Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1317 lines
31 KiB

#include "precomp.h"
#pragma hdrstop
#ifdef SYMTAB_STATS
UINT SymbolCount;
#endif
/*
** Purpose:
** Creates a new Symbol Table.
** Arguments:
** szName - Name of the INF file
** Returns:
** fFalse if the initialization failed because it could not allocate
** the memory it needed.
** fTrue if the initialization succeeded.
**
**************************************************************************/
PINFTEMPINFO APIENTRY CreateInfTempInfo( pPermInfo )
PINFPERMINFO pPermInfo;
{
PINFTEMPINFO pTempInfo;
//
// Allocate space for context data
//
pTempInfo = (PINFTEMPINFO)SAlloc( (CB)sizeof(INFTEMPINFO) );
if ( pTempInfo ) {
if ( !(pTempInfo->SymTab = SymTabAlloc())) {
SFree(pTempInfo);
pTempInfo = NULL;
} else if ( !(pTempInfo->pParsedInf = ParsedInfAlloc( pPermInfo )) ) {
FFreeSymTab( pTempInfo->SymTab );
SFree(pTempInfo);
pTempInfo = NULL;
} else {
pTempInfo->pInfPermInfo = pPermInfo;
pTempInfo->cRef = 1;
//
// Add to chain.
//
if ( pLocalContext() ) {
pTempInfo->pPrev = pLocalInfTempInfo();
} else {
pTempInfo->pPrev = NULL;
}
pTempInfo->pNext = pTempInfo->pPrev ? (pTempInfo->pPrev)->pNext : NULL;
if ( pTempInfo->pPrev ) {
(pTempInfo->pPrev)->pNext = pTempInfo;
}
if ( pTempInfo->pNext ) {
(pTempInfo->pNext)->pPrev = pTempInfo;
}
}
}
return pTempInfo;
}
#ifdef SYMTAB_STATS
void ContextDump( FILE*);
void TempInfoDump( FILE*);
void PermInfoDump( FILE*);
void SymTabDump( FILE*, PSYMTAB);
void
SymTabStatDump(void)
{
FILE *statfile;
statfile = fopen("D:\\SYMTAB.TXT","wt");
ContextDump( statfile );
TempInfoDump( statfile );
PermInfoDump( statfile );
fclose(statfile);
}
void
ContextDump( FILE* f )
{
PINFCONTEXT pContext;
UINT i = 0;
fprintf( f, "CONTEXT STACK DUMP\n");
fprintf( f, "------------------\n");
pContext = pLocalContext();
while ( pContext ) {
fprintf( f, "\n\n\n");
fprintf( f, "Context #%u.- Line: %8u INF Name: %s\n",
i,
pContext->CurrentLine, pContext->pInfTempInfo->pInfPermInfo->szName );
fprintf( f, "Local Symbol Table:\n");
SymTabDump( f, pContext->SymTab );
i++;
pContext = pContext->pNext;
}
fprintf( f, "\n\n\n");
}
void
TempInfoDump( FILE* f )
{
PINFPERMINFO pPermInfo;
PINFTEMPINFO pTempInfo;
fprintf( f, "\n\n\n");
fprintf( f, "INF TEMPORARY INFO DUMP\n");
fprintf( f, "-----------------------\n");
pTempInfo = pGlobalContext()->pInfTempInfo;
while ( pTempInfo ) {
pPermInfo = pTempInfo->pInfPermInfo;
fprintf( f, "\n\n\n" );
fprintf( f, "INF Name: %s\n", pPermInfo->szName );
fprintf( f, "INF Id: %8u\n", pPermInfo->InfId );
fprintf( f, "Reference Count: %8u\n", pTempInfo->cRef );
fprintf( f, "Line Count: %8u\n", pTempInfo->MasterLineCount );
fprintf( f, "File Size: %8u\n", pTempInfo->MasterFileSize );
fprintf( f, "Static Symbol Table:\n");
SymTabDump( f, pTempInfo->SymTab );
pTempInfo = pTempInfo->pNext;
}
fprintf( f, "\n\n\n");
}
void
PermInfoDump( FILE* f )
{
PINFPERMINFO pPermInfo;
fprintf( f, "\n\n\n");
fprintf( f, "INF PERMANENT INFO DUMP\n");
fprintf( f, "-----------------------\n\n");
pPermInfo = pInfPermInfoHead;
while ( pPermInfo ) {
fprintf( f, "INF Name: %s\n", pPermInfo->szName );
pPermInfo = pPermInfo->pNext;
}
fprintf( f, "\n\n\n");
}
void
SymTabDump( FILE* f, PSYMTAB pSymTab )
{
UINT i;
PSTE p;
fprintf( f, "\n");
for(i=0; i<cHashBuckets; i++) {
p = pSymTab->HashBucket[i];
fprintf( f, "\n\tBucket # %u (%u items):\n",i,pSymTab->BucketCount[i]);
while(p) {
fprintf( f, "\n\t Symbol = %s\n\t Value = %s\n",p->szSymbol,p->szValue);
p = p->psteNext;
