Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

933 lines
29 KiB

// TITLE("Interrupt Object Support Routines")
//++
//
// Copyright (c) 1990 Microsoft Corporation
// Copyright (c) 1992 Digital Equipment Corporation
//
// Module Name:
//
// intsup.s
//
// Abstract:
//
// This module implements the code necessary to support interrupt objects.
// It contains the interrupt dispatch code and the code template that gets
// copied into an interrupt object.
//
// Author:
//
// David N. Cutler (davec) 2-Apr-1990
// Joe Notarangelo 07-Apr-1992 (based on xxintsup.s by Dave Cutler)
//
// Environment:
//
// Kernel mode only.
//
// Revision History:
//
//--
#include "ksalpha.h"
SBTTL("Synchronize Execution")
//++
//
// BOOLEAN
// KeSynchronizeExecution (
// IN PKINTERRUPT Interrupt,
// IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
// IN PVOID SynchronizeContext
// )
//
// Routine Description:
//
// This function synchronizes the execution of the specified routine with the
// execution of the service routine associated with the specified interrupt
// object.
//
// Arguments:
//
// Interrupt (a0) - Supplies a pointer to a control object of type interrupt.
//
// SynchronizeRoutine (a1) - Supplies a pointer to a function whose execution
// is to be synchronized with the execution of the service routine associated
// with the specified interrupt object.
//
// SynchronizeContext (a2) - Supplies a pointer to an arbitrary data structure
// which is to be passed to the function specified by the SynchronizeRoutine
// parameter.
//
// Return Value:
//
// The value returned by the SynchronizeRoutine function is returned as the
// function value.
//
//--
.struct 0
SyS0: .space 8 // saved integer register s0
SyIrql: .space 4 // saved IRQL value
.space 4 // fill for alignment
SyRa: .space 8 // saved return address
SyA0: .space 8 // saved argument registers a0 - a2
SyA1: .space 8 //
SyA2: .space 8 //
SyFrameLength: // length of stack frame
NESTED_ENTRY(KeSynchronizeExecution, SyFrameLength, zero)
lda sp, -SyFrameLength(sp) // allocate stack frame
stq ra, SyRa(sp) // save return address
stq s0, SyS0(sp) // save integer register s0
PROLOGUE_END
stq a1, SyA1(sp) // save synchronization routine address
stq a2, SyA2(sp) // save synchronization routine context
//
// Raise IRQL to the synchronization level and acquire the associated
// spin lock.
//
#if !defined(NT_UP)
LDP s0, InActualLock(a0) // get address of spin lock
#endif
ldq_u t1, InSynchronizeIrql(a0) // get synchronization IRQL
lda t2, InSynchronizeIrql(a0) //
extbl t1, t2, a0 //
SWAP_IRQL // raise IRQL to synchronization level
stl v0, SyIrql(sp) // save old irql
#if !defined(NT_UP)
10: LDP_L t0, 0(s0) // get current lock value
bis s0, zero, t1 // set lock ownership value
bne t0, 15f // if ne, spin lock owned
STP_C t1, 0(s0) // set spin lock owned
beq t1, 15f // if eq, store conditional failed
mb // synchronize memory access
#endif
//
// Call specified routine passing the specified context parameter.
//
LDP t5, SyA1(sp) // get synchronize routine address
LDP a0, SyA2(sp) // get synchronzie routine context
jsr ra, (t5) // call routine
//
// Release spin lock, lower IRQL to its previous level, and return the value
// returned by the specified routine.
//
#if !defined(NT_UP)
mb // synchronize memory access
STP zero, 0(s0) // set spin lock not owned
#endif
ldl a0, SyIrql(sp) // get saved IRQL
extbl a0, 0, a0 // this is a uchar
bis v0, zero, s0 // save return value
SWAP_IRQL // lower IRQL to previous level
bis s0, zero, v0 // restore return value
ldq s0, SyS0(sp) // restore s0
ldq ra, SyRa(sp) // restore ra
lda sp, SyFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
//
// Attempt to acquire lock failed.
