Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2711 lines
76 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
ixpcibus.c
Abstract:
Get/Set bus data routines for the PCI bus
Author:
Ken Reneris (kenr) 14-June-1994
Environment:
Kernel mode
Revision History:
--*/
#include "halp.h"
#include "pci.h"
#include "pcip.h"
extern const WCHAR rgzMultiFunctionAdapter[];
extern const WCHAR rgzConfigurationData[];
extern const WCHAR rgzIdentifier[];
extern const WCHAR rgzPCIIdentifier[];
extern const WCHAR rgzPCICardList[];
//
// Globals
//
KSPIN_LOCK HalpPCIConfigLock;
PCI_CONFIG_HANDLER PCIConfigHandler;
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg("INITCONST")
#endif // ALLOC_DATA_PRAGMA
const PCI_CONFIG_HANDLER PCIConfigHandlerType1 = {
HalpPCISynchronizeType1,
HalpPCIReleaseSynchronzationType1,
{
HalpPCIReadUlongType1, // 0
HalpPCIReadUcharType1, // 1
HalpPCIReadUshortType1 // 2
},
{
HalpPCIWriteUlongType1, // 0
HalpPCIWriteUcharType1, // 1
HalpPCIWriteUshortType1 // 2
}
};
const PCI_CONFIG_HANDLER PCIConfigHandlerType2 = {
HalpPCISynchronizeType2,
HalpPCIReleaseSynchronzationType2,
{
HalpPCIReadUlongType2, // 0
HalpPCIReadUcharType2, // 1
HalpPCIReadUshortType2 // 2
},
{
HalpPCIWriteUlongType2, // 0
HalpPCIWriteUcharType2, // 1
HalpPCIWriteUshortType2 // 2
}
};
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg()
#endif // ALLOC_DATA_PRAGMA
const UCHAR PCIDeref[4][4] = { {0,1,2,2},{1,1,1,1},{2,1,2,2},{1,1,1,1} };
#define SIZEOF_PARTIAL_INFO_HEADER FIELD_OFFSET(KEY_VALUE_PARTIAL_INFORMATION, Data)
#if DBG
ULONG HalpPCIIllegalBusScannerDetected;
ULONG HalpPCIStopOnIllegalBusScannerDetected;
#endif
extern BOOLEAN HalpDoingCrashDump;
VOID
HalpPCIConfig (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset,
IN ULONG Length,
IN FncConfigIO *ConfigIO
);
VOID
HalpGetNMICrashFlag (
VOID
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,HalpQueryPciRegistryInfo)
#pragma alloc_text(INIT,HalpIsRecognizedCard)
#pragma alloc_text(INIT,HalpIsValidPCIDevice)
#pragma alloc_text(INIT,HalpGetNMICrashFlag)
#pragma alloc_text(PAGE,HalpAssignPCISlotResources)
#pragma alloc_text(PAGE,HalIrqTranslateRequirementsPciBridge)
#pragma alloc_text(PAGE,HalIrqTranslateResourcesPciBridge)
#pragma alloc_text(PAGELK,HalpPCISynchronizeOrionB0)
#pragma alloc_text(PAGELK,HalpPCIReleaseSynchronzationOrionB0)
#endif
PPCI_REGISTRY_INFO_INTERNAL
HalpQueryPciRegistryInfo (
VOID
)
/*++
Routine Description:
Reads information from the registry concerning PCI, including the number
of buses and the hardware access mechanism.
Arguments:
None.
Returns:
Buffer that must be freed by the caller, NULL if insufficient memory exists
to complete the request, or the information cannot be located.
--*/
{
PPCI_REGISTRY_INFO_INTERNAL PCIRegInfo = NULL;
PPCI_REGISTRY_INFO PCIRegInfoHeader = NULL;
UNICODE_STRING unicodeString, ConfigName, IdentName;
HANDLE hMFunc, hBus, hCardList;
OBJECT_ATTRIBUTES objectAttributes;
NTSTATUS status;
UCHAR buffer [sizeof(PPCI_REGISTRY_INFO) + 99];
PWSTR p;
WCHAR wstr[8];
ULONG i, junk;
ULONG cardListIndex, cardCount, cardMax;
PKEY_VALUE_FULL_INFORMATION ValueInfo;
PCM_FULL_RESOURCE_DESCRIPTOR Desc;
PCM_PARTIAL_RESOURCE_DESCRIPTOR PDesc;
UCHAR partialInfo[SIZEOF_PARTIAL_INFO_HEADER +
sizeof(PCI_CARD_DESCRIPTOR)];
PKEY_VALUE_PARTIAL_INFORMATION partialInfoHeader;
KEY_FULL_INFORMATION keyFullInfo;
//
// Search the hardware description looking for any reported
// PCI bus. The first ARC entry for a PCI bus will contain
// the PCI_REGISTRY_INFO.
RtlInitUnicodeString (&unicodeString, rgzMultiFunctionAdapter);
InitializeObjectAttributes (
&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
NULL, // handle
NULL);
status = ZwOpenKey (&hMFunc, KEY_READ, &objectAttributes);
if (!NT_SUCCESS(status)) {
return NULL;
}
unicodeString.Buffer = wstr;
unicodeString.MaximumLength = sizeof (wstr);
RtlInitUnicodeString (&ConfigName, rgzConfigurationData);
RtlInitUnicodeString (&IdentName, rgzIdentifier);
ValueInfo = (PKEY_VALUE_FULL_INFORMATION) buffer;
for (i=0; TRUE; i++) {
RtlIntegerToUnicodeString (i, 10, &unicodeString);
InitializeObjectAttributes (
&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
hMFunc,
NULL);
status = ZwOpenKey (&hBus, KEY_READ, &objectAttributes);
if (!NT_SUCCESS(status)) {
//
// Out of Multifunction adapter entries...
//
ZwClose (hMFunc);
return NULL;
}
//
// Check the Identifier to see if this is a PCI entry
//
status = ZwQueryValueKey (
hBus,
&IdentName,
KeyValueFullInformation,
ValueInfo,
sizeof (buffer),
&junk
);
if (!NT_SUCCESS (status)) {
ZwClose (hBus);
continue;
}
p = (PWSTR) ((PUCHAR) ValueInfo + ValueInfo->DataOffset);
if (p[0] != L'P' || p[1] != L'C' || p[2] != L'I' || p[3] != 0) {
ZwClose (hBus);
continue;
}
//
// The first PCI entry has the PCI_REGISTRY_INFO structure
// attached to it.
//
status = ZwQueryValueKey (
hBus,
&ConfigName,
KeyValueFullInformation,
ValueInfo,
sizeof (buffer),
&junk
);
ZwClose (hBus);
if (!NT_SUCCESS(status)) {
continue ;
}
Desc = (PCM_FULL_RESOURCE_DESCRIPTOR) ((PUCHAR)
ValueInfo + ValueInfo->DataOffset);
PDesc = (PCM_PARTIAL_RESOURCE_DESCRIPTOR) ((PUCHAR)
Desc->PartialResourceList.PartialDescriptors);
if (PDesc->Type == CmResourceTypeDeviceSpecific) {
// got it..
PCIRegInfoHeader = (PPCI_REGISTRY_INFO) (PDesc+1);
ZwClose (hMFunc);
break;
}
}
if (!PCIRegInfoHeader) {
return NULL;
}
//
// Retrieve the list of interesting cards.
//
RtlInitUnicodeString (&unicodeString, rgzPCICardList);
InitializeObjectAttributes (
&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
NULL, // handle
NULL
);
status = ZwOpenKey (&hCardList, KEY_READ, &objectAttributes);
if (NT_SUCCESS(status)) {
status = ZwQueryKey( hCardList,
KeyFullInformation,
&keyFullInfo,
sizeof(keyFullInfo),
&junk );
if ( NT_SUCCESS(status) ) {
cardMax = keyFullInfo.Values;
PCIRegInfo = (PPCI_REGISTRY_INFO_INTERNAL) ExAllocatePoolWithTag(
NonPagedPool,
sizeof(PCI_REGISTRY_INFO_INTERNAL) +
cardMax * sizeof(PCI_CARD_DESCRIPTOR),
HAL_POOL_TAG
);
if (PCIRegInfo) {
//
// Now that we've allocated enough room, enumerate again.
