElements);
}
assert(insertions-deletions == countedElements);
// Check every element in the tree for consistance by verifying that it is in
// the expected order. If not, it is most likely that the element's operators
// are not behaving as needed.
for(currElement = tree; currElement != NULL; currElement = nextElement) {
// Go left if we can (and have not already been here).
if (currElement->left && oldElement == currElement->parent) {
nextElement = currElement->left;
assert(*nextElement < currElement && "The < operator appears to be broken");
assert(*currElement > nextElement && "The > operator appears to be broken");
assert(!(*nextElement == currElement) && "The == operator appears to be broken");
}
// Otherwise go right if we can (and have not already been here).
else if (currElement->right &&
(oldElement == currElement->left || oldElement == currElement->parent)) {
nextElement = currElement->right;
assert(*nextElement > currElement && "The > operator appears to be broken");
assert(*currElement < nextElement && "The < operator appears to be broken");
assert(!(*nextElement == currElement) && "The == operator appears to be broken");
}
// We are done below us, go up a node.
else {
nextElement = currElement->parent;
}
oldElement = currElement;
assert(*oldElement == currElement && "The == operator appears to be broken");
}
}
template<class elementClass>
AVLElement<elementClass>::AVLElement(void)
{
balance = AVLNew;
left = right = parent = NULL;
}
template<class elementClass>
AVLElement<elementClass>::~AVLElement(void)
{
assert(balance == AVLNew);
assert(left == NULL && right == NULL && parent == NULL);
}
template<class elementClass> unsigned
AVLElement<elementClass>::checkAndReturnDepth(
unsigned *countedElements)
{
// We've been inserted and not deleted
assert(balance != AVLNew);
(*countedElements)++;
// Assert that the links all match up.
assert(!left || left->parent == this);
assert(!right || right->parent == this);
// The basic binary tree ordering property applies
assert(!right || *this <= right);
assert(!left || *this >= left);
// The AVL balance property applies
unsigned leftDepth;
if (left) {
leftDepth = left->checkAndReturnDepth(countedElements);
} else {
leftDepth = 0;
}
unsigned rightDepth;
if (right) {
rightDepth = right->checkAndReturnDepth(countedElements);
} else {
rightDepth = 0;
}
if (leftDepth == rightDepth) {
assert(balance == AVLBalanced);
return(leftDepth + 1);
}
if (leftDepth == rightDepth + 1) {
assert(balance == AVLLeft);
return(leftDepth + 1);
}
if (leftDepth + 1 == rightDepth) {
assert(balance == AVLRight);
return(rightDepth + 1);
}
assert(!"AVL Tree out of balance");
return(0);
}
template<class elementClass> void
AVLElement<elementClass>::insert(
AVLTree<elementClass> *intoTree,
elementClass *element)
{
assert(intoTree);
assert(left == NULL && right == NULL && parent == NULL);
this->element = element;
assert(this->element);
intoTree->insertions++;
// Special case the empty tree case.
if (intoTree->tree == NULL) {
intoTree->tree = this;
balance = AVLBalanced;
// We already know all of the links are NULL, which is correct for this case.
return;
}
// Find the leaf position at which to do this insertion.
AVLElement *currentNode = intoTree->tree;
AVLElement *previousNode;
while (currentNode) {
previousNode = currentNode;
if (*currentNode < this) {
currentNode = currentNode->right;
} else if (*currentNode > this) {
currentNode = currentNode->left;
} else {
// An AVL tree gets all whacky if you try to insert duplicate values.
assert(!"Trying to insert a duplicate item. Use something other than an AVL tree.");
}
}
balance = AVLBalanced;
parent = previousNode;
assert(parent);
if (*previousNode <= this) {
assert(!previousNode->right);
previousNode->right = this;
previousNode->rightAdded(intoTree);
// intoTree->check();
} else {
assert(!previousNode->left);
previousNode->left = this;
previousNode->leftAdded(intoTree);
// intoTree->check();
}
}
template<class elementClass> void
AVLElement<elementClass>::rightAdded(
AVLTree<elementClass> *tree)
{
//We've just gotten one deeper on our right side.
assert(balance != AVLNew);
if (balance == AVLLeft) {
balance = AVLBalanced;
// The depth of the subtree rooted here hasn't changed, we're done
return;
}
if (balance == AVLBalanced) {
// We've just gotten one deeper, but are still balanced. Update and recurse up the
// tree.
