Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1277 lines
23 KiB

/*++
Copyright (c) 1992 Microsoft Corporation
Module Name:
Int31.c
Abstract:
This module provides the int 31 API for dpmi
Author:
Neil Sandlin (neilsa) 23-Nov-1996
Revision History:
--*/
#include "precomp.h"
#pragma hdrstop
#include "softpc.h"
#include "xlathlp.h"
VOID Int31NotImplemented(VOID);
VOID Int31SelectorManagement(VOID);
VOID Int31DOSMemoryManagement(VOID);
VOID Int31InterruptManagement(VOID);
VOID Int31Translation(VOID);
VOID Int31Function4xx(VOID);
VOID Int31MemoryManagement(VOID);
VOID Int31PageLocking(VOID);
VOID Int31DemandPageTuning(VOID);
VOID Int31VirtualIntState(VOID);
VOID Int31DbgRegSupport(VOID);
//
// Local constants
//
#define MAX_DPMI_MAJOR_FUNCTION 0xb
typedef VOID (*APIFUNCTION)(VOID);
APIFUNCTION DpmiMajorFunctionTable[MAX_DPMI_MAJOR_FUNCTION+1] = {
Int31SelectorManagement , // Selector_Management ;[0]
Int31DOSMemoryManagement, // DOS_Mem_Mgt ;[1]
Int31InterruptManagement, // Int_Serv ;[2]
Int31Translation , // Trans_Serv ;[3]
Int31Function4xx , // Get_Version ;[4]
Int31MemoryManagement , // Mem_Managment ;[5]
Int31PageLocking , // Page_Lock ;[6]
Int31DemandPageTuning , // Demand_Page_Tuning ;[7]
Int31NotImplemented , // Phys_Addr_Mapping ;[8]
Int31VirtualIntState , // Virt_Interrrupt_State ;[9]
Int31NotImplemented , // Not_Supported ;[A]
Int31DbgRegSupport , // Debug_Register_Support ;[B]
};
VOID
DpmiInt31Entry(
VOID
)
/*++
Routine Description:
This routine is invoked when the caller has issued an int31.
Arguments:
None
Return Value:
None.
--*/
{
DECLARE_LocalVdmContext;
ULONG DpmiMajorCode = getAH();
PUCHAR StackPointer;
//
// Pop ds from stack
//
StackPointer = VdmMapFlat(getSS(), (*GetSPRegister)(), VDM_PM);
setDS(*(PWORD16)StackPointer);
(*SetSPRegister)((*GetSPRegister)() + 2);
//
// Take the iret frame off the stack before we do the operation. This
// way we have the stack pointer set up to the same place as we would
// if this was a kernel mode dpmi host.
//
SimulateIret(RESTORE_FLAGS);
setCF(0); // assume success
if (DpmiMajorCode <= MAX_DPMI_MAJOR_FUNCTION) {
(*DpmiMajorFunctionTable[DpmiMajorCode])();
} else {
setCF(1);
}
}
VOID
DpmiInt31Call(
VOID
)
/*++
Routine Description:
This routine dispatches to the appropriate routine to perform the
actual translation of the api
Arguments:
None
Return Value:
None.
--*/
{
DECLARE_LocalVdmContext;
ULONG DpmiMajorCode = getAH();
PUCHAR StackPointer;
//
// Pop ds from stack
//
StackPointer = VdmMapFlat(getSS(), (*GetSPRegister)(), VDM_PM);
setDS(*(PWORD16)StackPointer);
(*SetSPRegister)((*GetSPRegister)() + 2);
setCF(0); // assume success
if (DpmiMajorCode <= MAX_DPMI_MAJOR_FUNCTION) {
(*DpmiMajorFunctionTable[DpmiMajorCode])();
} else {
setCF(1);
}
}
VOID
Int31NotImplemented(
VOID
)
/*++
Routine Description:
This routine handles int 31 functions that aren't implemented on NT.
It just returns carry to the app.