//
partialInfoHeader = (PKEY_VALUE_PARTIAL_INFORMATION) partialInfo;
for(cardListIndex = cardCount = 0;
cardListIndex < cardMax;
cardListIndex++) {
status = ZwEnumerateValueKey(
hCardList,
cardListIndex,
KeyValuePartialInformation,
partialInfo,
sizeof(partialInfo),
&junk
);
//
// Note that STATUS_NO_MORE_ENTRIES is a failure code
//
if (!NT_SUCCESS( status )) {
break;
}
if (partialInfoHeader->DataLength != sizeof(PCI_CARD_DESCRIPTOR)) {
continue;
}
RtlCopyMemory(
PCIRegInfo->CardList + cardCount,
partialInfoHeader->Data,
sizeof(PCI_CARD_DESCRIPTOR)
);
cardCount++;
} // next cardListIndex
}
}
ZwClose (hCardList);
}
if (!PCIRegInfo) {
PCIRegInfo = (PPCI_REGISTRY_INFO_INTERNAL) ExAllocatePoolWithTag(
NonPagedPool,
sizeof(PCI_REGISTRY_INFO_INTERNAL),
HAL_POOL_TAG
);
if (!PCIRegInfo) {
return NULL;
}
cardCount = 0;
}
RtlCopyMemory(
PCIRegInfo,
PCIRegInfoHeader,
sizeof(PCI_REGISTRY_INFO)
);
PCIRegInfo->ElementCount = cardCount;
return PCIRegInfo;
}
BOOLEAN
HalpIsRecognizedCard(
IN PPCI_REGISTRY_INFO_INTERNAL PCIRegInfo,
IN PPCI_COMMON_CONFIG PciData,
IN ULONG FeatureMask
)
/*++
Routine Description:
Walks the internal registry info list to find any cards matching the passed
in "feature" mask.
Arguments:
PCIRegInfo - Pointer to reg info with the list of "notable" devices.
PciData - Config space (with subsystem info for cardbus bridges)
FeatureMask - PCIFT flags to try to match
Returns:
Buffer that must be freed by the caller, NULL if insufficient memory exists
to complete the request, or the information cannot be located.
--*/
{
ULONG element;
//
// Detect if this has a h
//
for(element = 0; element < PCIRegInfo->ElementCount; element++) {
if (FeatureMask & PCIRegInfo->CardList[element].Flags) {
if (PCIRegInfo->CardList[element].VendorID != PciData->VendorID) {
continue;
}
if (PCIRegInfo->CardList[element].DeviceID != PciData->DeviceID) {
continue;
}
if (PCIRegInfo->CardList[element].Flags & PCICF_CHECK_REVISIONID) {
if (PCIRegInfo->CardList[element].RevisionID != PciData->RevisionID) {
continue;
}
}
switch(PCI_CONFIGURATION_TYPE(PciData)) {
case PCI_DEVICE_TYPE:
if (PCIRegInfo->CardList[element].Flags & PCICF_CHECK_SSVID) {
if (PCIRegInfo->CardList[element].SubsystemVendorID != PciData->u.type0.SubVendorID) {
continue;
}
}
if (PCIRegInfo->CardList[element].Flags & PCICF_CHECK_SSID) {
if (PCIRegInfo->CardList[element].SubsystemID != PciData->u.type0.SubSystemID) {
continue;
}
}
break;
case PCI_BRIDGE_TYPE:
break;
case PCI_CARDBUS_BRIDGE_TYPE:
if (PCIRegInfo->CardList[element].Flags & PCICF_CHECK_SSVID) {
if (PCIRegInfo->CardList[element].SubsystemVendorID !=
((TYPE2EXTRAS *)(PciData->DeviceSpecific))->SubVendorID) {
continue;
}
}
if (PCIRegInfo->CardList[element].Flags & PCICF_CHECK_SSID) {
if (PCIRegInfo->CardList[element].SubsystemID !=
((TYPE2EXTRAS *)(PciData->DeviceSpecific))->SubSystemID) {
continue;
}
}
break;
}
//
// We found the device matching one of the passed in feature bits.
//
return TRUE;
}
}
return FALSE;
}
BOOLEAN
HalpIsValidPCIDevice (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot
)
/*++
Routine Description:
Reads the device configuration data for the given slot and
returns TRUE if the configuration data appears to be valid for
a PCI device; otherwise returns FALSE.
Arguments:
BusHandler - Bus to check
Slot - Slot to check
--*/
{
PPCI_COMMON_CONFIG PciData;
UCHAR iBuffer[PCI_COMMON_HDR_LENGTH];
ULONG i, j;
PciData = (PPCI_COMMON_CONFIG) iBuffer;
//
// Read device common header
//
HalpReadPCIConfig (BusHandler, Slot, PciData, 0, PCI_COMMON_HDR_LENGTH);
//
// Valid device header?
//
if (PciData->VendorID == PCI_INVALID_VENDORID ||
PCI_CONFIG_TYPE (PciData) != PCI_DEVICE_TYPE) {
return FALSE;
}
//
// Check fields for reasonable values
//
if ((PciData->u.type0.InterruptPin && PciData->u.type0.InterruptPin > 4) ||
(PciData->u.type0.InterruptLine & 0x70)) {
return FALSE;
}
for (i=0; i < PCI_TYPE0_ADDRESSES; i++) {
j = PciData->u.type0.BaseAddresses[i];
if (j & PCI_ADDRESS_IO_SPACE) {
if (j > 0xffff) {
// IO port > 64k?
return FALSE;
}
} else {
if (j > 0xf && j < 0x80000) {
// Mem address < 0x8000h?
return FALSE;
}
}
if (Is64BitBaseAddress(j)) {
i += 1;
}
}
//
// Guess it's a valid device..
//
return TRUE;
}
ULONG
HalpGetPCIData (
IN PBUS_HANDLER BusHandler,
IN PBUS_HANDLER RootHandler,
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset,
IN ULONG Length
)
/*++
Routine Description:
The function returns the Pci bus data for a device.
Arguments:
BusNumber - Indicates which bus.
VendorSpecificDevice - The VendorID (low Word) and DeviceID (High Word)
Buffer - Supplies the space to store the data.
Length - Supplies a count in bytes of the maximum amount to return.
Return Value:
Returns the amount of data stored into the buffer.
If this PCI slot has never been set, then the configuration information
returned is zeroed.
--*/
{
PPCI_COMMON_CONFIG PciData;
UCHAR iBuffer[PCI_COMMON_HDR_LENGTH];
PPCIPBUSDATA BusData;
ULONG Len;
ULONG i, bit;
if (Length > sizeof (PCI_COMMON_CONFIG)) {
Length = sizeof (PCI_COMMON_CONFIG);
}
Len = 0;
PciData = (PPCI_COMMON_CONFIG) iBuffer;
if (Offset >= PCI_COMMON_HDR_LENGTH) {
//
// The user did not request any data from the common
// header. Verify the PCI device exists, then continue
// in the device specific area.
//
HalpReadPCIConfig (BusHandler, Slot, PciData, 0, sizeof(ULONG));
if (PciData->VendorID == PCI_INVALID_VENDORID) {
return 0;
}
} else {
//
// Caller requested at least some data within the
// common header. Read the whole header, effect the
// fields we need to and then copy the user's requested
// bytes from the header
//
BusData = (PPCIPBUSDATA) BusHandler->BusData;
//
// Read this PCI devices slot data
//
Len = PCI_COMMON_HDR_LENGTH;
HalpReadPCIConfig (BusHandler, Slot, PciData, 0, Len);
if (PciData->VendorID == PCI_INVALID_VENDORID) {
PciData->VendorID = PCI_INVALID_VENDORID;
Len = 2; // only return invalid id
#if DBG
//
// If this read would have accessed beyond the common header
// then it is highly likely we have detected a device driver
// doing a legacy scan of the bus but reading more than the
// allowed configuration header. This can have catastrophic
// side effects.
//
if ((Length + Offset) > PCI_COMMON_HDR_LENGTH) {
if (++HalpPCIIllegalBusScannerDetected == 1) {
DbgPrint("HAL Warning: PCI Configuration Access had detected an invalid bus scan.\n");
}
if (HalpPCIStopOnIllegalBusScannerDetected) {
DbgBreakPoint();
}
}
#endif
} else {
BusData->CommonData.Pin2Line (BusHandler, RootHandler, Slot, PciData);
}
//
// Has this PCI device been configured?
//
#if 0
//
// On DBG build, if this PCI device has not yet been configured,
// then don't report any current configuration the device may have.
//
bit = PciBitIndex(Slot.u.bits.DeviceNumber, Slot.u.bits.FunctionNumber);
if (!RtlCheckBit(&BusData->DeviceConfigured, bit) &&
PCI_CONFIG_TYPE (PciData) == PCI_DEVICE_TYPE) {
for (i=0; i < PCI_TYPE0_ADDRESSES; i++) {
PciData->u.type0.BaseAddresses[i] = 0;
}
PciData->u.type0.ROMBaseAddress = 0;
PciData->Command &= ~(PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE);
}
#endif
//
// Copy whatever data overlaps into the callers buffer
//
if (Len < Offset) {
// no data at caller's buffer
return 0;
}
Len -= Offset;
if (Len > Length) {
Len = Length;
}
RtlMoveMemory(Buffer, iBuffer + Offset, Len);
Offset += Len;
Buffer += Len;
Length -= Len;
}
if (Length) {
if (Offset >= PCI_COMMON_HDR_LENGTH) {
//
// The remaining Buffer comes from the Device Specific
// area - put on the kitten gloves and read from it.