balance = AVLRight;
if (parent) {
if (parent->right == this) {
parent->rightAdded(tree);
} else {
assert(parent->left == this);
parent->leftAdded(tree);
}
}
return;
}
assert(balance == AVLRight);
// We've just gone to double right (ie, out of balance).
assert(right);
if (right->balance == AVLRight) {
singleRotate(tree,right,AVLRight);
} else {
assert(right->balance == AVLLeft); // Else we shouldn't have been AVLRight before the call
doubleRotate(tree,right,right->left,AVLRight);
}
}
template<class elementClass> void
AVLElement<elementClass>::leftAdded(
AVLTree<elementClass> *tree)
{
//We've just gotten one deeper on our right side.
assert(balance != AVLNew);
if (balance == AVLRight) {
balance = AVLBalanced;
// The depth of the subtree rooted here hasn't changed, we're done
return;
}
if (balance == AVLBalanced) {
// We've just gotten one deeper, but are still balanced. Update and recurse up the
// tree.
balance = AVLLeft;
if (parent) {
if (parent->right == this) {
parent->rightAdded(tree);
} else {
assert(parent->left == this);
parent->leftAdded(tree);
}
}
return;
}
assert(balance == AVLLeft);
// We've just gone to double left (ie, out of balance).
assert(left);
if (left->balance == AVLLeft) {
singleRotate(tree,left,AVLLeft);
} else {
assert(left->balance == AVLRight); // Else we shouldn't have been AVLLeft before the call
doubleRotate(tree,left,left->right,AVLLeft);
}
}
template<class elementClass> void
AVLElement<elementClass>::singleRotate(
AVLTree<elementClass> *tree,
AVLElement *child,
AVLBalance whichSide)
{
// We're the parent node.
assert(tree);
assert(child);
assert(whichSide == AVLRight || whichSide == AVLLeft);
assert(whichSide != AVLRight || right == child);
assert(whichSide != AVLLeft || left == child);
tree->singleRotations++;
// Promote the child to our position in the tree.
if (parent) {
if (parent->left == this) {
parent->left = child;
child->parent = parent;
} else {
assert(parent->right == this);
parent->right = child;
child->parent = parent;
}
} else {
// We're the root of the tree
assert(tree->tree == this);
tree->tree = child;
child->parent = NULL;
}
// Attach the child's light subtree to our heavy side (ie., where the child is attached now)
// Then, attach us to the child's light subtree
if (whichSide == AVLRight) {
right = child->left;
if (right) {
right->parent = this;
}
child->left = this;
parent = child;
} else {
left = child->right;
if (left) {
left->parent = this;
}
child->right = this;
parent = child;
}
// Finally, now both our and our (former) child's balance is "balanced"
balance = AVLBalanced;
child->balance = AVLBalanced;
// NB. One of the cases in delete will result in the above balance settings being incorrect. That
// case fixes up the settings after we return.
}
template<class elementClass> void
AVLElement<elementClass>::doubleRotate(
AVLTree<elementClass> *tree,
AVLElement *child,
AVLElement *grandchild,
AVLBalance whichSide)
{
assert(tree && child && grandchild);
assert(whichSide == AVLLeft || whichSide == AVLRight);
assert(whichSide != AVLLeft || (left == child && child->balance == AVLRight));
assert(whichSide != AVLRight || (right == child && child->balance == AVLLeft));
assert(child->parent == this);
assert(grandchild->parent == child);
tree->doubleRotations++;
// Write down a copy of all of the subtrees; see Knuth v3 p454 for the picture.
// NOTE: The alpha and delta trees are never moved, so we don't store them.
AVLElement *beta;
AVLElement *gamma;
if (whichSide == AVLRight) {
beta = grandchild->left;
gamma = grandchild->right;
} else {
beta = grandchild->right;
gamma = grandchild->left;
}
// Promote grandchild to our position
if (parent) {
if (parent->left == this) {
parent->left = grandchild;
} else {
assert(parent->right == this);
parent->right = grandchild;
}
} else {
assert(tree->tree == this);
tree->tree = grandchild;
}
grandchild->parent = parent;
// Attach the appropriate children to grandchild
if (whichSide == AVLRight) {
grandchild->right = child;
grandchild->left = this;
} else {
grandchild->right = this;
grandchild->left = child;
}
parent = grandchild;
child->parent = grandchild;
// Attach beta and gamma to us and child.
if (whichSide == AVLRight) {
right = beta;
if (beta) {
beta->parent = this;
}
child->left = gamma;
if (gamma) {
gamma->parent = child;
}
} else {
left = beta;
if (beta) {
beta->parent = this;
}
child->right = gamma;
if (gamma) {
gamma->parent = child;
}
}
// Now update the balance fields.