//
#if !defined(NT_UP)
15: LDP t0, 0(s0) // read current lock value
beq t0, 10b // if lock available, retry spinlock
br zero, 15b // spin in cache until lock available
#endif
.end KeSynchronizeExecution
SBTTL("Dispatch Chained Interrupt")
//++
//
// Routine Description:
//
// This routine is entered as the result of an interrupt being generated
// via a vector that is connected to more than one interrupt object. Its
// function is to walk the list of connected interrupt objects and call
// each interrupt service routine. If the mode of the interrupt is latched,
// then a complete traversal of the chain must be performed. If any of the
// routines require saving the volatile floating point machine state, then
// it is only saved once.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt object.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
.struct 0
ChS0: .space 8 // saved integer registers s0 - s5
ChS1: .space 8 //
ChS2: .space 8 //
ChS3: .space 8 //
ChS4: .space 8 //
ChS5: .space 8 //
ChRa: .space 8 // saved return address
ChIrql: .space 4 // saved IRQL value
ChSpinL: .space 4 // address of spin lock
ChFrameLength: // length of stack frame
NESTED_ENTRY(KiChainedDispatch, ChFrameLength, zero)
lda sp, -ChFrameLength(sp) // allocate stack frame
stq ra, ChRa(sp) // save return address
stq s0, ChS0(sp) // save integer registers s0 - s6
stq s1, ChS1(sp) //
stq s2, ChS2(sp) //
stq s3, ChS3(sp) //
stq s4, ChS4(sp) //
stq s5, ChS5(sp) //
PROLOGUE_END
//
// Register usage:
//
// s0 = address of listhead
// s1 = address of current item in list
// s2 = floating status saved flag
// s3 = mode of interrupt
// s4 = irql of interrupt source
// s5 = synchronization level requested for current list item
//
// Initialize loop variables.
//
ADDP a0, InInterruptListEntry, s0 // set address of listhead
bis s0, zero, s1 // set address of first entry
bis zero, zero, s2 // clear floating state saved flag
ldq_u t0, InMode(a0) // get mode of interrupt
lda t2, InMode(a0) //
extbl t0, t2, s3 //
ldq_u t1, InIrql(a0) // get interrupt source IRQL
lda t3, InIrql(a0) //
extbl t1, t3, s4 //
//
// Walk the list of connected interrupt objects and call the respective
// interrupt service routines.
//
10: SUBP s1, InInterruptListEntry, a0 // compute interrupt object address
ldq_u t2, InFloatingSave(a0) // get floating save flag
lda t1, InFloatingSave(a0) //
extbl t2, t1, t0 //
bne s2, 20f // if ne, floating state already saved
beq t0, 20f // if eq, don't save floating state
//
// Save volatile floating registers in trap frame.
//
bsr ra, KiSaveVolatileFloatState // save floating state
ldil s2, 1 // set floating state saved flag
//
// Raise IRQL to synchronization level if synchronization level is not
// equal to the interrupt source level.
//
20: ldq_u t1, InSynchronizeIrql(a0) // get synchronization IRQL
lda t2, InSynchronizeIrql(a0) //
extbl t1, t2, s5 //
cmpeq s4, s5, t0 // Check if synchronization equals source level?
bne t0, 25f // if ne[true], IRQL levels are same
bis s5, zero, a0 // set synchronization IRQL
SWAP_IRQL // raise IRQL to synchronization level
stl v0, ChIrql(sp) // save old IRQL
SUBP s1, InInterruptListEntry, a0 // recompute interrupt object address
//
//
// Acquire the service routine spin lock and call the service routine.
//
25: //
#if !defined(NT_UP)
LDP t5, InActualLock(a0) // get address of spin lock
30: LDP_L t1, 0(t5) // get current lock value
bis t5, zero, t2 // set ownership value
bne t1, 35f // if ne, spin lock owned
STP_C t2, 0(t5) // set spin lock owned
beq t2, 35f // if eq, store conditional failed
mb // synchronize memory access
STP t5, ChSpinL(sp) // save spin lock address
#endif
LDP t5, InServiceRoutine(a0) // get address of service routine
LDP a1, InServiceContext(a0) // get service context
jsr ra, (t5) // call interrupt service routine
//
// Release the service routine spin lock.
//
#if !defined(NT_UP)
LDP t5, ChSpinL(sp) // get address of spin lock
mb // synchronize memory access
STP zero, 0(t5) // set spin lock not owned
#endif
//
// Lower IRQL to the interrupt source level if synchronization level is not
// the same as the interrupt source level.
//
cmpeq s4, s5, t0 // check if synchronization equals source level
bne t0, 37f // if ne[true], IRQL levels are same
bis s4, zero, a0 // set interrupt source IRQL
SWAP_IRQL // lower to interrupt source IRQL
//
// Get next list entry and check for end of loop.
//
37: LDP s1, LsFlink(s1) // get next interrupt object address
beq v0, 40f // if eq, interrupt not handled
beq s3, 50f // if eq, level sensitive interrupt
40: cmpeq s0, s1, t0 // check if end of list
beq t0, 10b // if eq[false], not end of list
//
// Either the interrupt is level sensitive and has been handled or the end of
// the interrupt object chain has been reached. Check to determine if floating
// machine state needs to be restored.