//
// Specific read/writes to the PCI device specific area
// are guarenteed:
//
// Not to read/write any byte outside the area specified
// by the caller. (this may cause WORD or BYTE references
// to the area in order to read the non-dword aligned
// ends of the request)
//
// To use a WORD access if the requested length is exactly
// a WORD long.
//
// To use a BYTE access if the requested length is exactly
// a BYTE long.
//
HalpReadPCIConfig (BusHandler, Slot, Buffer, Offset, Length);
Len += Length;
}
}
return Len;
}
ULONG
HalpSetPCIData (
IN PBUS_HANDLER BusHandler,
IN PBUS_HANDLER RootHandler,
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset,
IN ULONG Length
)
/*++
Routine Description:
The function returns the Pci bus data for a device.
Arguments:
VendorSpecificDevice - The VendorID (low Word) and DeviceID (High Word)
Buffer - Supplies the space to store the data.
Length - Supplies a count in bytes of the maximum amount to return.
Return Value:
Returns the amount of data stored into the buffer.
--*/
{
PPCI_COMMON_CONFIG PciData, PciData2;
UCHAR iBuffer[PCI_COMMON_HDR_LENGTH];
UCHAR iBuffer2[PCI_COMMON_HDR_LENGTH];
PPCIPBUSDATA BusData;
ULONG Len, cnt;
if (Length > sizeof (PCI_COMMON_CONFIG)) {
Length = sizeof (PCI_COMMON_CONFIG);
}
Len = 0;
PciData = (PPCI_COMMON_CONFIG) iBuffer;
PciData2 = (PPCI_COMMON_CONFIG) iBuffer2;
if (Offset >= PCI_COMMON_HDR_LENGTH) {
//
// The user did not request any data from the common
// header. Verify the PCI device exists, then continue in
// the device specific area.
//
HalpReadPCIConfig (BusHandler, Slot, PciData, 0, sizeof(ULONG));
if (PciData->VendorID == PCI_INVALID_VENDORID) {
return 0;
}
} else {
//
// Caller requested to set at least some data within the
// common header.
//
Len = PCI_COMMON_HDR_LENGTH;
HalpReadPCIConfig (BusHandler, Slot, PciData, 0, Len);
if (PciData->VendorID == PCI_INVALID_VENDORID ||
PCI_CONFIG_TYPE (PciData) != PCI_DEVICE_TYPE) {
// no device, or header type unkown
return 0;
}
//
// Set this device as configured
//
BusData = (PPCIPBUSDATA) BusHandler->BusData;
#if DBG && !defined(ACPI_HAL)
cnt = PciBitIndex(Slot.u.bits.DeviceNumber, Slot.u.bits.FunctionNumber);
RtlSetBits (&BusData->DeviceConfigured, cnt, 1);
#endif
//
// Copy COMMON_HDR values to buffer2, then overlay callers changes.
//
RtlMoveMemory (iBuffer2, iBuffer, Len);
BusData->CommonData.Pin2Line (BusHandler, RootHandler, Slot, PciData2);
Len -= Offset;
if (Len > Length) {
Len = Length;
}
RtlMoveMemory (iBuffer2+Offset, Buffer, Len);
// in case interrupt line or pin was editted
BusData->CommonData.Line2Pin (BusHandler, RootHandler, Slot, PciData2, PciData);
#if DBG
//
// Verify R/O fields haven't changed
//
if (PciData2->VendorID != PciData->VendorID ||
PciData2->DeviceID != PciData->DeviceID ||
PciData2->RevisionID != PciData->RevisionID ||
PciData2->ProgIf != PciData->ProgIf ||
PciData2->SubClass != PciData->SubClass ||
PciData2->BaseClass != PciData->BaseClass ||
PciData2->HeaderType != PciData->HeaderType ||
PciData2->BaseClass != PciData->BaseClass ||
PciData2->u.type0.MinimumGrant != PciData->u.type0.MinimumGrant ||
PciData2->u.type0.MaximumLatency != PciData->u.type0.MaximumLatency) {
DbgPrint ("PCI SetBusData: Read-Only configuration value changed\n");
}
#endif
//
// Set new PCI configuration
//
HalpWritePCIConfig (BusHandler, Slot, iBuffer2+Offset, Offset, Len);
Offset += Len;
Buffer += Len;
Length -= Len;
}
if (Length) {
if (Offset >= PCI_COMMON_HDR_LENGTH) {
//
// The remaining Buffer comes from the Device Specific
// area - put on the kitten gloves and write it
//
// Specific read/writes to the PCI device specific area
// are guarenteed:
//
// Not to read/write any byte outside the area specified
// by the caller. (this may cause WORD or BYTE references
// to the area in order to read the non-dword aligned
// ends of the request)
//
// To use a WORD access if the requested length is exactly
// a WORD long.
//
// To use a BYTE access if the requested length is exactly
// a BYTE long.
//
HalpWritePCIConfig (BusHandler, Slot, Buffer, Offset, Length);
Len += Length;
}
}
return Len;
}
VOID
HalpReadPCIConfig (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)
{
if (!HalpValidPCISlot (BusHandler, Slot)) {
//
// Invalid SlotID return no data
//
RtlFillMemory (Buffer, Length, (UCHAR) -1);
return ;
}
HalpPCIConfig (BusHandler, Slot, (PUCHAR) Buffer, Offset, Length,
PCIConfigHandler.ConfigRead);
}
VOID
HalpWritePCIConfig (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)
{
if (!HalpValidPCISlot (BusHandler, Slot)) {
//
// Invalid SlotID do nothing
//
return ;
}
HalpPCIConfig (BusHandler, Slot, (PUCHAR) Buffer, Offset, Length,
PCIConfigHandler.ConfigWrite);
}
BOOLEAN
HalpValidPCISlot (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot
)
{
PCI_SLOT_NUMBER Slot2;
PPCIPBUSDATA BusData;
ULONG i;
UCHAR Header[FIELD_OFFSET(PCI_COMMON_CONFIG, u)];
PPCI_COMMON_CONFIG PciConfig = (PPCI_COMMON_CONFIG)&Header;
BusData = (PPCIPBUSDATA) BusHandler->BusData;
if (Slot.u.bits.Reserved != 0) {
return FALSE;
}
if (Slot.u.bits.DeviceNumber >= BusData->MaxDevice) {
return FALSE;
}
if (Slot.u.bits.FunctionNumber == 0) {
return TRUE;
}
//
// Non zero function numbers are only supported if the
// device has the PCI_MULTIFUNCTION bit set in it's header
//
i = Slot.u.bits.DeviceNumber;
//
// Read DeviceNumber, Function zero, to determine if the
// PCI supports multifunction devices
//
Slot2 = Slot;
Slot2.u.bits.FunctionNumber = 0;
HalpReadPCIConfig (
BusHandler,
Slot2,
&Header,
0,
sizeof(Header)
);
if (PciConfig->VendorID == PCI_INVALID_VENDORID) {
//
// This device doesn't exist, therefore, this function
// doesn't exist.
//
return FALSE;
}
if (PciConfig->HeaderType & PCI_MULTIFUNCTION) {
//
// It's a multifunction device. Slot is valid.
//
return TRUE;
}
//
// Special cases, ie HACKs for broken hardware.
//
if ((PciConfig->VendorID == 0x8086) &&
(PciConfig->DeviceID == 0x122e)) {
//
// This device lies, it really is multifunction.
// It's also writable so write back the correct value
// to avoid coming down this path in future.
//
PciConfig->HeaderType |= PCI_MULTIFUNCTION;
HalpWritePCIConfig(
BusHandler,
Slot2,
&PciConfig->HeaderType,
FIELD_OFFSET(PCI_COMMON_CONFIG, HeaderType),
sizeof(PciConfig->HeaderType)
);
return TRUE;
}
//
// None of the above, must not be a multifunction device.