switch (grandchild->balance) {
case AVLLeft:
if (whichSide == AVLRight) {
balance = AVLBalanced;
child->balance = AVLRight;
} else {
balance = AVLRight;
child->balance = AVLBalanced;
}
break;
case AVLBalanced:
balance = AVLBalanced;
child->balance = AVLBalanced;
break;
case AVLRight:
if (whichSide == AVLRight) {
balance = AVLLeft;
child->balance = AVLBalanced;
} else {
balance = AVLBalanced;
child->balance = AVLLeft;
}
break;
default:
assert(!"Bogus balance value");
}
grandchild->balance = AVLBalanced;
}
template<class elementClass> void
AVLElement<elementClass>::remove(
AVLTree<elementClass> *fromTree)
{
assert(fromTree);
assert(balance == AVLRight || balance == AVLLeft || balance == AVLBalanced);
fromTree->deletions++;
if (left == NULL) {
// The right child either doesn't exist or is a leaf (because of the AVL balance property)
assert((!right && balance == AVLBalanced) ||
(balance == AVLRight && right->balance == AVLBalanced && right->right == NULL && right->left == NULL));
if (right) {
right->parent = parent;
}
if (parent) {
if (parent->left == this) {
parent->left = right;
parent->gotOneShorter(fromTree,AVLLeft);
} else {
assert(parent->right == this);
parent->right = right;
parent->gotOneShorter(fromTree,AVLRight);
}
} else {
assert(fromTree->tree == this);
fromTree->tree = right;
}
} else if (right == NULL) {
// The left child must be a left because of the AVL balance property
assert(left && balance == AVLLeft && left->balance == AVLBalanced && left->right == NULL && left->left == NULL);
left->parent = parent;
if (parent) {
if (parent->left == this) {
parent->left = left;
parent->gotOneShorter(fromTree,AVLLeft);
} else {
assert(parent->right == this);
parent->right = left;
parent->gotOneShorter(fromTree,AVLRight);
}
} else {
assert(fromTree->tree == this);
fromTree->tree = left;
}
} else {
// Find the symmetric successor and promote it. The symmetric successor is the smallest element in the right
// subtree; it's found by following all left links in the right subtree until we find a node with no left link.
// That node may be promoted to the place of this without corrupting the binary tree ordering properties. (We could
// just as easily use the symmetric predecessor by finding the largest element in the right subtree, but there's
// no point.)
AVLElement *successorCandidate = right;
while (successorCandidate->left) {
successorCandidate = successorCandidate->left;
}
AVLElement *shorterRoot;
AVLBalance shorterSide;
if (successorCandidate->parent->left == successorCandidate) {
// We need to promote the successor's child (if any) to its position, then
// promote it to our position.
shorterRoot = successorCandidate->parent;
shorterSide = AVLLeft;
successorCandidate->parent->left = successorCandidate->right;
if (successorCandidate->right) {
successorCandidate->right->parent = successorCandidate->parent;
}
successorCandidate->right = right;
successorCandidate->left = left;
successorCandidate->balance = balance;
successorCandidate->right->parent = successorCandidate;
successorCandidate->left->parent = successorCandidate;
if (parent) {
if (parent->left == this) {
parent->left = successorCandidate;
} else {
assert(parent->right == this);
parent->right = successorCandidate;
}
} else {
assert(fromTree->tree == this);
fromTree->tree = successorCandidate;
}
successorCandidate->parent = parent;
} else {
// The successor was our child, just directly promote it.
assert(successorCandidate->parent == this);
if (parent) {
if (parent->right == this) {
parent->right = successorCandidate;
} else {
assert(parent->left == this);
parent->left = successorCandidate;
}
} else {
assert(fromTree->tree == this);
fromTree->tree = successorCandidate;
}
successorCandidate->parent = parent;
successorCandidate->left = left;
if (left) {
left->parent = successorCandidate;
}
// We just made our right subtree shorter.
successorCandidate->balance = balance;
shorterRoot = successorCandidate;
shorterSide = AVLRight;
}
if (shorterRoot) {
shorterRoot->gotOneShorter(fromTree,shorterSide);
}
}
balance = AVLNew;
left = right = parent = NULL;
element = NULL;
// fromTree->check();
}
template<class elementClass> void
AVLElement<elementClass>::gotOneShorter(
AVLTree<elementClass> *tree,
AVLBalance whichSide)
{
assert(whichSide == AVLLeft || whichSide == AVLRight);
if (balance == AVLBalanced) {
// We've just shrunk one subttree, but our depth has stayed the same.