//
50: beq s2, 60f // if eq, floating state not saved
//
// Restore volatile floating registers from trap frame.
//
bsr ra, KiRestoreVolatileFloatState // restore floating state
//
// Restore integer registers s0 - s5, retrieve return address, deallocate
// stack frame, and return.
//
60: ldq s0, ChS0(sp) // restore integer registers s0 - s6
ldq s1, ChS1(sp) //
ldq s2, ChS2(sp) //
ldq s3, ChS3(sp) //
ldq s4, ChS4(sp) //
ldq s5, ChS5(sp) //
ldq ra, ChRa(sp) // restore return address
lda sp, ChFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
//
// Attempt to acquire spinlock failed.
//
#if !defined(NT_UP)
35: LDP t1, 0(t5) // read current lock value
beq t1, 30b // if eq, lock available
br zero, 35b // spin in cache until lock available
#endif
.end KiChainedDispatch
SBTTL("Floating Dispatch")
//++
//
// Routine Description:
//
// This routine is entered as the result of an interrupt being generated
// via a vector that is connected to an interrupt object. Its function is
// to save the volatile floating machine state and then call the specified
// interrupt service routine.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt object.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
.struct 0
FlS0: .space 8 // saved integer registers s0 - s1
FlS1: .space 8 //
FlIrql: .space 4 // saved IRQL value
.space 4 // for alignment
FlRa: .space 8 // saved return address
FlFrameLength: // length of stack frame
NESTED_ENTRY(KiFloatingDispatch, FlFrameLength, zero)
lda sp, -FlFrameLength(sp) // allocate stack frame
stq ra, FlRa(sp) // save return address
stq s0, FlS0(sp) // save integer registers s0 - s1
#if !defined(NT_UP)
stq s1, FlS1(sp) //
#endif
PROLOGUE_END
//
// Save volatile floating registers f0 - f19 in trap frame.
//
bsr ra, KiSaveVolatileFloatState // save floating state
//
// Raise IRQL to synchronization level if synchronization level is not
// equal to the interrupt source level.
//
bis a0, zero, s0 // save address of interrupt object
ldq_u t2, InSynchronizeIrql(s0) // get synchronization IRQL
lda t1, InSynchronizeIrql(s0) //
extbl t2, t1, a0 //
ldq_u t3, InIrql(s0) // get interrupt source IRQL
lda t4, InIrql(s0) //
extbl t3, t4, t0 //
cmpeq a0, t0, t1 // check if synchronize equals source IRQL ?
bne t1, 10f // if ne[true], IRQL levels same
SWAP_IRQL // raise IRQL to synchronization level
stl v0, FlIrql(sp) // save old irql
10: bis s0, zero, a0 // restore address of interrupt object
//
//
// Acquire the service routine spin lock and call the service routine.
//
#if !defined(NT_UP)
LDP s1, InActualLock(a0) // get address of spin lock
20: LDP_L t1, 0(s1) // get current lock value
bis s1, s1, t2 // set ownership value
bne t1, 25f // if ne, spin lock owned
STP_C t2, 0(s1) // set spin lock owned
beq t2, 25f // if eq, store conditional failed
mb // synchronize memory access
#endif
LDP t5, InServiceRoutine(a0) // get address of service routine
LDP a1, InServiceContext(a0) // get service context
jsr ra, (t5) // call service routine
//
// Release the service routine spin lock.
//
#if !defined(NT_UP)
mb // synchronize memory access
STP zero, 0(s1) // set spin lock not owned
#endif
//
// Lower IRQL to the interrupt source level if synchronization level is not
// the same as the interrupt source level.
//
ldq_u t3, InIrql(s0) // get interrupt source IRQL
lda t1, InIrql(s0) //
extbl t3, t1, a0 //
ldq_u t4, InSynchronizeIrql(s0) // get synchronization IRQL
lda t2, InSynchronizeIrql(s0) //
extbl t4, t2, t0 //
cmpeq a0, t0, t1 // check if synchronize equal source IRQL?
bne t1, 30f // if eq, IRQL levels are the same
SWAP_IRQL // lower IRQL to interrupt source
//
// Restore volatile floating registers f0 - f19 from trap frame.
//
30: bsr ra, KiRestoreVolatileFloatState // restore floating state
//
// Restore integer registers s0 - s1, retrieve return address, deallocate
// stack frame, and return.
//
ldq s0, FlS0(sp) // restore integer registers s0 - s1
#if !defined(NT_UP)
ldq s1, FlS1(sp) //
#endif
ldq ra, FlRa(sp) // restore return address
lda sp, FlFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
//
// Attempt to acquire spinlock failed.