Arguments:
None
Return Value:
TRUE - The function has been completed
--*/
{
DECLARE_LocalVdmContext;
setCF(1);
}
VOID
Int31SelectorManagement(
VOID
)
/*++
Routine Description:
This routine handles Int31 00xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
USHORT Sel;
USHORT NewSel;
UCHAR Func = getAL();
LDT_ENTRY UNALIGNED *Descriptor;
USHORT Access;
ULONG Base;
USHORT Count;
ULONG Limit;
static UCHAR ReservedSelectors[16] = {0};
//
// First, validate the selector
//
if ((Func >= 4) && (Func <= 0xC)) {
Sel = getBX() & SEL_INDEX_MASK;
//
// Make sure the selector in question is allocated
//
if (((Sel <= SEL_DPMI_LAST) && (!ReservedSelectors[Sel>>3])) ||
(Sel > LdtMaxSel) ||
((Sel > SEL_DPMI_LAST) && IS_SELECTOR_FREE(Sel))) {
setCF(1);
return;
}
}
switch(Func) {
//
// Allocate Selectors
//
case 0:
Count = getCX();
Sel = ALLOCATE_SELECTORS(Count);
if (!Sel || !Count) {
setCF(1);
break;
}
setAX(Sel);
while(Count--) {
SetDescriptor(Sel, 0, 0, STD_DATA);
Sel+=8;
}
break;
//
// Free Selector
//
case 1:
Sel = getBX() & SEL_INDEX_MASK;
if (Sel <= SEL_DPMI_LAST) {
if (!ReservedSelectors[Sel>>3]) {
setCF(1);
} else {
ReservedSelectors[Sel>>3] = 0;
}
break;
}
if (!FreeSelector(Sel)) {
setCF(1);
}
if (getCF() == 0) {
// Zero out segment registers if it contains what we just freed
// shielint: fs, gs, ss??? kernel will fix fs and gs for us. SS is unlikely
// to have the freed selector. If yes, the app is gone anyway.
if (getBX() == getDS()) {
setDS(0);
}
if (getBX() == getES()) {
setES(0);
}
}
break;
//
// Segment to Descriptor
//
case 2:
Sel = SegmentToSelector(getBX(), STD_DATA);
if (!Sel) {
setCF(1);
} else {
setAX(Sel);
}
break;
//
// Get Next Selector Increment value
//
case 3:
setAX(8);
break;
//
// Lock functions unimplemented on NT
//
case 4:
case 5:
break;
//
// Get Descriptor Base
//
case 6:
Base = GET_SELECTOR_BASE(Sel);
setDX((USHORT)Base);
setCX((USHORT)(Base >> 16));
break;
//
// Set Descriptor Base
//
case 7:
SetDescriptorBase(Sel, (((ULONG)getCX())<<16) | getDX());
break;
//
// Set Segment Limit
//
case 8:
Limit = ((ULONG)getCX()) << 16 | getDX();
if (Limit < 0x100000) { // < 1Mb?