//
return FALSE;
}
VOID
HalpPCIConfig (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset,
IN ULONG Length,
IN FncConfigIO *ConfigIO
)
{
KIRQL OldIrql;
ULONG i;
UCHAR State[20];
PPCIPBUSDATA BusData;
BusData = (PPCIPBUSDATA) BusHandler->BusData;
PCIConfigHandler.Synchronize (BusHandler, Slot, &OldIrql, State);
while (Length) {
i = PCIDeref[Offset % sizeof(ULONG)][Length % sizeof(ULONG)];
i = ConfigIO[i] (BusData, State, Buffer, Offset);
Offset += i;
Buffer += i;
Length -= i;
}
PCIConfigHandler.ReleaseSynchronzation (BusHandler, OldIrql);
}
VOID
HalpPCISynchronizeType1 (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PKIRQL Irql,
IN PPCI_TYPE1_CFG_BITS PciCfg1
)
{
//
// Initialize PciCfg1
//
PciCfg1->u.AsULONG = 0;
PciCfg1->u.bits.BusNumber = BusHandler->BusNumber;
PciCfg1->u.bits.DeviceNumber = Slot.u.bits.DeviceNumber;
PciCfg1->u.bits.FunctionNumber = Slot.u.bits.FunctionNumber;
PciCfg1->u.bits.Enable = TRUE;
//
// Synchronize with PCI type1 config space
//
if (!HalpDoingCrashDump) {
*Irql = KfRaiseIrql (HIGH_LEVEL);
KiAcquireSpinLock (&HalpPCIConfigLock);
} else {
*Irql = HIGH_LEVEL;
}
}
VOID
HalpPCIReleaseSynchronzationType1 (
IN PBUS_HANDLER BusHandler,
IN KIRQL Irql
)
{
PCI_TYPE1_CFG_BITS PciCfg1;
PPCIPBUSDATA BusData;
//
// Disable PCI configuration space
//
PciCfg1.u.AsULONG = 0;
BusData = (PPCIPBUSDATA) BusHandler->BusData;
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1.u.AsULONG);
//
// Release spinlock
//
if (!HalpDoingCrashDump) {
KiReleaseSpinLock (&HalpPCIConfigLock);
KeLowerIrql (Irql);
}
}
VOID
HalpPCISynchronizeOrionB0 (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PKIRQL Irql,
IN PPCI_TYPE1_CFG_BITS PciCfg1
)
{
PCI_TYPE1_CFG_BITS Cfg1;
union {
ULONG dword;
USHORT word;
UCHAR byte[4];
} Buffer;
//
// First perform normal type 1 synchronization
//
HalpPCISynchronizeType1 (BusHandler, Slot, Irql, PciCfg1);
//
// Apply Orion B0 workaround
//
Cfg1.u.AsULONG=0;
Cfg1.u.bits.BusNumber = HalpOrionOPB.Handler->BusNumber;
Cfg1.u.bits.DeviceNumber = HalpOrionOPB.Slot.u.bits.DeviceNumber;
Cfg1.u.bits.FunctionNumber = HalpOrionOPB.Slot.u.bits.FunctionNumber;
Cfg1.u.bits.Enable = TRUE;
//
// Read OPB until we get back the expected Vendor ID and device ID
//
do {
HalpPCIReadUlongType1 (HalpOrionOPB.Handler->BusData, &Cfg1, Buffer.byte, 0);
} while (Buffer.dword != 0x84c48086);
//
// The bug is that the config read will return whatever value you
// happened to read last. Read register 0x54 till we don't read the
// last value read any more(Vendor ID/Device ID).
//
do {
HalpPCIReadUshortType1 (HalpOrionOPB.Handler->BusData, &Cfg1, Buffer.byte, 0x54);
} while (Buffer.word == 0x8086);
//
// Disable inbound posting by clearing bit 0 of register 0x54
//
Buffer.word &= ~0x1;
HalpPCIWriteUshortType1 (HalpOrionOPB.Handler->BusData, &Cfg1, Buffer.byte, 0x54);
}
VOID
HalpPCIReleaseSynchronzationOrionB0 (
IN PBUS_HANDLER BusHandler,
IN KIRQL Irql
)
{
PCI_TYPE1_CFG_BITS PciCfg1;
PPCIPBUSDATA BusData;
union {
ULONG dword;
USHORT word;
UCHAR byte[4];
} Buffer;
PciCfg1.u.AsULONG=0;
PciCfg1.u.bits.BusNumber = HalpOrionOPB.Handler->BusNumber;
PciCfg1.u.bits.DeviceNumber = HalpOrionOPB.Slot.u.bits.DeviceNumber;
PciCfg1.u.bits.FunctionNumber = HalpOrionOPB.Slot.u.bits.FunctionNumber;
PciCfg1.u.bits.Enable = TRUE;
HalpPCIReadUshortType1 (HalpOrionOPB.Handler->BusData, &PciCfg1, Buffer.byte, 0x54);
//
// Enable Inbound posting by setting bit 0 of register 0x54 of ncOPB
//
Buffer.word |= 0x1;
HalpPCIWriteUshortType1 (HalpOrionOPB.Handler->BusData, &PciCfg1, Buffer.byte, 0x54);
//
// Complete type 1 synchronization
//
HalpPCIReleaseSynchronzationType1 (BusHandler, Irql);
}
ULONG
HalpPCIReadUcharType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
ULONG i;
i = Offset % sizeof(ULONG);
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
*Buffer = READ_PORT_UCHAR ((PUCHAR) (ULONG_PTR)(BusData->Config.Type1.Data + i));
return sizeof (UCHAR);
}
ULONG
HalpPCIReadUshortType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
ULONG i;
i = Offset % sizeof(ULONG);
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
*((PUSHORT) Buffer) = READ_PORT_USHORT ((PUSHORT) (ULONG_PTR)(BusData->Config.Type1.Data + i));
return sizeof (USHORT);
}
ULONG
HalpPCIReadUlongType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
*((PULONG) Buffer) = READ_PORT_ULONG ((PULONG) (ULONG_PTR)BusData->Config.Type1.Data);
return sizeof (ULONG);
}
ULONG
HalpPCIWriteUcharType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
ULONG i;
i = Offset % sizeof(ULONG);
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
WRITE_PORT_UCHAR ((PUCHAR) (ULONG_PTR)(BusData->Config.Type1.Data + i), *Buffer);
return sizeof (UCHAR);
}
ULONG
HalpPCIWriteUshortType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
ULONG i;
i = Offset % sizeof(ULONG);
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
WRITE_PORT_USHORT ((PUSHORT) (ULONG_PTR)(BusData->Config.Type1.Data + i), *((PUSHORT) Buffer));
return sizeof (USHORT);
}
ULONG
HalpPCIWriteUlongType1 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE1_CFG_BITS PciCfg1,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG);
WRITE_PORT_ULONG (BusData->Config.Type1.Address, PciCfg1->u.AsULONG);
WRITE_PORT_ULONG ((PULONG) (ULONG_PTR)BusData->Config.Type1.Data, *((PULONG) Buffer));
return sizeof (ULONG);
}
VOID HalpPCISynchronizeType2 (
IN PBUS_HANDLER BusHandler,
IN PCI_SLOT_NUMBER Slot,
IN PKIRQL Irql,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr
)
{
PCI_TYPE2_CSE_BITS PciCfg2Cse;
PPCIPBUSDATA BusData;
BusData = (PPCIPBUSDATA) BusHandler->BusData;
//
// Initialize Cfg2Addr
//
PciCfg2Addr->u.AsUSHORT = 0;
PciCfg2Addr->u.bits.Agent = (USHORT) Slot.u.bits.DeviceNumber;
PciCfg2Addr->u.bits.AddressBase = (USHORT) BusData->Config.Type2.Base;
//
// Synchronize with type2 config space - type2 config space
// remaps 4K of IO space, so we can not allow other I/Os to occur
// while using type2 config space.