}
}
}
#endif
/*
** Purpose:
** Allocates an STE structure and returns it.
** Arguments:
** none
** Returns:
** NULL if the allocation failed.
** Pointer to the allocated STE structure.
+++
** Notes:
** A linked list of unused STEs is maintained with FFreePste()
** placing unused STEs into it. If this linked list (psteUnused)
** is empty then a block of cStePerSteb STEs is allocated at once
** and added to the unused list with one being returned by this
** routine.
**
**************************************************************************/
PSTE APIENTRY PsteAlloc(VOID)
{
PSTE pste;
if (GLOBAL(psteUnused) == (PSTE)NULL)
{
PSTEB psteb;
USHORT us;
if ((psteb = (PSTEB)SAlloc((CB)sizeof(STEB))) == (PSTEB)NULL)
return((PSTE)NULL);
psteb->pstebNext = GLOBAL(pstebAllocatedBlocks);
GLOBAL(pstebAllocatedBlocks) = psteb;
GLOBAL(psteUnused) = &(psteb->rgste[0]);
for (us = 1; us < cStePerSteb; us++)
(psteb->rgste[us - 1]).psteNext = &(psteb->rgste[us]);
(psteb->rgste[cStePerSteb - 1]).psteNext = (PSTE)NULL;
}
pste = GLOBAL(psteUnused);
GLOBAL(psteUnused) = pste->psteNext;
pste->szSymbol = (SZ)NULL;
pste->szValue = (SZ)NULL;
#ifdef SYMTAB_STATS
SymbolCount++;
#endif
return(pste);
}
/*
** Purpose:
** Frees an STE structure.
** Arguments:
** pste: non-NULL STE structure to be freed.
** Returns:
** fFalse if either of the string fields of the STE structure or the
** STE itself could not be successfully freed.
** fTrue if both string fields of the STE structure and the structure
** itself are successfully freed.
**
**************************************************************************/
BOOL APIENTRY FFreePste(pste)
PSTE pste;
{
BOOL fAnswer = fTrue;
ChkArg(pste != (PSTE)NULL, 1, fFalse);
if (pste->szSymbol != (SZ)NULL)
SFree(pste->szSymbol);
if (pste->szValue != (SZ)NULL)
SFree(pste->szValue);
pste->szSymbol = pste->szValue = (SZ)NULL;
pste->psteNext = GLOBAL(psteUnused);
GLOBAL(psteUnused) = pste;
#ifdef SYMTAB_STATS
SymbolCount--;
#endif
return(fAnswer);
}
/*
** Purpose:
** Decrements the reference count of a symbol table, freeing its
** memory if the reference count reaches zero
** Arguments:
** none
** Returns:
** fFalse if all the STE structures and their string fields cannot be
** successfully freed.
** fTrue if all the STE structures and their string fields can be
** successfully freed.
**
**************************************************************************/
BOOL APIENTRY FFreeInfTempInfo( PVOID p )
{
BOOL fAnswer = fTrue;
PINFTEMPINFO pTempInfo = (PINFTEMPINFO)p;
AssertDataSeg();
if ( pTempInfo->cRef > 1 ) {
pTempInfo->cRef--;
} else {
//
// Free static symbol table
//
FFreeSymTab( pTempInfo->SymTab );
//
// Free preparsed INF
//
FFreeParsedInf( pTempInfo->pParsedInf );
//
// Remove from chain
//
if ( pTempInfo->pPrev ) {
(pTempInfo->pPrev)->pNext = pTempInfo->pNext;
}
if ( pTempInfo->pNext ) {
(pTempInfo->pNext)->pPrev = pTempInfo->pPrev;
}
SFree(p);
//
// bugbug ramonsa - should we free PSTE blocks here?
