Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

577 lines
18 KiB

/*
* encstats.c
*
* Routines for calculating statistics on a block of data which
* has been compressed, but not yet output.
*
* These routines are used to determine which encoding method to use
* to output the block.
*/
#include "encoder.h"
static void tally_aligned_bits(t_encoder_context *context, ulong dist_to_end_at)
{
ulong *dist_ptr;
ulong i;
ulong match_pos;
/*
* Tally the lower 3 bits
*/
dist_ptr = context->enc_DistData;
for (i = dist_to_end_at; i > 0; i--)
{
match_pos = *dist_ptr++;
/*
* Only for matches which have >= 3 extra bits
*/
if (match_pos >= MPSLOT3_CUTOFF)
context->enc_aligned_tree_freq[match_pos & 7]++;
}
}
/*
* Determine whether it is advantageous to use aligned block
* encoding on the block.
*/
lzx_block_type get_aligned_stats(t_encoder_context *context, ulong dist_to_end_at)
{
byte i;
ulong total_L3 = 0;
ulong largest_L3 = 0;
memset(
context->enc_aligned_tree_freq,
0,
ALIGNED_NUM_ELEMENTS * sizeof(context->enc_aligned_tree_freq[0])
);
tally_aligned_bits(context, dist_to_end_at);
for (i = 0; i < ALIGNED_NUM_ELEMENTS; i++)
{
if (context->enc_aligned_tree_freq[i] > largest_L3)
largest_L3 = context->enc_aligned_tree_freq[i];
total_L3 += context->enc_aligned_tree_freq[i];
}
/*
* Do aligned offsets if the largest frequency accounts for 20%
* or more (as opposed to 12.5% for non-aligned offset blocks).
*
* Not worthwhile to do aligned offsets if we have < 100 matches
*/
if ((largest_L3 > total_L3/5) && dist_to_end_at >= 100)
return BLOCKTYPE_ALIGNED;
else
return BLOCKTYPE_VERBATIM;
}
/*
* Calculates the frequency of each literal, and returns the total
* number of uncompressed bytes compressed in the block.
*/
static ulong tally_frequency(
t_encoder_context *context,
ulong literal_to_start_at,
ulong distance_to_start_at,
ulong literal_to_end_at
)
{
ulong i;
ulong d;
ulong compressed_bytes = 0;
d = distance_to_start_at;
for (i = literal_to_start_at; i < literal_to_end_at; i++)
{
if (!IsMatch(i))
{
/* Uncompressed symbol */
context->enc_main_tree_freq[context->enc_LitData[i]]++;
compressed_bytes++;
}
else
{
/* Match */
if (context->enc_LitData[i] < NUM_PRIMARY_LENGTHS)
{
context->enc_main_tree_freq[ NUM_CHARS + (MP_SLOT(context->enc_DistData[d])<<NL_SHIFT) + context->enc_LitData[i]] ++;
}
else
{
context->enc_main_tree_freq[ (NUM_CHARS + NUM_PRIMARY_LENGTHS) + (MP_SLOT(context->enc_DistData[d])<<NL_SHIFT)] ++;
context->enc_secondary_tree_freq[context->enc_LitData[i] - NUM_PRIMARY_LENGTHS] ++;
}
compressed_bytes += context->enc_LitData[i]+MIN_MATCH;
#ifdef EXTRALONGMATCHES
if (( context->enc_LitData[ i ] + MIN_MATCH ) == MAX_MATCH ) {
compressed_bytes += context->enc_ExtraLength[ i ];
}
#endif
d++;
}
}
return compressed_bytes;
}
/*
* Get statistics
*/
ulong get_block_stats(
t_encoder_context *context,
ulong literal_to_start_at,
ulong distance_to_start_at,
ulong literal_to_end_at
)
{
memset(
context->enc_main_tree_freq,
0,
MAIN_TREE_ELEMENTS * sizeof(context->enc_main_tree_freq[0])
);
memset(
context->enc_secondary_tree_freq,
0,
NUM_SECONDARY_LENGTHS * sizeof(context->enc_secondary_tree_freq[0])
);
return tally_frequency(
context,
literal_to_start_at,
distance_to_start_at,
literal_to_end_at
);
}
/*
* Update cumulative statistics
*/
ulong update_cumulative_block_stats(
t_encoder_context *context,
ulong literal_to_start_at,
ulong distance_to_start_at,
ulong literal_to_end_at
)
{
return tally_frequency(
context,
literal_to_start_at,
distance_to_start_at,
literal_to_end_at
);
}
/*
* Used in block splitting
*
* This routine calculates the "difference in composition" between
* two different sections of compressed data.
*
* Resolution must be evenly divisible by STEP_SIZE, and must be
* a power of 2.