//
HalpPCIAcquireType2Lock (&HalpPCIConfigLock, Irql);
PciCfg2Cse.u.AsUCHAR = 0;
PciCfg2Cse.u.bits.Enable = TRUE;
PciCfg2Cse.u.bits.FunctionNumber = (UCHAR) Slot.u.bits.FunctionNumber;
PciCfg2Cse.u.bits.Key = 0xff;
//
// Select bus & enable type 2 configuration space
//
WRITE_PORT_UCHAR (BusData->Config.Type2.Forward, (UCHAR) BusHandler->BusNumber);
WRITE_PORT_UCHAR (BusData->Config.Type2.CSE, PciCfg2Cse.u.AsUCHAR);
}
VOID HalpPCIReleaseSynchronzationType2 (
IN PBUS_HANDLER BusHandler,
IN KIRQL Irql
)
{
PCI_TYPE2_CSE_BITS PciCfg2Cse;
PPCIPBUSDATA BusData;
//
// disable PCI configuration space
//
BusData = (PPCIPBUSDATA) BusHandler->BusData;
PciCfg2Cse.u.AsUCHAR = 0;
WRITE_PORT_UCHAR (BusData->Config.Type2.CSE, PciCfg2Cse.u.AsUCHAR);
WRITE_PORT_UCHAR (BusData->Config.Type2.Forward, (UCHAR) 0);
//
// Restore interrupts, release spinlock
//
HalpPCIReleaseType2Lock (&HalpPCIConfigLock, Irql);
}
ULONG
HalpPCIReadUcharType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
*Buffer = READ_PORT_UCHAR ((PUCHAR) PciCfg2Addr->u.AsUSHORT);
return sizeof (UCHAR);
}
ULONG
HalpPCIReadUshortType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
*((PUSHORT) Buffer) = READ_PORT_USHORT ((PUSHORT) PciCfg2Addr->u.AsUSHORT);
return sizeof (USHORT);
}
ULONG
HalpPCIReadUlongType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
*((PULONG) Buffer) = READ_PORT_ULONG ((PULONG) PciCfg2Addr->u.AsUSHORT);
return sizeof(ULONG);
}
ULONG
HalpPCIWriteUcharType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
WRITE_PORT_UCHAR ((PUCHAR) PciCfg2Addr->u.AsUSHORT, *Buffer);
return sizeof (UCHAR);
}
ULONG
HalpPCIWriteUshortType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
WRITE_PORT_USHORT ((PUSHORT) PciCfg2Addr->u.AsUSHORT, *((PUSHORT) Buffer));
return sizeof (USHORT);
}
ULONG
HalpPCIWriteUlongType2 (
IN PPCIPBUSDATA BusData,
IN PPCI_TYPE2_ADDRESS_BITS PciCfg2Addr,
IN PUCHAR Buffer,
IN ULONG Offset
)
{
PciCfg2Addr->u.bits.RegisterNumber = (USHORT) Offset;
WRITE_PORT_ULONG ((PULONG) PciCfg2Addr->u.AsUSHORT, *((PULONG) Buffer));
return sizeof(ULONG);
}
NTSTATUS
HalpAssignPCISlotResources (
IN PBUS_HANDLER BusHandler,
IN PBUS_HANDLER RootHandler,
IN PUNICODE_STRING RegistryPath,
IN PUNICODE_STRING DriverClassName OPTIONAL,
IN PDRIVER_OBJECT DriverObject,
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
IN ULONG Slot,
IN OUT PCM_RESOURCE_LIST *pAllocatedResources
)
/*++
Routine Description:
Reads the targeted device to determine it's required resources.
Calls IoAssignResources to allocate them.
Sets the targeted device with it's assigned resoruces
and returns the assignments to the caller.
Arguments:
Return Value:
STATUS_SUCCESS or error
--*/
{
NTSTATUS status;
PUCHAR WorkingPool;
PPCI_COMMON_CONFIG PciData, PciOrigData, PciData2;
PCI_SLOT_NUMBER PciSlot;
PPCIPBUSDATA BusData;
PIO_RESOURCE_REQUIREMENTS_LIST CompleteList;
PIO_RESOURCE_DESCRIPTOR Descriptor;
PCM_PARTIAL_RESOURCE_DESCRIPTOR CmDescriptor;
ULONG BusNumber;
ULONG i, j, m, length, memtype;
ULONG NoBaseAddress, RomIndex, Option;
PULONG BaseAddress[PCI_TYPE0_ADDRESSES + 1];
PULONG OrigAddress[PCI_TYPE0_ADDRESSES + 1];
BOOLEAN Match, EnableRomBase, RequestedInterrupt;
KIRQL Kirql;
KAFFINITY Kaffinity;
*pAllocatedResources = NULL;
PciSlot = *((PPCI_SLOT_NUMBER) &Slot);
BusNumber = BusHandler->BusNumber;
BusData = (PPCIPBUSDATA) BusHandler->BusData;
//
// Allocate some pool for working space
//
i = sizeof (IO_RESOURCE_REQUIREMENTS_LIST) +
sizeof (IO_RESOURCE_DESCRIPTOR) * (PCI_TYPE0_ADDRESSES + 2) * 2 +
PCI_COMMON_HDR_LENGTH * 3;
WorkingPool = (PUCHAR)ExAllocatePoolWithTag(PagedPool, i, HAL_POOL_TAG);
if (!WorkingPool) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Zero initialize pool, and get pointers into memory
//
RtlZeroMemory (WorkingPool, i);
CompleteList = (PIO_RESOURCE_REQUIREMENTS_LIST) WorkingPool;
PciData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 3);
PciData2 = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 2);
PciOrigData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 1);
//
// Read the PCI device's configuration
//
HalpReadPCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
if (PciData->VendorID == PCI_INVALID_VENDORID) {
ExFreePool (WorkingPool);
return STATUS_NO_SUCH_DEVICE;
}
//
// For now since there's not PnP support in the OS, if the BIOS hasn't
// enable a VGA device don't allow it to get enabled via this interface.
//
if ( (PciData->BaseClass == 0 && PciData->SubClass == 1) ||
(PciData->BaseClass == 3 && PciData->SubClass == 0)) {
if ((PciData->Command & (PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE)) == 0) {
ExFreePool (WorkingPool);
return STATUS_DEVICE_NOT_CONNECTED;
}
}
//
// Make a copy of the device's current settings
//
RtlMoveMemory (PciOrigData, PciData, PCI_COMMON_HDR_LENGTH);
//
// Initialize base addresses base on configuration data type
//
switch (PCI_CONFIG_TYPE(PciData)) {
case 0 :
NoBaseAddress = PCI_TYPE0_ADDRESSES+1;
for (j=0; j < PCI_TYPE0_ADDRESSES; j++) {
BaseAddress[j] = &PciData->u.type0.BaseAddresses[j];
OrigAddress[j] = &PciOrigData->u.type0.BaseAddresses[j];
}
BaseAddress[j] = &PciData->u.type0.ROMBaseAddress;
OrigAddress[j] = &PciOrigData->u.type0.ROMBaseAddress;
RomIndex = j;
break;
case 1:
NoBaseAddress = PCI_TYPE1_ADDRESSES+1;
for (j=0; j < PCI_TYPE1_ADDRESSES; j++) {
BaseAddress[j] = &PciData->u.type1.BaseAddresses[j];
OrigAddress[j] = &PciOrigData->u.type1.BaseAddresses[j];
}
BaseAddress[j] = &PciData->u.type1.ROMBaseAddress;
OrigAddress[j] = &PciOrigData->u.type1.ROMBaseAddress;
RomIndex = j;
break;
default:
ExFreePool (WorkingPool);
return STATUS_NO_SUCH_DEVICE;
}
//
// If the BIOS doesn't have the device's ROM enabled, then we won't
// enable it either. Remove it from the list.
//
EnableRomBase = TRUE;
if (!(*BaseAddress[RomIndex] & PCI_ROMADDRESS_ENABLED)) {
ASSERT (RomIndex+1 == NoBaseAddress);
EnableRomBase = FALSE;
NoBaseAddress -= 1;
}
//
// Set resources to all bits on to see what type of resources
// are required.
//
for (j=0; j < NoBaseAddress; j++) {
*BaseAddress[j] = 0xFFFFFFFF;
}
PciData->Command &= ~(PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE);
*BaseAddress[RomIndex] &= ~PCI_ROMADDRESS_ENABLED;
HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
HalpReadPCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
// note type0 & type1 overlay ROMBaseAddress, InterruptPin, and InterruptLine
BusData->CommonData.Pin2Line (BusHandler, RootHandler, PciSlot, PciData);
//
// Build an IO_RESOURCE_REQUIREMENTS_LIST for the PCI device
//
CompleteList->InterfaceType = PCIBus;
CompleteList->BusNumber = BusNumber;
CompleteList->SlotNumber = Slot;
CompleteList->AlternativeLists = 1;
CompleteList->List[0].Version = 1;
CompleteList->List[0].Revision = 1;
Descriptor = CompleteList->List[0].Descriptors;
//
// If PCI device has an interrupt resource, add it
//
RequestedInterrupt = FALSE;
if (PciData->u.type0.InterruptPin &&
PciData->u.type0.InterruptLine != (0 ^ IRQXOR) &&
PciData->u.type0.InterruptLine != (0xFF ^ IRQXOR) &&
HalGetInterruptVector(PCIBus,
BusNumber,
PciData->u.type0.InterruptLine,
PciData->u.type0.InterruptLine,
&Kirql,
&Kaffinity)) {
RequestedInterrupt = TRUE;
CompleteList->List[0].Count++;
Descriptor->Option = 0;
Descriptor->Type = CmResourceTypeInterrupt;
Descriptor->ShareDisposition = CmResourceShareShared;
Descriptor->Flags = CM_RESOURCE_INTERRUPT_LEVEL_SENSITIVE;
if (ARGUMENT_PRESENT(DeviceObject)) {
//
// Let the arbiter pick any interrupt.
//
Descriptor->u.Interrupt.MinimumVector = 0;
Descriptor->u.Interrupt.MaximumVector = 0xff;
} else {
//
// Translation is going to fail, because we won't
// be able to identify this device by its device
// object. So trim the requested interrupt resources
// down to what's in the interrupt line register.