//
#if !defined(NT_UP)
25: LDP t1, 0(s1) // read current lock value
beq t1, 20b // if lock available, retry spinlock
br zero, 25b // spin in cache until lock available
#endif
.end KiFloatingDispatch
SBTTL("Interrupt Dispatch - Raise IRQL")
//++
//
// Routine Description:
//
// This routine is entered as the result of an interrupt being generated
// via a vector that is connected to an interrupt object. Its function is
// to directly call the specified interrupt service routine.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// N.B. This routine raises the interrupt level to the synchronization
// level specified in the interrupt object.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt object.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
.struct 0
.space 8 // insure octaword alignment
RdS0: .space 8 // saved integer registers s0
RdIrql: .space 4 // saved IRQL value
.space 4 // for alignment
RdRa: .space 8 // saved return address
RdFrameLength: // length of stack frame
NESTED_ENTRY(KiInterruptDispatchRaise, RdFrameLength, zero)
lda sp, -RdFrameLength(sp) // allocate stack frame
stq ra, RdRa(sp) // save return address
stq s0, RdS0(sp) // save integer registers s0
PROLOGUE_END
//
// Raise IRQL to synchronization level
//
bis a0, zero, s0 // save address of interrupt object
ldq_u t3, InSynchronizeIrql(s0) // get synchronization IRQL
lda t1, InSynchronizeIrql(s0) //
extbl t3, t1, a0 //
SWAP_IRQL // raise IRQL to synchronization level
stl v0, RdIrql(sp) // save old irql
bis s0, zero, a0 // restore address of interrupt object
//
//
// Acquire the service routine spin lock and call the service routine.
//
#if !defined(NT_UP)
LDP t3, InActualLock(a0) // get address of actual lock
20: LDP_L t1, 0(t3) // get current lock value
bis t3, t3, t2 // set lock ownership value
bne t1, 25f // if ne, spin lock owned
STP_C t2, 0(t3) // set spin lock owned
beq t2, 25f // if eq, store conditional failed
mb // synchronize memory access
#endif
LDP t5, InServiceRoutine(a0) // get address of service routine
LDP a1, InServiceContext(a0) // get service context
jsr ra, (t5) // call service routine
//
// Release the service routine spin lock.
//
#if !defined(NT_UP)
LDP t2, InActualLock(s0) // get address of actual lock
mb // synchronize memory access
STP zero, 0(t2) // set spin lock not owned
#endif
//
// Lower IRQL to the previous level.
//
ldl a0, RdIrql(sp) // get previous IRQL
SWAP_IRQL // lower to interrupt source IRQL
//
// Restore integer register s0, retrieve return address, deallocate
// stack frame, and return.
//
30: ldq s0, RdS0(sp) // restore integer register s0
ldq ra, RdRa(sp) // restore return address
lda sp, RdFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
//
// Attempt to acquire spinlock failed.
#if !defined(NT_UP)
25: LDP t1, 0(t3) // read current lock value
beq t1, 20b // if lock available, retry spinlock
br zero, 25b // spin in cache until lock available
#endif
.end KiInterruptDispatchRaise
SBTTL("Interrupt Dispatch - Same IRQL")
//++
//
// Routine Description:
//
// This routine is entered as the result of an interrupt being generated
// via a vector that is connected to an interrupt object. Its function is
// to directly call the specified interrupt service routine.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt object.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
LEAF_ENTRY(KiInterruptDispatchSame)
LDP t5, InServiceRoutine(a0) // get address of service routine
LDP a1, InServiceContext(a0) // get service context
jsr zero, (t5) // jump to service routine
#else
.struct 0
.space 8 // insure octaword alignment
SdS0: .space 8 // saved integer registers s0
SdIrql: .space 4 // saved IRQL value
.space 4 // for alignment
SdRa: .space 8 // saved return address
SdFrameLength: // length of stack frame
NESTED_ENTRY(KiInterruptDispatchSame, SdFrameLength, zero)
lda sp, -SdFrameLength(sp) // allocate stack frame
stq ra, SdRa(sp) // save return address
stq s0, SdS0(sp) // save integer registers s0
PROLOGUE_END
//
//
// Acquire the service routine spin lock and call the service routine.
//
LDP t3, InActualLock(a0) // get actual lock address
bis a0, zero, s0 // save interrupt object address
20: LDP_L t1, 0(t3) // get current lock value
bis t3, t3, t2 // set lock ownership value
bne t1, 25f // if ne, spin lock owned
STP_C t2, 0(t3) // set spin lock owned
beq t2, 25f // if eq, store conditional failed
mb // synchronize memory access
LDP t5, InServiceRoutine(a0) // get address of service routine
LDP a1, InServiceContext(a0) // get service context
jsr ra, (t5) // call service routine
//
// Release the service routine spin lock.