Ldt[Sel>>3].HighWord.Bits.Granularity = 0;
} else {
if ((Limit & 0xfff) != 0xfff) {
// Limit > 1MB, but not page aligned. Return error
setCF(1);
break;
}
Ldt[Sel>>3].HighWord.Bits.Granularity = 1;
}
SET_SELECTOR_LIMIT(Sel, Limit);
SetShadowDescriptorEntries(Sel, 1);
FLUSH_SELECTOR_CACHE(Sel, 1);
break;
//
// Set Descriptor Access
//
case 9:
Access = getCX();
//
// verify that they aren't setting "System", and that its ring3
//
if ((Access & 0x70) != 0x70) {
setCF(1);
break;
}
SET_SELECTOR_ACCESS(Sel, Access);
SetShadowDescriptorEntries(Sel, 1);
FLUSH_SELECTOR_CACHE(Sel, 1);
break;
//
// Create data alias
//
case 0xA:
if (!IS_SELECTOR_READABLE(Sel)) {
setCF(1);
break;
}
NewSel = ALLOCATE_SELECTOR();
if (!NewSel) {
setCF(1);
break;
}
Ldt[NewSel>>3] = Ldt[Sel>>3];
Ldt[NewSel>>3].HighWord.Bytes.Flags1 &= (AB_PRESENT | AB_DPL3);
Ldt[NewSel>>3].HighWord.Bytes.Flags1 |= (AB_DATA | AB_WRITE);
SetShadowDescriptorEntries(NewSel, 1);
FLUSH_SELECTOR_CACHE(NewSel, 1);
setAX(NewSel);
break;
//
// Get Descriptor
//
case 0xB:
Descriptor = VdmMapFlat(getES(), (*GetDIRegister)(), VDM_PM);
*Descriptor = Ldt[Sel>>3];
break;
//
// Set Descriptor
//
case 0xC:
Descriptor = VdmMapFlat(getES(), (*GetDIRegister)(), VDM_PM);
//
// verify that this isn't a System descriptor, and that its ring3
//
if (!(Descriptor->HighWord.Bits.Type & 0x10) ||
((Descriptor->HighWord.Bits.Dpl & 3) != 3)) {
setCF(1);
return;
}
Ldt[Sel>>3] = *Descriptor;
SetShadowDescriptorEntries(Sel, 1);
FLUSH_SELECTOR_CACHE(Sel, 1);
break;
//
// Allocate Specific Sel
//
case 0xD:
Sel = getBX() & ~7;
if ((Sel > SEL_DPMI_LAST) || ReservedSelectors[Sel>>3]) {
setCF(1);
} else {
ReservedSelectors[Sel>>3] = 1;
}
break;
default:
setCF(1);
}
return;
}
VOID
Int31DOSMemoryManagement(
VOID
)
/*++
Routine Description:
This routine handles Int31 01xx functions.
The functionality is implemented in dosmem.c.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
switch(getAL()) {
//
// Allocate DOS memory block
//
case 0:
DpmiAllocateDosMem();
break;
//
// Free DOS memory block
//
case 1:
DpmiFreeDosMem();
break;
//
// Resize DOS memory block
//
case 2:
DpmiSizeDosMem();
break;
}
}
VOID
Int31InterruptManagement(
VOID
)
/*++
Routine Description:
This routine handles Int31 02xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
UCHAR IntNumber = getBL();
PWORD16 pIvtEntry;
switch(getAL()) {
//
// Get Real Mode Interrupt Vector
//
case 0:
pIvtEntry = (PWORD16) (IntelBase + IntNumber*4);
setDX(*pIvtEntry++);
setCX(*pIvtEntry);
break;
//
// Set Real Mode Interrupt Vector
//
case 1:
pIvtEntry = (PWORD16) (IntelBase + IntNumber*4);
*pIvtEntry++ = getDX();
*pIvtEntry = getCX();
break;
//
// Get exception handler Vector
//
case 2: {
PVDM_FAULTHANDLER Handlers = DpmiFaultHandlers;
if (IntNumber >= 32) {
setCF(1);
break;
}
setCX(Handlers[IntNumber].CsSelector);
(*SetDXRegister)(Handlers[IntNumber].Eip);
break;
}
//
// Set exception handler Vector
//
case 3:
if (!SetFaultHandler(IntNumber, getCX(), (*GetDXRegister)())){
setCF(1);
}
break;
//
// Get Protect Mode Interrupt Vector
//
case 4: {
PVDM_INTERRUPTHANDLER Handlers = DpmiInterruptHandlers;
setCX(Handlers[IntNumber].CsSelector);
(*SetDXRegister)(Handlers[IntNumber].Eip);
break;
}
//
// Set Protect Mode Interrupt Vector
//
case 5:
if (!SetProtectedModeInterrupt(IntNumber, getCX(), (*GetDXRegister)(),
(USHORT)(Frame32 ? VDM_INT_32 : VDM_INT_16))) {
setCF(1);
}
break;
}
}
VOID
Int31Translation(
VOID
)
/*++
Routine Description:
This routine handles Int31 03xx functions.