//
}
return(fAnswer);
}
/*
** Purpose:
** Calculates a hash value for a zero terminated string of bytes
** (characters) which is used by the Symbol Table to divide the
** symbols into separate buckets to improve the search efficiency.
** Arguments:
** pb: non-NULL, non-empty zero terminated string of bytes.
** Returns:
** -1 for an error.
** A number between 0 and cHashBuckets.
**
**************************************************************************/
USHORT APIENTRY UsHashFunction( pb )
register PB pb;
{
register USHORT usValue = 0;
register PB pbMax = pb + cbBytesToSumForHash ;
ChkArg(pb != (PB)NULL &&
*pb != '\0', 1, (USHORT)(-1));
while ( *pb && pb < pbMax )
{
usValue = (usValue << 1) ^ (USHORT) *pb++ ;
}
return(usValue % (USHORT)cHashBuckets);
}
/*
** Purpose:
** Finds a corresponding STE structure if the symbol is already in
** the Symbol Table or else points to where it should be inserted.
** Arguments:
** szSymbol: non-NULL, non-empty zero terminated string containing
** the value of the symbol to be searched for.
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** Returns:
** NULL in an error.
** Non-NULL pointer to a pointer to an STE structure. If szSymbol is
** in the Symbol Table, then (*PPSTE)->szSymbol is it. If szSymbol
** is not in the Symbol Table, then *PPSTE is the PSTE to insert
** its record at.
**
**************************************************************************/
PPSTE APIENTRY PpsteFindSymbol(pSymTab, szSymbol)
PSYMTAB pSymTab;
SZ szSymbol;
{
PPSTE ppste;
USHORT usHashValue;
PreCondSymTabInit((PPSTE)NULL);
ChkArg( szSymbol != (SZ)NULL
&& *szSymbol != '\0', 1, (PPSTE)NULL);
usHashValue = UsHashFunction(szSymbol);
ppste = &(pSymTab->HashBucket[usHashValue]);
AssertRet(ppste != (PPSTE)NULL, (PPSTE)NULL);
AssertRet(*ppste == (PSTE)NULL ||
((*ppste)->szSymbol != (SZ)NULL &&
*((*ppste)->szSymbol) != '\0' &&
(*ppste)->szValue != (SZ)NULL), (PPSTE)NULL);
while ( *ppste != (PSTE)NULL &&
lstrcmp(szSymbol, (*ppste)->szSymbol) > 0 )
{
ppste = &((*ppste)->psteNext);
AssertRet(ppste != (PPSTE)NULL, (PPSTE)NULL);
AssertRet(*ppste == (PSTE)NULL ||
((*ppste)->szSymbol != (SZ)NULL &&
*((*ppste)->szSymbol) != '\0' &&
(*ppste)->szValue != (SZ)NULL), (PPSTE)NULL);
}
return(ppste);
}
/*
** Purpose:
** Inserts a new symbol-value pair into the Symbol Table or replaces
** an existing value associated with the symbol if it already exists
** in the Symbol Table.
** Arguments:
** szSymbol: non-NULL, non-empty string symbol value.
** szValue: string value to associate with szSymbol, replacing and
** freeing any current value. If it is NULL then the empty string
** is used in its place. There are two types of values - simple
** and list. A simple value is any string of characters which is
** not a list. A list is a string which starts with a '{', and ends
** with a '}' and contains doubly quoted items, separated by commas
** with no extraneous whitespace. So examples of lists are:
** {}
** {"item1"}
** {"item1","item2"}
** {"item 1","item 2","item 3","item 4"}
** Examples of non-lists are:
** {item1}
** {"item1", "item2"}
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** Returns:
** fFalse if an existing value cannot be freed or if space cannot be
** allocated to create the needed STE structure or duplicate the
** szValue.
** fTrue if szValue is associated with szSymbol in the Symbol Table.
**
**************************************************************************/
BOOL APIENTRY FAddSymbolValueToSymTab(szSymbol, szValue)
SZ szSymbol;
SZ szValue;
{
PPSTE ppste;
SZ szValueNew;
SZ szRealSymbol;
PSYMTAB pSymTab;
AssertDataSeg();
PreCondSymTabInit(fFalse);
ChkArg(szSymbol != (SZ)NULL &&
*szSymbol != '\0' &&
!FWhiteSpaceChp(*szSymbol), 1, fFalse);
if (szValue == (SZ)NULL)
szValue = "";
if ((szValueNew = SzDupl(szValue)) == (SZ)NULL)
return(fFalse);
if ( !(pSymTab = PInfSymTabFind( szSymbol, &szRealSymbol ))) {
return(fFalse);
}
ppste = PpsteFindSymbol( pSymTab, szRealSymbol);
AssertRet(ppste != (PPSTE)NULL, fFalse);
AssertRet(*ppste == (PSTE)NULL ||
((*ppste)->szSymbol != (SZ)NULL &&
*((*ppste)->szSymbol) != '\0' &&
(*ppste)->szValue != (SZ)NULL), fFalse);
if (*ppste != (PSTE)NULL &&
CrcStringCompare((*ppste)->szSymbol, szRealSymbol) == crcEqual)
{
AssertRet((*ppste)->szValue != (SZ)NULL, fFalse);
SFree((*ppste)->szValue);
(*ppste)->szValue = (SZ)NULL;
}
else
{
PSTE pste;
if ((pste = PsteAlloc()) == (PSTE)NULL ||
(pste->szSymbol = SzDupl(szRealSymbol)) == (SZ)NULL)
{
if (pste != (PSTE)NULL)
EvalAssert(FFreePste(pste));
SFree(szValueNew);
return(fFalse);
}
#ifdef SYMTAB_STATS
pSymTab->BucketCount[UsHashFunction(szRealSymbol)]++;
#endif
pste->szValue = (SZ)NULL;
pste->psteNext = *ppste;
*ppste = pste;
}
AssertRet(ppste != (PPSTE)NULL &&
*ppste != (PSTE)NULL &&
(*ppste)->szValue == (SZ)NULL &&
(*ppste)->szSymbol != (SZ)NULL &&
*((*ppste)->szSymbol) != '\0' &&
CrcStringCompare((*ppste)->szSymbol, szRealSymbol) == crcEqual, fFalse);
(*ppste)->szValue = szValueNew;
return(fTrue);
}
/*
** Purpose:
** Finds the associated string value for a given symbol from the
** Symbol Table if such exists.
** Arguments:
** szSymbol: non-NULL, non-empty string symbol value.
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** Returns:
** NULL if error or szSymbol could not be found in the Symbol Table.
** Non-NULL pointer to the associated string value in the Symbol
** Table. This value must not be mucked but should be duplicated
** before changing it. Changing it directly will change the value
** associated with the symbol. If it is changed, be sure the new
** value has the same length as the old.
**
**************************************************************************/
SZ APIENTRY SzFindSymbolValueInSymTab(szSymbol)
SZ szSymbol;
{
register PSTE pste;
PSYMTAB pSymTab;
SZ szValue = NULL ;
SZ szRealSymbol ;
int i ;
PreCondSymTabInit((SZ)NULL);
if ( !(pSymTab = PInfSymTabFind( szSymbol, & szRealSymbol )))
return NULL ;
pste = pSymTab->HashBucket[ UsHashFunction( szRealSymbol ) ] ;
do
{
if ( pste == NULL )
break ;
if ( pste->szSymbol == NULL )
break ;
if ( pste->szSymbol[0] == 0 )
break;
if ( pste->szValue == NULL )
break;
if ( (i = lstrcmp( szRealSymbol, pste->szSymbol )) == 0 )
szValue = pste->szValue ;
} while ( i > 0 && (pste = pste->psteNext) ) ;
return szValue ;
}
/*
** Purpose:
** Removes and frees a symbols STE structure if it exists.
** Arguments:
** szSymbol: non-NULL, non-empty symbol string to remove from the
** Symbol Table which starts with a non-whitespace character.
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** Returns:
** fFalse if szSymbol was found but its STE structure could not be freed.
** fTrue if either szSymbol never existed in the Symbol Table or it was
** found, unlinked, and successfully freed.
**
**************************************************************************/
BOOL APIENTRY FRemoveSymbolFromSymTab(szSymbol)
SZ szSymbol;
{
PPSTE ppste;
PSTE pste;
PSYMTAB pSymTab;
SZ szRealSymbol;
AssertDataSeg();
PreCondSymTabInit(fFalse);
ChkArg(szSymbol != (SZ)NULL &&
*szSymbol != '\0' &&
!FWhiteSpaceChp(*szSymbol), 1, fFalse);
if ( !(pSymTab = PInfSymTabFind( szSymbol, &szRealSymbol ))) {
return(fFalse);
}
ppste = PpsteFindSymbol( pSymTab, szRealSymbol);
AssertRet(ppste != (PPSTE)NULL, fFalse);
if (*ppste == (PSTE)NULL ||
CrcStringCompare(szRealSymbol, (*ppste)->szSymbol) != crcEqual)
return(fTrue);
pste = *ppste;
*ppste = pste->psteNext;
return(FFreePste(pste));
}
PSYMTAB APIENTRY SymTabAlloc(VOID)
{
PSYMTAB pSymTab;
USHORT iHashBucket;
if ( pSymTab = (PSYMTAB)SAlloc( sizeof( SYMTAB ) ) ) {
for (iHashBucket = 0; iHashBucket < cHashBuckets; iHashBucket++) {
pSymTab->HashBucket[iHashBucket] = NULL;
#ifdef SYMTAB_STATS
pSymTab->BucketCount[iHashBucket] = 0;
#endif
}
}
return pSymTab;
}
BOOL APIENTRY FFreeSymTab(PSYMTAB pSymTab)
{
USHORT iHashBucket;
BOOL fAnswer = fTrue;
// Free symbol table space
//
for (iHashBucket = 0; iHashBucket < cHashBuckets; iHashBucket++) {
PSTE pste = pSymTab->HashBucket[iHashBucket];
while (pste != (PSTE)NULL) {
PSTE psteSav = pste->psteNext;
fAnswer &= FFreePste(pste);
pste = psteSav;
}
}
SFree(pSymTab);
return fAnswer;
}
BOOL APIENTRY FCheckSymTab(PSYMTAB pSymTab)
{
USHORT iHashBucket;
for (iHashBucket = 0; iHashBucket < cHashBuckets; iHashBucket++) {
PSTE pste = pSymTab->HashBucket[iHashBucket];
SZ szPrev = "";
while (pste != (PSTE)NULL) {
if (pste->szSymbol == (SZ)NULL ||
*(pste->szSymbol) == '\0' ||
FWhiteSpaceChp(*(pste->szSymbol)))
AssertRet(fFalse, fFalse);
if (UsHashFunction((PB)(pste->szSymbol)) != iHashBucket)
AssertRet(fFalse, fFalse);
if (CrcStringCompare(szPrev, pste->szSymbol) != crcSecondHigher)
AssertRet(fFalse, fFalse);
if (pste->szValue == (SZ)NULL)
AssertRet(fFalse, fFalse);
pste = pste->psteNext;
}
}
return fTrue;
}
/*
** Purpose:
** Ensures that the Symbol Table is valid. It checks that the
** Symbol Table has been initialized and that each STE structure
** is in the correct hash bucket and that the symbols are in
** ascending order within each hash bucket and that each has a
** non-NULL value string associated with it.
** Arguments:
** none
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** Returns:
** fFalse if the Symbol Table has not been initialized or if an STE
** structure is in the wrong hash bucket or if each STE linked
** list is not in ascending order or if each symbol does not have
** a non-NULL string value associated with it.
** fTrue if the Symbol Table has been initialized and if every STE
** structure is in the correct hash bucket and if each STE linked
** list is in ascending order and if each symbol does have a
** non-NULL string value associated with it.
**
**************************************************************************/
BOOL APIENTRY FCheckSymTabIntegrity(VOID)
{
PINFTEMPINFO pTempInfo;
AssertDataSeg();
PreCondSymTabInit(fFalse);
pTempInfo = pGlobalContext()->pInfTempInfo;
while ( pTempInfo ) {
if ( !FCheckSymTab( pTempInfo->SymTab ) ) {
return fFalse;
}
pTempInfo = pTempInfo->pNext;
}
return(fTrue);
}
BOOL
DumpSymbolTableToFile(
IN PCSTR Filename
)
{
FILE *OutFile;
UINT HashBucket;
PSTE pste;
PINFCONTEXT InfContext;
#define MAX_SYMTAB 1000
PVOID SymbolTables[MAX_SYMTAB];
PVOID InfNames[MAX_SYMTAB];
UINT SymbolTableCount;
UINT i;
BOOL Found;
//
// Handle preconditions.
//
PreCondSymTabInit(fFalse);
FCheckSymTabIntegrity();
//
// Open/create the dump file.
//
SetFileAttributes(Filename,FILE_ATTRIBUTE_NORMAL);
OutFile = fopen(Filename,"w");
if(!OutFile) {
return(FALSE);
}
//
// Iterate through all inf file contexts.
// Unfortunately there is no good way to simply iterate symbol tables
// we'll track the ones we've done and skip them if encountered again.