//
LDP t2, InActualLock(s0) // get actual lock address
mb // synchronize memory access
STP zero, 0(t2) // set spin lock not owned
//
// Restore integer registers s0, retrieve return address, deallocate
// stack frame, and return.
//
30: ldq s0, SdS0(sp) // restore integer register s0
ldq ra, SdRa(sp) // restore return address
lda sp, SdFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
//
// Attempt to acquire spinlock failed.
//
25: LDP t1, 0(t3) // read current lock value
beq t1, 20b // if lock available, retry spinlock
br zero, 25b // spin in cache until lock available
#endif
.end KiInterruptDispatchSame
SBTTL("Interrupt Template")
//++
//
// Routine Description:
//
// This routine is a template that is copied into each interrupt object. Its
// function is to determine the address of the respective interrupt object
// and then transfer control to the appropriate interrupt dispatcher.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt template within an interrupt
// object.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiInterruptTemplate)
.set noreorder
.set noat
LDP t5, InDispatchAddress - InDispatchCode(a0) // get dispatcher address
SUBP a0, InDispatchCode, a0 // compute address of interrupt object
jmp zero, (t5) // transfer to dispatch routine
bis zero, zero, zero // nop for alignment
.set at
.set reorder
.end KiInterruptTemplate
SBTTL("Disable Interrupts")
//++
//
// Routine Description:
//
// This routine disables interrupts on the current processor and
// returns the previous state of the interrrupt enable bit.
//
// Arguments:
//
// None.
//
// Return Value:
//
// A boolean value, if true interrupts were previously turned on,
// false indicates interrupts were previously off.
//
//--
LEAF_ENTRY(KiDisableInterrupts)
GET_CURRENT_PROCESSOR_STATUS_REGISTER // get current prcb address
DISABLE_INTERRUPTS // disable interrupts
and v0, PSR_IE_MASK, v0 // isolate interrupt enable
srl v0, PSR_IE, v0 // shift to bit 0
ret zero, (ra) // return
.end KiDisableInterrupts
SBTTL("Restore Interrupts")
//++
//
// Routine Description:
//
// This routine enables interrupts according to the the previous
// interrupt enable passed as input.
//
// Arguments:
//
// a0 - Supplies previous interrupt enable state (returned by
// KiDisableInterrupts)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiRestoreInterrupts)
beq a0, 10f // if eq, then interrupts disabled
ENABLE_INTERRUPTS // enable interrupts
ret zero, (ra) // return
10: DISABLE_INTERRUPTS // disable interrupts
ret zero, (ra) // return
.end KiRestoreInterrupts
SBTTL("Unexpected Interrupts")
//++
//
// Routine Description:
//
// This routine is entered as the result of an interrupt being generated
// via a vector that is not connected to an interrupt object. Its function
// is to report the error and dismiss the interrupt.
//
// N.B. On entry to this routine only the volatile integer registers have
// been saved.
//
// N.B. - This routine relies upon a private convention with the
// interrupt exception dispatcher that register t12 contains the
// interrupt vector of the unexpected interrupt. This convention
// will only work if the first level dispatch causes the
// unexpected interrupt.
//
// Arguments:
//
// a0 - Supplies a pointer to the interrupt object.
// t12 - Supplies the interrupt vector.
//
// s6/fp - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
//--
.struct 0
.space 8 // filler for 16 byte alignment
UiRa: .space 8 // return address
UiFrameLength: // frame length
NESTED_ENTRY(KiUnexpectedInterrupt, UiFrameLength, zero)
lda sp, -UiFrameLength(sp) // allocate stack frame
stq ra, UiRa(sp) // save return address
PROLOGUE_END //
ldil a0, 0xfacefeed // ****** temp ******
bis t12, zero, a1 // pass interrupt vector
bis zero, zero, a2 // zero remaining parameters
bis zero, zero, a3 //
bis zero, zero, a4 //
bis zero, zero, a5 //
bsr ra, KeBugCheckEx // perform system crash
.end KiUnexpectedInterrupt
SBTTL(KiPassiveRelease)
//++
//
// RoutineDescription:
//
// KiPassiveRelease passively releases an interrupt that cannot/will not
// be serviced at this time. Or there is no reason to service it and
// maybe this routine will never be called in a million years.
//
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY( KiPassiveRelease )
ret zero, (ra) // return
.end KiPassiveRelease