The functionality is implemented in modesw.c.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
switch(getAL()) {
//
// Simulate Real Mode Interrupt
// Call Real Mode Procedure with Far Return Frame
// Call Real Mode Procedure with Iret Frame
//
case 0:
case 1:
case 2:
DpmiRMCall(getAL());
break;
//
// Allocate Real Mode Call-Back Address
//
case 3:
DpmiAllocateRMCallBack();
break;
//
// Free Real Mode Call-Back Address
//
case 4:
DpmiFreeRMCallBack();
break;
//
// Get State Save/Restore Addresses
//
case 5:
setAX(0);
setBX((USHORT)(DosxRmSaveRestoreState>>16));
setCX((USHORT)DosxRmSaveRestoreState);
setSI((USHORT)(DosxPmSaveRestoreState>>16));
(*SetDIRegister)(DosxPmSaveRestoreState & 0x0000FFFF);
break;
//
// Get Raw Mode Switch Addresses
//
case 6:
setBX((USHORT)(DosxRmRawModeSwitch>>16));
setCX((USHORT)DosxRmRawModeSwitch);
setSI((USHORT)(DosxPmRawModeSwitch>>16));
(*SetDIRegister)(DosxPmRawModeSwitch & 0x0000FFFF);
break;
}
}
VOID
Int31Function4xx(
VOID
)
/*++
Routine Description:
This routine handles Int31 04xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
USHORT Sel;
switch(getAL()) {
//
// Get Version
//
case 0:
setAX(I31VERSION);
setBX(I31FLAGS);
setCL(idCpuType);
setDX((I31MasterPIC << 8) | I31SlavePIC);
break;
//
// INTERNAL NT FUNCTION: WowAllocSelectors
// This function is equivalent to DPMI func 0000,
// except that it skips the step of initializing the
// descriptors.
//
case 0xf1:
Sel = ALLOCATE_WOW_SELECTORS(getCX());
if (!Sel) {
setCF(1);
// We fall thru to make sure AX is set to 0 in the failure case.
}
setAX(Sel);
break;
//
// INTERNAL NT FUNCTION: WowSetDescriptor
// This function assumes that the local LDT has already
// been set in the client. All that needs to be done
// is an update of dpmi32 entries, as well as sending
// it to the x86 ntoskrnl.
//
case 0xf2:
Sel = getBX() & ~7;
if (Sel > LdtMaxSel) {
setCF(1);
break;
}
SetShadowDescriptorEntries(Sel, getCX());
// no need to flush the cache on risc since the ldt was changed
// from the 16-bit side, and has thus already been flushed
break;
//
// INTERNAL NT FUNCTION: WowSetLowMemFuncs
// Wow is passing us the address of GlobalDOSAlloc, GlobalDOSFree
// so that we can support the DPMI Dos memory management functions
//
case 0xf3:
WOWAllocSeg = getBX();
WOWAllocFunc = getDX();
WOWFreeSeg = getSI();
WOWFreeFunc = getDI();
break;
}
}
VOID
Int31MemoryManagement(
VOID
)
/*++
Routine Description:
This routine handles Int31 05xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
PMEM_DPMI pMem;
switch(getAL()) {
//
// Get Free Memory Information
//
case 0:
DpmiGetMemoryInfo();
break;
//
// Allocate Memory Block
//
case 1:
pMem = DpmiAllocateXmem(((ULONG)getBX() << 16) | getCX());
if (!pMem) {
setCF(1);
break;
}
//
// Return the information about the block
//
setBX((USHORT)((ULONG)pMem->Address >> 16));
setCX((USHORT)((ULONG)pMem->Address & 0x0000FFFF));
setSI((USHORT)((ULONG)pMem >> 16));
setDI((USHORT)((ULONG)pMem & 0x0000FFFF));
break;
//