*/
#define RESOLUTION 1024
/*
* Threshold for determining if two blocks are different
*
* If enough consecutive blocks are this different, the block
* splitter will start investigating, narrowing down the
* area where the change occurs.
*
* It will then look for two areas which are
* EARLY_BREAK_THRESHOLD (or more) different.
*
* If THRESHOLD is too small, it will force examination
* of a lot of blocks, slowing down the compressor.
*
* The EARLY_BREAK_THRESHOLD is the more important value.
*/
#define THRESHOLD 1400
/*
* Threshold for determining if two blocks are REALLY different
*/
#define EARLY_BREAK_THRESHOLD 1700
/*
* Must be >= 8 because ItemType[] array is in bits
*
* Must be a power of 2.
*
* This is the step size used to narrow down the exact
* best point to split the block.
*/
#define STEP_SIZE 64
/*
* Minimum # literals required to perform block
* splitting at all.
*/
#define MIN_LITERALS_REQUIRED 6144
/*
* Minimum # literals we will allow to be its own block.
*
* We don't want to create blocks with too small numbers
* of literals, otherwise the static tree output will
* take up too much space.
*/
#define MIN_LITERALS_IN_BLOCK 4096
static const long square_table[17] =
{
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256
};
/*
* log2(x) = x < 256 ? log2_table[x] : 8 + log2_table[(x >> 8)]
*
* log2(0) = 0
* log2(1) = 1
* log2(2) = 2
* log2(3) = 2
* log2(4) = 3
* log2(255) = 8
* log2(256) = 9
* log2(511) = 9
* log2(512) = 10
*
* It's not a real log2; it's off by one because we have
* log2(0) = 0.
*/
static const byte log2_table[256] =
{
0,1,2,2,3,3,3,3,
4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8
};
/*
* Return the difference between two sets of matches/distances
*/
static ulong return_difference(
t_encoder_context *context,
ulong item_start1,
ulong item_start2,
ulong dist_at_1,
ulong dist_at_2,
ulong size
)
{
ushort freq1[800];
ushort freq2[800];
ulong i;
ulong cum_diff;
int element;
/*
* Error! Too many main tree elements
*/
if (MAIN_TREE_ELEMENTS >= (sizeof(freq1)/sizeof(freq1[0])))
return 0;
memset(freq1, 0, sizeof(freq1[0])*MAIN_TREE_ELEMENTS);
memset(freq2, 0, sizeof(freq2[0])*MAIN_TREE_ELEMENTS);
for (i = 0; i < size; i++)
{
if (!IsMatch(item_start1))
{
element = context->enc_LitData[item_start1];
}
else
{
if (context->enc_LitData[item_start1] < NUM_PRIMARY_LENGTHS)
element = NUM_CHARS + (MP_SLOT(context->enc_DistData[dist_at_1])<<NL_SHIFT) + context->enc_LitData[item_start1];
else
element = (NUM_CHARS + NUM_PRIMARY_LENGTHS) + (MP_SLOT(context->enc_DistData[dist_at_1]) << NL_SHIFT);
dist_at_1++;
}
item_start1++;
freq1[element]++;
if (!IsMatch(item_start2))
{
element = context->enc_LitData[item_start2];
}
else
{
if (context->enc_LitData[item_start2] < NUM_PRIMARY_LENGTHS)
element = NUM_CHARS + (MP_SLOT(context->enc_DistData[dist_at_2])<<NL_SHIFT) + context->enc_LitData[item_start2];
else
element = (NUM_CHARS + NUM_PRIMARY_LENGTHS) + (MP_SLOT(context->enc_DistData[dist_at_2]) << NL_SHIFT);
dist_at_2++;
}
item_start2++;
freq2[element]++;
}
cum_diff = 0;
for (i = 0; i < (ulong) MAIN_TREE_ELEMENTS; i++)
{
ulong log2a, log2b, diff;
#define log2(x) ((x) < 256 ? log2_table[(x)] : 8+log2_table[(x) >> 8])
log2a = (ulong) log2(freq1[i]);
log2b = (ulong) log2(freq2[i]);
/* diff = (log2a*log2a) - (log2b*log2b); */
diff = square_table[log2a] - square_table[log2b];
cum_diff += abs(diff);
}
return cum_diff;
}
/*
* Calculates where and if a block of compressed data should be split.
*
* For example, if we have just compressed text data, audio data, and
* more text data, then the composition of matches and unmatched
* symbols will be different between the text data and audio data.
* Therefore we force an end of block whenever the compressed data
* looks like it's changing in composition.
*
* This routine currently cannot tell the difference between blocks
* which should use aligned offsets, and blocks which should not.
* However, there is little to be gained from looking for this change,
* since it the match finder doesn't make an effort to look for
* aligned offsets either.
*
* Returns whether we split the block or not.