// The translator will punt and read this.
//
Descriptor->u.Interrupt.MinimumVector = PciData->u.type0.InterruptLine;
Descriptor->u.Interrupt.MaximumVector = PciData->u.type0.InterruptLine;
}
Descriptor++;
}
//
// Add a memory/port resoruce for each PCI resource
//
// Clear ROM reserved bits
*BaseAddress[RomIndex] &= ~0x7FF;
for (j=0; j < NoBaseAddress; j++) {
if (*BaseAddress[j]) {
i = *BaseAddress[j];
// scan for first set bit, that's the length & alignment
length = 1 << (i & PCI_ADDRESS_IO_SPACE ? 2 : 4);
while (!(i & length) && length) {
length <<= 1;
}
// scan for last set bit, that's the maxaddress + 1
for (m = length; i & m; m <<= 1) ;
m--;
// check for hosed PCI configuration requirements
if (length & ~m) {
#if DBG
DbgPrint ("PCI: defective device! Bus %d, Slot %d, Function %d\n",
BusNumber,
PciSlot.u.bits.DeviceNumber,
PciSlot.u.bits.FunctionNumber
);
DbgPrint ("PCI: BaseAddress[%d] = %08lx\n", j, i);
#endif
// the device is in error - punt. don't allow this
// resource any option - it either gets set to whatever
// bits it was able to return, or it doesn't get set.
if (i & PCI_ADDRESS_IO_SPACE) {
m = i & ~0x3;
Descriptor->u.Port.MinimumAddress.LowPart = m;
} else {
m = i & ~0xf;
Descriptor->u.Memory.MinimumAddress.LowPart = m;
}
m += length; // max address is min address + length
}
//
// Add requested resource
//
Descriptor->Option = 0;
if (i & PCI_ADDRESS_IO_SPACE) {
memtype = 0;
if (PciOrigData->Command & PCI_ENABLE_IO_SPACE) {
//
// The IO range is/was already enabled at some location, add that
// as it's preferred setting.
//
Descriptor->Type = CmResourceTypePort;
Descriptor->ShareDisposition = CmResourceShareDeviceExclusive;
Descriptor->Flags = CM_RESOURCE_PORT_IO;
Descriptor->Option = IO_RESOURCE_PREFERRED;
Descriptor->u.Port.Length = length;
Descriptor->u.Port.Alignment = length;
Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0x3;
Descriptor->u.Port.MaximumAddress.LowPart =
Descriptor->u.Port.MinimumAddress.LowPart + length - 1;
CompleteList->List[0].Count++;
Descriptor++;
Descriptor->Option = IO_RESOURCE_ALTERNATIVE;
}
//
// Add this IO range
//
Descriptor->Type = CmResourceTypePort;
Descriptor->ShareDisposition = CmResourceShareDeviceExclusive;
Descriptor->Flags = CM_RESOURCE_PORT_IO;
Descriptor->u.Port.Length = length;
Descriptor->u.Port.Alignment = length;
Descriptor->u.Port.MaximumAddress.LowPart = m;
} else {
memtype = i & PCI_ADDRESS_MEMORY_TYPE_MASK;
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE;
if (j == RomIndex) {
// this is a ROM address
Descriptor->Flags = CM_RESOURCE_MEMORY_READ_ONLY;
}
if (i & PCI_ADDRESS_MEMORY_PREFETCHABLE) {
Descriptor->Flags |= CM_RESOURCE_MEMORY_PREFETCHABLE;
}
if ((j == RomIndex) ||
((PciOrigData->Command & PCI_ENABLE_MEMORY_SPACE) &&
((!Is64BitBaseAddress(i)) || (*OrigAddress[j+1] == 0)))) {
//
// The memory range is/was already enabled at some location,
// add that as it's preferred setting.
//
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareDeviceExclusive;
Descriptor->Option = IO_RESOURCE_PREFERRED;
Descriptor->u.Port.Length = length;
Descriptor->u.Port.Alignment = length;
Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0xF;
Descriptor->u.Port.MaximumAddress.LowPart =
Descriptor->u.Port.MinimumAddress.LowPart + length - 1;
CompleteList->List[0].Count++;
Descriptor++;
Descriptor->Flags = Descriptor[-1].Flags;
Descriptor->Option = IO_RESOURCE_ALTERNATIVE;
}
//
// Add this memory range
//
Descriptor->Type = CmResourceTypeMemory;
Descriptor->ShareDisposition = CmResourceShareDeviceExclusive;
Descriptor->u.Memory.Length = length;
Descriptor->u.Memory.Alignment = length;
Descriptor->u.Memory.MaximumAddress.LowPart = m;
if (memtype == PCI_TYPE_20BIT && m > 0xFFFFF) {
// limit to 20 bit address
Descriptor->u.Memory.MaximumAddress.LowPart = 0xFFFFF;
}
}
CompleteList->List[0].Count++;
Descriptor++;
if (Is64BitBaseAddress(i)) {
// skip upper half of 64 bit address since this processor
// only supports 32 bits of address space
j++;
}
}
}
CompleteList->ListSize = (ULONG)
((PUCHAR) Descriptor - (PUCHAR) CompleteList);
//
// Restore the device settings as we found them, enable memory
// and io decode after setting base addresses. This is done in
// case HalAdjustResourceList wants to read the current settings
// in the device.
//
HalpWritePCIConfig (
BusHandler,
PciSlot,
&PciOrigData->Status,
FIELD_OFFSET (PCI_COMMON_CONFIG, Status),
PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status)
);
HalpWritePCIConfig (
BusHandler,
PciSlot,
PciOrigData,
0,
FIELD_OFFSET (PCI_COMMON_CONFIG, Status)
);
//
// Have the IO system allocate resource assignments
//
status = IoAssignResources (
RegistryPath,
DriverClassName,
DriverObject,
DeviceObject,
CompleteList,
pAllocatedResources
);
if (!NT_SUCCESS(status)) {
goto CleanUp;
}
//
// Slurp the assigments back into the PciData structure and
// perform them
//
CmDescriptor = (*pAllocatedResources)->List[0].PartialResourceList.PartialDescriptors;
//
// If PCI device has an interrupt resource then that was
// passed in as the first requested resource
//
if (RequestedInterrupt) {
PciData->u.type0.InterruptLine = (UCHAR) CmDescriptor->u.Interrupt.Vector;
BusData->CommonData.Line2Pin (BusHandler, RootHandler, PciSlot, PciData, PciOrigData);
CmDescriptor++;
}
//
// Pull out resources in the order they were passed to IoAssignResources
//
for (j=0; j < NoBaseAddress; j++) {
i = *BaseAddress[j];
if (i) {
if (i & PCI_ADDRESS_IO_SPACE) {
*BaseAddress[j] = CmDescriptor->u.Port.Start.LowPart;
} else {
*BaseAddress[j] = CmDescriptor->u.Memory.Start.LowPart;
if (Is64BitBaseAddress(i)) {
//
// 64 bit address occupies 2 BARs. Reset the
// upper 32 bits to zero (currently FFFFFFFF
// from above). Actually, set to upper 32 bits
// from assigned resource.