// Free Memory Block
//
case 2:
pMem = (PMEM_DPMI)(((ULONG)getSI() << 16) | getDI());
if (!DpmiIsXmemHandle(pMem) || !DpmiFreeXmem(pMem)) {
setCF(1);
}
break;
//
// Resize Memory Block
//
case 3: {
ULONG ulMemSize;
ulMemSize = ((ULONG)getBX() << 16) | getCX();
//
// Not allowed to resize to 0
//
if ( ulMemSize != 0 ) {
pMem = (PMEM_DPMI)(((ULONG)getSI() << 16) | getDI());
if (!DpmiReallocateXmem(pMem, ulMemSize) ) {
setCF(1);
break;
}
//
// Return the information about the block
//
setBX((USHORT)((ULONG)pMem->Address >> 16));
setCX((USHORT)((ULONG)pMem->Address & 0x0000FFFF));
}
else
{
setCF(1);
}
break;
}
}
}
VOID
Int31PageLocking(
VOID
)
/*++
Routine Description:
This routine handles Int31 06xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
switch(getAL()) {
//
// Lock functions not implemented
//
case 0:
case 1:
case 2:
case 3:
break;
//
// Get Page Size
//
case 4:
setBX(0);
setCX(0x1000);
break;
}
}
VOID
Int31DemandPageTuning(
VOID
)
/*++
Routine Description:
This routine handles Int31 07xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
ULONG Addr = (getBX()<<16 | getCX()) + IntelBase;
ULONG Count = getSI()<<16 | getDI();
if (Count) {
switch(getAL()) {
//
// Mark Page as Demand Paging Candidate
//
case 0:
// Addr, Count expressed in 4k pages
Addr <<= 12;
Count <<= 12;
case 2:
VirtualUnlock((PVOID)Addr, Count);
break;
//
// Discard Page Contents
//
case 1:
// Addr, Count expressed in 4k pages
Addr <<= 12;
Count <<= 12;
case 3:
VirtualAlloc((PVOID)Addr, Count, MEM_RESET, PAGE_READWRITE);
break;
default:
setCF(1);
}
}
}
VOID
Int31VirtualIntState(
VOID
)
/*++
Routine Description:
This routine handles Int31 09xx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
BOOL bVIF = *(ULONG *)(IntelBase+FIXED_NTVDMSTATE_LINEAR) & VDM_VIRTUAL_INTERRUPTS;
switch(getAL()) {
//
// Get and disable Virtual Interrupt State
//
case 0:
setEFLAGS(getEFLAGS() & ~EFLAGS_IF_MASK);
break;
//
// Get and enable Virtual Interrupt State
//
case 1:
setEFLAGS(getEFLAGS() | EFLAGS_IF_MASK);
break;
case 2:
break;
default:
setCF(1);
return;
}
if (bVIF) {
setAL(1);
} else {
setAL(0);
}
}
VOID
Int31DbgRegSupport(
VOID
)
/*++
Routine Description:
This routine handles Int31 0bxx functions.
Arguments:
None
Return Value:
None
--*/
{
DECLARE_LocalVdmContext;
#ifndef _X86_
setCF(1);
#else
ULONG DebugRegisters[6];
USHORT Handle;
ULONG Mask;
ULONG Size;
ULONG Type;
UCHAR Func = getAL();
#define DBG_TYPE_EXECUTE 0
#define DBG_TYPE_WRITE 1
#define DBG_TYPE_READWRITE 2
#define DBG_DR6 4
#define DBG_DR7 5
#define DR7_LE 0x100
#define DR7_L0 0x01
#define DR7_L1 0x04
#define DR7_L2 0x10
#define DR7_L3 0x40
//
// Debugging ntvdm under NTSD affects the values of the debug register
// context, so defining the following value turns on some debugging
// code
//
//#define DEBUGGING_DEBUGREGS 1
if (!DpmiGetDebugRegisters(DebugRegisters)) {
setCF(1);
return;
}
#ifdef DEBUGGING_DEBUGREGS
{
char szMsg[256];
wsprintf(szMsg, " DR0-3=%.8X %.8X %.8X %.8X DR6,7=%.8X %.8X\n",
DebugRegisters[0],