*/
bool split_block(
t_encoder_context *context,
ulong literal_to_start_at,
ulong literal_to_end_at,
ulong distance_to_end_at, /* corresponds to # distances at literal_to_end_at */
ulong *split_at_literal,
ulong *split_at_distance /* optional parameter (may be NULL) */
)
{
ulong i, j, d;
int nd;
/*
* num_dist_at_item[n] equals the cumulative number of matches
* at literal "n / STEP_SIZE".
*/
ushort num_dist_at_item[(MAX_LITERAL_ITEMS/STEP_SIZE)+8]; /* +8 is slop */
/*
* default return
*/
*split_at_literal = literal_to_end_at;
if (split_at_distance)
*split_at_distance = distance_to_end_at;
/* Not worth doing if we don't have many literals */
if (literal_to_end_at - literal_to_start_at < MIN_LITERALS_REQUIRED)
return false;
/* Not allowed to split blocks any more, so we don't overflow MAX_GROWTH? */
if (context->enc_num_block_splits >= MAX_BLOCK_SPLITS)
return false;
/*
* Keep track of the number of distances (matches) we've had,
* at each step of STEP_SIZE literals.
*
* Look at 8 items at a time, and ignore the last
* 0..7 items if they exist.
*/
nd = 0;
d = 0;
for (i = 0; i < (literal_to_end_at >> 3); i++)
{
/*
* if (i % (STEP_SIZE >> 3)) == 0
*/
if ((i & ((STEP_SIZE >> 3)-1)) == 0)
num_dist_at_item[nd++] = (ushort) d;
d += context->enc_ones[ context->enc_ItemType[i] ];
}
/*
* Must be a multiple of STEP_SIZE
*/
literal_to_start_at = (literal_to_start_at + (STEP_SIZE-1)) & (~(STEP_SIZE-1));
/*
* See where the change in composition occurs
*/
for ( i = literal_to_start_at + 2*RESOLUTION;
i < literal_to_end_at - 4*RESOLUTION;
i += RESOLUTION)
{
/*
* If there appears to be a significant variance in composition
* between
* ___________
* / \
* A B i X Y Z
* \ \___/ /
* \_______________/
*/
if (
return_difference(
context,
i,
i+1*RESOLUTION,
(ulong) num_dist_at_item[i/STEP_SIZE],
(ulong) num_dist_at_item[(i+1*RESOLUTION)/STEP_SIZE],
RESOLUTION) > THRESHOLD
&&
return_difference(
context,
i-RESOLUTION,
i+2*RESOLUTION,
(ulong) num_dist_at_item[(i-RESOLUTION)/STEP_SIZE],
(ulong) num_dist_at_item[(i+2*RESOLUTION)/STEP_SIZE],
RESOLUTION) > THRESHOLD
&&
return_difference(
context,
i-2*RESOLUTION,
i+3*RESOLUTION,
(ulong) num_dist_at_item[(i-2*RESOLUTION)/STEP_SIZE],
(ulong) num_dist_at_item[(i+3*RESOLUTION)/STEP_SIZE],
RESOLUTION) > THRESHOLD
)
{
ulong max_diff = 0;
ulong literal_split = 0;
/*
* Narrow down the best place to split block
*
* This really could be done much better; we could end up
* doing a lot of stepping;
*
* basically ((5/2 - 1/2) * RESOLUTION) / STEP_SIZE
*
* which is (2 * RESOLUTION) / STEP_SIZE,
* which with RESOLUTION = 1024 and STEP_SIZE = 32,
* equals 2048/32 = 64 steps.
*/
for (j = i+RESOLUTION/2; j<i+(5*RESOLUTION)/2; j += STEP_SIZE)
{
ulong diff;
diff = return_difference(
context,
j - RESOLUTION,
j,
(ulong) num_dist_at_item[(j-RESOLUTION)/STEP_SIZE],
(ulong) num_dist_at_item[j/STEP_SIZE],
RESOLUTION
);
/* Get largest difference */
if (diff > max_diff)
{
/*
* j should not be too small, otherwise we'll be outputting
* a very small block
*/
max_diff = diff;
literal_split = j;
}
}
/*
* There could be multiple changes in the data in our literals,
* so if we find something really weird, make sure we break the
* block now, and not on some later change.
*/
if (max_diff >= EARLY_BREAK_THRESHOLD &&
(literal_split-literal_to_start_at) >= MIN_LITERALS_IN_BLOCK)
{
context->enc_num_block_splits++;
*split_at_literal = literal_split;
/*
* Return the associated # distances, if required.
* Since we split on a literal which is % STEP_SIZE, we
* can read the # distances right off
*/
if (split_at_distance)
*split_at_distance = num_dist_at_item[literal_split/STEP_SIZE];
return true;
}
}
}
/*
* No good place found to split
*/
return false;
}