//
j++;
*BaseAddress[j] = CmDescriptor->u.Memory.Start.HighPart;
}
}
CmDescriptor++;
}
}
//
// Turn off decodes, then set new addresses
//
HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH);
//
// Read configuration back and verify address settings took
//
HalpReadPCIConfig(BusHandler, PciSlot, PciData2, 0, PCI_COMMON_HDR_LENGTH);
Match = TRUE;
if (PciData->u.type0.InterruptLine != PciData2->u.type0.InterruptLine ||
PciData->u.type0.InterruptPin != PciData2->u.type0.InterruptPin ||
PciData->u.type0.ROMBaseAddress != PciData2->u.type0.ROMBaseAddress) {
Match = FALSE;
}
for (j=0; j < NoBaseAddress; j++) {
if (*BaseAddress[j]) {
if (*BaseAddress[j] & PCI_ADDRESS_IO_SPACE) {
i = PCI_ADDRESS_IO_ADDRESS_MASK;
} else {
i = PCI_ADDRESS_MEMORY_ADDRESS_MASK;
}
if ((*BaseAddress[j] & i) !=
(*((PULONG) ((PUCHAR) BaseAddress[j] -
(PUCHAR) PciData +
(PUCHAR) PciData2)) & i)) {
Match = FALSE;
}
if (Is64BitBaseAddress(*BaseAddress[j])) {
// skip upper 32 bits
j++;
}
}
}
if (!Match) {
#if DBG
DbgPrint ("PCI: defective device! Bus %d, Slot %d, Function %d\n",
BusNumber,
PciSlot.u.bits.DeviceNumber,
PciSlot.u.bits.FunctionNumber
);
#endif
status = STATUS_DEVICE_PROTOCOL_ERROR;
goto CleanUp;
}
//
// Settings took - turn on the appropiate decodes
//
if (EnableRomBase && *BaseAddress[RomIndex]) {
// a rom address was allocated and should be enabled
*BaseAddress[RomIndex] |= PCI_ROMADDRESS_ENABLED;
HalpWritePCIConfig (
BusHandler,
PciSlot,
BaseAddress[RomIndex],
(ULONG) ((PUCHAR) BaseAddress[RomIndex] - (PUCHAR) PciData),
sizeof (ULONG)
);
}
//
// Enable IO, Memory, and BUS_MASTER decodes
// (use HalSetBusData since valid settings now set)
//
PciData->Command |= PCI_ENABLE_IO_SPACE |
PCI_ENABLE_MEMORY_SPACE |
PCI_ENABLE_BUS_MASTER;
HalSetBusDataByOffset (
PCIConfiguration,
BusHandler->BusNumber,
PciSlot.u.AsULONG,
&PciData->Command,
FIELD_OFFSET (PCI_COMMON_CONFIG, Command),
sizeof (PciData->Command)
);
CleanUp:
if (!NT_SUCCESS(status)) {
//
// Failure, if there are any allocated resources free them
//
if (*pAllocatedResources) {
IoAssignResources (
RegistryPath,
DriverClassName,
DriverObject,
DeviceObject,
NULL,
NULL
);
ExFreePool (*pAllocatedResources);
*pAllocatedResources = NULL;
}
//
// Restore the device settings as we found them, enable memory
// and io decode after setting base addresses
//
HalpWritePCIConfig (
BusHandler,
PciSlot,
&PciOrigData->Status,
FIELD_OFFSET (PCI_COMMON_CONFIG, Status),
PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status)
);
HalpWritePCIConfig (
BusHandler,
PciSlot,
PciOrigData,
0,
FIELD_OFFSET (PCI_COMMON_CONFIG, Status)
);
}
ExFreePool (WorkingPool);
return status;
}
VOID
HalpGetNMICrashFlag (
VOID
)
{
UNICODE_STRING unicodeString, NMICrashDumpName;
OBJECT_ATTRIBUTES objectAttributes;
HANDLE hCrashControl;
UCHAR buffer [sizeof(PPCI_REGISTRY_INFO) + 99];
ULONG rsize;
NTSTATUS status;
extern BOOLEAN HalpNMIDumpFlag;
//
// Open Crash Control Registry Key
//
RtlInitUnicodeString (&unicodeString, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\CrashControl");
InitializeObjectAttributes (
&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
NULL, // handle
NULL);
HalpNMIDumpFlag = FALSE;
status = ZwOpenKey (&hCrashControl, KEY_READ, &objectAttributes);
if (NT_SUCCESS(status)) {
//
// Look for NMICrashDump Value
//
RtlInitUnicodeString (&NMICrashDumpName, L"NMICrashDump");
status = ZwQueryValueKey (
hCrashControl,
&NMICrashDumpName,
KeyValuePartialInformation,
(PKEY_VALUE_PARTIAL_INFORMATION) buffer,
sizeof (buffer),
&rsize
);
if ((NT_SUCCESS (status)) && (rsize == FIELD_OFFSET(KEY_VALUE_PARTIAL_INFORMATION, Data[0]) + sizeof(ULONG))) {
HalpNMIDumpFlag = (BOOLEAN)(((PKEY_VALUE_PARTIAL_INFORMATION)buffer)->Data[0]);
}
ZwClose (hCrashControl);
}
}
#ifndef ACPI_HAL
#define PciBridgeSwizzle(device, pin) \
((((pin - 1) + device) % 4) + 1)
#define PCIPin2Int(Slot,Pin) \
((((Slot.u.bits.DeviceNumber << 2) | (Pin-1)) != 0) ? \
(Slot.u.bits.DeviceNumber << 2) | (Pin-1) : 0x80);
#define PCIInt2Pin(interrupt) \
((interrupt & 0x3) + 1)
#define PCIInt2Slot(interrupt) \
((interrupt & 0x7f ) >> 2)
NTSTATUS
HalIrqTranslateRequirementsPciBridge(
IN PVOID Context,
IN PIO_RESOURCE_DESCRIPTOR Source,
IN PDEVICE_OBJECT PhysicalDeviceObject,
OUT PULONG TargetCount,
OUT PIO_RESOURCE_DESCRIPTOR *Target
)
/*++
Routine Description:
This function translates IRQ resource requirements to
the parent PCI bus. This is only to be used for devices
on a PCI bus created by a PCI to PCI bridge where there
is no other mechanism for determining the interrupt
routing exists. (i.e. this bus is generated by a
plug-in bridge.)
Arguments:
Context - must hold the slot number of the bridge
Return Value:
STATUS_SUCCESS, so long as we can allocate the necessary
memory
--*/
{
PIO_RESOURCE_DESCRIPTOR target;
PCI_SLOT_NUMBER bridgeSlot;
NTSTATUS status;
ULONG bridgePin;
ULONG pciBusNumber;
PCI_SLOT_NUMBER pciSlot;
UCHAR interruptLine;
UCHAR interruptPin;
UCHAR dummy;
PDEVICE_OBJECT parentPdo;
ROUTING_TOKEN routingToken;
PAGED_CODE();
ASSERT(Source->Type == CmResourceTypeInterrupt);
ASSERT(Source->u.Interrupt.MinimumVector == Source->u.Interrupt.MaximumVector);
target = ExAllocatePoolWithTag(PagedPool,
sizeof(IO_RESOURCE_DESCRIPTOR),
HAL_POOL_TAG);
if (!target) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Copy the source to fill in all the relevant fields.
//
*target = *Source;
status = PciIrqRoutingInterface.GetInterruptRouting(
PhysicalDeviceObject,
&pciBusNumber,
&pciSlot.u.AsULONG,
&interruptLine,
&interruptPin,
&dummy,
&dummy,
&parentPdo,
&routingToken,
&dummy
);
ASSERT(NT_SUCCESS(status));
//
// Find the translated IRQ.
//
bridgeSlot.u.AsULONG = 0;
bridgeSlot.u.bits.DeviceNumber = (ULONG)Context;
bridgePin = PciBridgeSwizzle(PCIInt2Slot(Source->u.Interrupt.MinimumVector),
PCIInt2Pin(Source->u.Interrupt.MinimumVector));
//
// The translated value is the the "PCI INT" of the pin
// on the bridge.
//
target->u.Interrupt.MinimumVector =
PCIPin2Int(bridgeSlot, bridgePin);
target->u.Interrupt.MaximumVector = target->u.Interrupt.MinimumVector;
*TargetCount = 1;
*Target = target;
return STATUS_SUCCESS;
}
NTSTATUS
HalIrqTranslateResourcesPciBridge(
IN PVOID Context,
IN PCM_PARTIAL_RESOURCE_DESCRIPTOR Source,
IN RESOURCE_TRANSLATION_DIRECTION Direction,
IN ULONG AlternativesCount, OPTIONAL
IN IO_RESOURCE_DESCRIPTOR Alternatives[], OPTIONAL
IN PDEVICE_OBJECT PhysicalDeviceObject,
OUT PCM_PARTIAL_RESOURCE_DESCRIPTOR Target
)
/*++
Routine Description:
This function translates IRQ resources to and from
the parent PCI bus. This is only to be used for devices
on a PCI bus created by a PCI to PCI bridge where there
is no other mechanism for determining the interrupt
routing exists. (i.e. this bus is generated by a
plug-in bridge.)
Arguments:
Context - must hold the slot number of the bridge
Return Value:
STATUS_SUCCESS
--*/
{
PCI_SLOT_NUMBER bridgeSlot, deviceSlot, childSlot;
ULONG bridgePin;
ULONG pciBusNumber, targetPciBusNumber, bridgeBusNumber;
UCHAR interruptPin;
UCHAR dummy;
PDEVICE_OBJECT parentPdo;
ROUTING_TOKEN routingToken;
NTSTATUS status;
UCHAR buffer[PCI_COMMON_HDR_LENGTH];
PPCI_COMMON_CONFIG pciData;
ULONG d, f;
PBUS_HANDLER busHandler;
PAGED_CODE();
ASSERT(Source->Type == CmResourceTypeInterrupt);
ASSERT(Source->u.Interrupt.Vector == Source->u.Interrupt.Level);
ASSERT(PciIrqRoutingInterface.GetInterruptRouting);
*Target = *Source;
status = PciIrqRoutingInterface.GetInterruptRouting(
PhysicalDeviceObject,
&pciBusNumber,
&deviceSlot.u.AsULONG,
&dummy,
&interruptPin,
&dummy,
&dummy,
&parentPdo,
&routingToken,
&dummy
);
ASSERT(NT_SUCCESS(status));
switch (Direction) {
case TranslateChildToParent:
//
// Find the translated IRQ.