// Reset our balance indicator and punt.
if (whichSide == AVLRight) {
balance = AVLLeft;
} else {
balance = AVLRight;
}
return;
} else if (balance == whichSide) {
// We just shrunk our heavy side; set our balance to neutral and recurse up the tree
balance = AVLBalanced;
if (parent) {
if (parent->right == this) {
parent->gotOneShorter(tree,AVLRight);
} else {
assert(parent->left == this);
parent->gotOneShorter(tree,AVLLeft);
}
} // else we were the root; we're done
return;
} else {
// We've just gone out of balance. Figure out a rotation to do. This is almost like having added a
// node to the opposide side, except that the opposite side might be balanced.
AVLBalance heavySide;
AVLElement *heavyChild;
AVLElement *replacement;
if (whichSide == AVLRight) {
heavySide = AVLLeft;
heavyChild = left;
} else {
heavySide = AVLRight;
heavyChild = right;
}
assert(heavyChild);
if (heavyChild->balance == heavySide) {
// Typical single rotation case
singleRotate(tree,heavyChild,heavySide);
replacement = heavyChild;
} else if (heavyChild->balance == whichSide) {
// Typical double rotation case
AVLElement *grandchild;
if (heavySide == AVLRight) {
grandchild = heavyChild->left;
} else {
grandchild = heavyChild->right;
}
doubleRotate(tree,heavyChild,grandchild,heavySide);
replacement = grandchild;
} else {
assert(heavyChild->balance == AVLBalanced);
singleRotate(tree,heavyChild,heavySide);
// singleRotate has incorrectly set the balances; reset them
balance = heavySide;
heavyChild->balance = whichSide;
// Overall depth hasn't changed; we're done.
return;
}
// NB: we have now changed position in the tree, so parent, right & left have changed!
if (!replacement->parent) {
// We just promoted our replacement to the root; we be done
return;
}
if (replacement->parent->right == replacement) {
replacement->parent->gotOneShorter(tree,AVLRight);
} else {
assert(replacement->parent->left == replacement);
replacement->parent->gotOneShorter(tree,AVLLeft);
}
}
}
template<class elementClass> int
AVLElement<elementClass>::inTree(void)
{
return(balance != AVLNew);
}
template <class elementClass> int
AVLElement<elementClass>::operator<=(
AVLElement<elementClass> *peer)
{
return(*element <= peer->element);
}
template <class elementClass> int
AVLElement<elementClass>::operator<(
AVLElement<elementClass> *peer)
{
return(*element < peer->element);
}
template <class elementClass> int
AVLElement<elementClass>::operator==(
AVLElement<elementClass> *peer)
{
return(*element == peer->element);
}
template <class elementClass> int
AVLElement<elementClass>::operator>=(
AVLElement<elementClass> *peer)
{
return(*element >= peer->element);
}
template <class elementClass> int
AVLElement<elementClass>::operator>(
AVLElement<elementClass> *peer)
{
return(*element > peer->element);
}
template <class elementClass> BOOLEAN
AVLTree<elementClass>::insert(
elementClass *element)
{
if (NULL == avlElementPool) {
return FALSE;
}
assert(element);
AVLElement<elementClass> *avlElement = (AVLElement<elementClass> *)avlElementPool->allocate();
if (NULL == avlElement) {
return FALSE;
}
avlElement->initialize();
avlElement->insert(this,element);
return TRUE;
}
template <class elementClass> void
AVLTree<elementClass>::remove(
elementClass *element)
{
assert(element);
AVLElement<elementClass> *candidate = tree->findFirstLessThanOrEqualTo(element);
assert(candidate && *candidate->element == element);
candidate->remove(this);
assert(avlElementPool); // if this isn't true, then we could never have had a successful insert
avlElementPool->free((void *)candidate);
}
template <class elementClass> void
AVLElement<elementClass>::initialize(void)
{
balance = AVLNew;
left = right = parent = NULL;
element = NULL;
}
template <class elementClass> void
AVLTree<elementClass>::dumpPoolStats(void)
{
if (NULL == avlElementPool) {
DbgPrint("Unable to allocate avlElementPool; this AVL tree is essentially useless\n");
} else {
DbgPrint("AVLTree AVLElement pool: %d allocations, %d frees, %d news, objectSize %d\n",
avlElementPool->numAllocations(),
avlElementPool->numFrees(),
avlElementPool->numNews(),
avlElementPool->getObjectSize());
}
}