DebugRegisters[1],
DebugRegisters[2],
DebugRegisters[3],
DebugRegisters[DBG_DR6],
DebugRegisters[DBG_DR7]);
OutputDebugString(szMsg);
}
#endif
if (Func != 0) {
Handle = getBX();
//
// point at the local enable bit for this handle in DR7
//
Mask = (DR7_L0 << Handle*2);
if ((Handle >= 4) ||
(!(DebugRegisters[DBG_DR7] & Mask))) {
// Invalid Handle
setCF(1);
return;
}
}
switch(Func) {
//
// Set Debug Watchpoint
//
case 0:
for (Handle = 0, Mask = 3; Handle < 4; Handle++, Mask <<= 2) {
if (!(DebugRegisters[DBG_DR7] & Mask)) {
//
// found a free register
//
//
// Set the linear address
//
DebugRegisters[Handle] = (((ULONG)getBX()) << 16) + getCX();
Size = getDL();
Type = getDH();
if (Type == DBG_TYPE_EXECUTE) {
// force size to be 1 for execute
Size = 1;
}
if ((Size > 4) || (Size == 3) || (!Size) || (Type > 2)) {
// error: invalid parameter
break;
}
//
// convert size to appropriate bits in DR7
//
Size--;
Size <<= (18 + Handle*4);
//
// convert type to appropriate bits in DR7
//
if (Type == DBG_TYPE_READWRITE) {
Type++;
}
Type <<= (16 + Handle*4);
Mask = 0xf << (16 + Handle*4);
//
// Set the appropriate Len, R/W, and enable bits in DR7
// Also set the common global and local enable bits.
//
DebugRegisters[DBG_DR7] &= ~Mask;
DebugRegisters[DBG_DR7] |= (Size | Type | (DR7_L0 << Handle*2));
DebugRegisters[DBG_DR7] |= DR7_LE;
//
// Clear triggered bit for this BP
//
DebugRegisters[DBG_DR6] &= ~(1 << Handle);
#ifdef DEBUGGING_DEBUGREGS
{
char szMsg[256];
wsprintf(szMsg, "Int31 Setting DBGREG %d, Location %.8X, DR7=%.8X\n",
Handle, DebugRegisters[Handle], DebugRegisters[DBG_DR7]);
OutputDebugString(szMsg);
}
#endif
if (DpmiSetDebugRegisters(DebugRegisters)) {
return;
}
break;
}
}
setCF(1);
break;
//
// Clear Debug Watchpoint
//
case 1:
//
// clear enabled and triggered bits for this BP
//
DebugRegisters[DBG_DR7] &= ~Mask;
DebugRegisters[DBG_DR6] &= (1 << Handle);
DebugRegisters[Handle] = 0;
//
// Check to see if this clears all BP's (all local enable bits
// clear), and disable common enable bit if so
//
if (!(DebugRegisters[DBG_DR7] & (DR7_L0 | DR7_L1 | DR7_L2 | DR7_L3))) {
DebugRegisters[DBG_DR7] &= ~DR7_LE;
}
#ifdef DEBUGGING_DEBUGREGS
{
char szMsg[256];
wsprintf(szMsg, "Int31 Clearing DBGREG %d, DR7=%.8X\n",
Handle, DebugRegisters[DBG_DR7]);
OutputDebugString(szMsg);
}
#endif
if (!DpmiSetDebugRegisters(DebugRegisters)) {
setCF(1);
}
break;
//
// Get State of Debug Watchpoint
//
case 2:
if (DebugRegisters[DBG_DR6] & (1 << Handle)) {
setAX(1);
} else {
setAX(0);
}
#ifdef DEBUGGING_DEBUGREGS
{
char szMsg[256];
wsprintf(szMsg, "Int31 Query on DBGREG %d returns %d\n", Handle, getAX());
OutputDebugString(szMsg);
}
#endif
break;
//
// Reset Debug Watchpoint
//
case 3:
DebugRegisters[DBG_DR6] &= ~(1 << Handle);
#ifdef DEBUGGING_DEBUGREGS
{
char szMsg[256];
wsprintf(szMsg, "Int31 Resetting DBGREG %d\n", Handle);
OutputDebugString(szMsg);
}
#endif
if (!DpmiSetDebugRegisters(DebugRegisters)) {
setCF(1);
}
break;
default:
setCF(1);
}
#endif
}