//
bridgeSlot.u.AsULONG = 0;
bridgeSlot.u.bits.DeviceNumber = (ULONG_PTR)Context & 0xffff;
bridgePin = PciBridgeSwizzle(PCIInt2Slot(Source->u.Interrupt.Vector),
PCIInt2Pin(Source->u.Interrupt.Vector));
//
// The translated value is the the "PCI INT" of the pin
// on the bridge.
//
Target->u.Interrupt.Vector =
PCIPin2Int(bridgeSlot, bridgePin);
Target->u.Interrupt.Level = Target->u.Interrupt.Vector;
//
// The affinity should have been inherited from Source
// and it should be non-zero.
//
ASSERT(Target->u.Interrupt.Affinity != 0);
break;
case TranslateParentToChild:
//
// The child-relative representation of Vector and Level
// is from the MPS spec. And we need to know the device
// number and interrupt pin value.
//
//
// TEMPTEMP Use bushandlers until HALMPS is rid of them.
//
pciData = (PPCI_COMMON_CONFIG)&buffer;
bridgeBusNumber = ((ULONG_PTR)Context >> 16) & 0xffff;
busHandler = HaliHandlerForBus(PCIBus, bridgeBusNumber);
bridgeSlot.u.AsULONG = (ULONG_PTR)Context & 0xffff;
HalpReadPCIConfig(busHandler,
bridgeSlot,
pciData,
0,
PCI_COMMON_HDR_LENGTH);
if (pciData->u.type1.SecondaryBus == pciBusNumber) {
//
// This device is sitting on the bus that we are translating
// into. So create a vector based on the address of this device.
// (Are we at the bottom of the translation?)
//
Target->u.Interrupt.Vector = PCIPin2Int(deviceSlot, interruptPin);
Target->u.Interrupt.Level = Target->u.Interrupt.Vector;
return STATUS_SUCCESS;
} else {
//
// This device is not sitting on the bus that we are translating
// into. This device must be a (grand) child of another bridge that
// sits on this bus. And that bridge will have our device's bus
// within its Subordinate bus register.
//
targetPciBusNumber = pciData->u.type1.SecondaryBus;
bridgeSlot.u.AsULONG = 0;
for (d = 0; d < PCI_MAX_DEVICES; d++) {
for (f = 0; f < PCI_MAX_FUNCTION; f++) {
bridgeSlot.u.bits.DeviceNumber = d;
bridgeSlot.u.bits.FunctionNumber = f;
busHandler = HaliHandlerForBus(PCIBus, targetPciBusNumber);
HalpReadPCIConfig(busHandler,
bridgeSlot,
pciData,
0,
PCI_COMMON_HDR_LENGTH);
if ((PCI_CONFIGURATION_TYPE(pciData) == PCI_BRIDGE_TYPE) ||
(PCI_CONFIGURATION_TYPE(pciData) == PCI_CARDBUS_BRIDGE_TYPE)) {
//
// This is a bridge. Check the subordinate bus.
//
if (pciData->u.type1.SubordinateBus >= pciBusNumber) {
//
// Now we know the device number of the bridge on this
// bus that applies to this translation. We still need
// to know what pin will be triggered. To know that,
// we have to look one more bus down.
//
// There are two cases:
//
// 1) The next bus down contains the device.
//
// 2) The next bus down contains another bridge.
//
//
if (pciData->u.type1.SecondaryBus == pciBusNumber) {
//
// This is case 1).
//
interruptPin = (UCHAR)PciBridgeSwizzle(deviceSlot.u.bits.DeviceNumber,
interruptPin);
} else {
//
// This is case 2).
//
// Technically, to get the right answer, we would have to
// figure out which pin the bridge is going to trigger. But
// to do that, we would have to scan down busses until we found
// the device. And the information gathered on that little
// journey would never get used.
//
interruptPin = 1;
}
Target->u.Interrupt.Vector = PCIPin2Int(bridgeSlot, interruptPin);
Target->u.Interrupt.Level = Target->u.Interrupt.Vector;
return STATUS_SUCCESS;
}
}
}
}
}
return STATUS_NOT_FOUND;
}
return STATUS_SUCCESS;
}
#endif
#if DBG
VOID
HalpTestPci (ULONG flag2)
{
PCI_SLOT_NUMBER SlotNumber;
PCI_COMMON_CONFIG PciData, OrigData;
ULONG i, f, j, k, bus;
BOOLEAN flag;
if (!flag2) {
return ;
}
DbgBreakPoint ();
SlotNumber.u.bits.Reserved = 0;
//
// Read every possible PCI Device/Function and display it's
// default info.
//
// (note this destories it's current settings)
//
flag = TRUE;
for (bus = 0; flag; bus++) {
for (i = 0; i < PCI_MAX_DEVICES; i++) {
SlotNumber.u.bits.DeviceNumber = i;
for (f = 0; f < PCI_MAX_FUNCTION; f++) {
SlotNumber.u.bits.FunctionNumber = f;
//
// Note: This is reading the DeviceSpecific area of
// the device's configuration - normally this should
// only be done on device for which the caller understands.
// I'm doing it here only for debugging.
//
j = HalGetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
if (j == 0) {
// out of buses
flag = FALSE;
break;
}
if (j < PCI_COMMON_HDR_LENGTH) {
continue;
}
HalSetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
1
);
HalGetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
#if 0
memcpy (&OrigData, &PciData, sizeof PciData);
for (j=0; j < PCI_TYPE0_ADDRESSES; j++) {
PciData.u.type0.BaseAddresses[j] = 0xFFFFFFFF;
}
PciData.u.type0.ROMBaseAddress = 0xFFFFFFFF;
HalSetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
HalGetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
#endif
DbgPrint ("PCI Bus %d Slot %2d %2d ID:%04lx-%04lx Rev:%04lx",
bus, i, f, PciData.VendorID, PciData.DeviceID,
PciData.RevisionID);
if (PciData.u.type0.InterruptPin) {
DbgPrint (" IntPin:%x", PciData.u.type0.InterruptPin);
}
if (PciData.u.type0.InterruptLine) {
DbgPrint (" IntLine:%x", PciData.u.type0.InterruptLine);
}
if (PciData.u.type0.ROMBaseAddress) {
DbgPrint (" ROM:%08lx", PciData.u.type0.ROMBaseAddress);
}
DbgPrint ("\n Cmd:%04x Status:%04x ProgIf:%04x SubClass:%04x BaseClass:%04lx\n",
PciData.Command, PciData.Status, PciData.ProgIf,
PciData.SubClass, PciData.BaseClass);
k = 0;
for (j=0; j < PCI_TYPE0_ADDRESSES; j++) {
if (PciData.u.type0.BaseAddresses[j]) {
DbgPrint (" Ad%d:%08lx", j, PciData.u.type0.BaseAddresses[j]);
k = 1;
}
}
#if 0
if (PciData.u.type0.ROMBaseAddress == 0xC08001) {
PciData.u.type0.ROMBaseAddress = 0xC00001;
HalSetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
HalGetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&PciData,
sizeof (PciData)
);
DbgPrint ("\n Bogus rom address, edit yields:%08lx",
PciData.u.type0.ROMBaseAddress);
}
#endif
if (k) {
DbgPrint ("\n");
}
if (PciData.VendorID == 0x8086) {
// dump complete buffer
DbgPrint ("Command %x, Status %x, BIST %x\n",
PciData.Command, PciData.Status,
PciData.BIST
);
DbgPrint ("CacheLineSz %x, LatencyTimer %x",
PciData.CacheLineSize, PciData.LatencyTimer
);
for (j=0; j < 192; j++) {
if ((j & 0xf) == 0) {
DbgPrint ("\n%02x: ", j + 0x40);
}
DbgPrint ("%02x ", PciData.DeviceSpecific[j]);
}
DbgPrint ("\n");
}
#if 0
//
// now print original data
//
if (OrigData.u.type0.ROMBaseAddress) {
DbgPrint (" oROM:%08lx", OrigData.u.type0.ROMBaseAddress);
}
DbgPrint ("\n");
k = 0;
for (j=0; j < PCI_TYPE0_ADDRESSES; j++) {
if (OrigData.u.type0.BaseAddresses[j]) {
DbgPrint (" oAd%d:%08lx", j, OrigData.u.type0.BaseAddresses[j]);
k = 1;
}
}
//
// Restore original settings
//
HalSetBusData (
PCIConfiguration,
bus,
SlotNumber.u.AsULONG,
&OrigData,
sizeof (PciData)
);
#endif
//
// Next
//
if (k) {
DbgPrint ("\n\n");
}
}
}
}
DbgBreakPoint ();
}
#endif