//
SymbolTableCount = 0;
for(InfContext=pContextTop; InfContext; InfContext=InfContext->pNext) {
if(SymbolTableCount < MAX_SYMTAB) {
Found = FALSE;
for(i=0; i<SymbolTableCount; i++) {
if(SymbolTables[i] == InfContext->SymTab) {
Found = TRUE;
break;
}
}
if(!Found) {
SymbolTables[SymbolTableCount] = InfContext->SymTab;
InfNames[SymbolTableCount] = InfContext->pInfTempInfo->pInfPermInfo->szName;
SymbolTableCount++;
}
}
}
for(i=0; i<SymbolTableCount; i++) {
fprintf(OutFile,"*** Inf %s:\n\n",InfNames[i] ? InfNames[i] : "(unknown)");
//
// Dump symbols in each hash bucket.
//
for(HashBucket=0; HashBucket<cHashBuckets; HashBucket++) {
for(pste=((PSYMTAB)(SymbolTables[i]))->HashBucket[HashBucket]; pste; pste=pste->psteNext) {
fprintf(OutFile,"[%s] = [%s]\n",pste->szSymbol,pste->szValue);
}
}
fprintf(OutFile,"\n\n");
}
fclose(OutFile);
return(TRUE);
}
#define cListItemsMax 0x07FF
#define ItemSizeIncr 0x2000
/*
** Purpose:
** Determines if a string is a list value.
** Arguments:
** szValue: non-NULL, zero terminated string to be tested.
** Returns:
** fTrue if a list; fFalse otherwise.
**
**************************************************************************/
BOOL
APIENTRY
FListValue(
IN SZ szValue
)
{
ChkArg(szValue != (SZ)NULL, 1, fFalse);
if(*szValue++ != '{') {
return(fFalse);
}
while((*szValue != '}') && *szValue) {
if(*szValue++ != '"') {
return(fFalse);
}
while(*szValue) {
if(*szValue != '"') {
szValue++;
} else if(*(szValue + 1) == '"') {
szValue += 2;
} else {
break;
}
}
if(*szValue++ != '"') {
return(fFalse);
}
if(*szValue == ',') {
if(*(++szValue) == '}') {
return(fFalse);
}
}
}
if(*szValue != '}') {
return(fFalse);
}
return(fTrue);
}
/*
** Purpose:
** Converts a list value into an RGSZ.
** Arguments:
** szListValue: non-NULL, zero terminated string to be converted.
** Returns:
** NULL if an error occurred.
** Non-NULL RGSZ if the conversion was successful.
**
**************************************************************************/
RGSZ
APIENTRY
RgszFromSzListValue(
SZ szListValue
)
{
USHORT cItems;
SZ szCur;
RGSZ rgsz;
DWORD ValueBufferSize;
DWORD BytesLeftInValueBuffer;
ChkArg(szListValue != (SZ)NULL, 1, (RGSZ)NULL);
if(!FListValue(szListValue)) {
if((rgsz = (RGSZ)SAlloc((CB)(2 * sizeof(SZ)))) == (RGSZ)NULL ||
(rgsz[0] = SzDupl(szListValue)) == (SZ)NULL)
{
return((RGSZ)NULL);
}
rgsz[1] = (SZ)NULL;
return(rgsz);
}
if((rgsz = (RGSZ)SAlloc((CB)((cListItemsMax + 1) * sizeof(SZ)))) == (RGSZ)NULL) {
return((RGSZ)NULL);
}
cItems = 0;
szCur = szListValue + 1;
while((*szCur != '}') && (*szCur != '\0') && (cItems < cListItemsMax)) {
SZ szValue;
SZ szAddPoint;
AssertRet(*szCur == '"', (RGSZ)NULL);
szCur++;
//
// Allocate an initial buffer.
//
ValueBufferSize = ItemSizeIncr+1;
BytesLeftInValueBuffer = ItemSizeIncr;
if((szValue = (SZ)SAlloc(ValueBufferSize)) == (SZ)NULL) {
rgsz[cItems] = (SZ)NULL;
FFreeRgsz(rgsz);
return((RGSZ)NULL);
}
szAddPoint = szValue;
while(*szCur) {
if(*szCur == '"') {
//
// Got a quote. If the next character is a double quote, then
// we've got a literal double quote, and we want to store a
// single double quote in the target. If the next char is not
// a double-quote, then we've reached the string-ending double-quote.
//
// Advance szCur either way because:
// In the former case, szCur will now point to the second
// double-quote, and we can fall through the the ordinary
// character (ie, non-quote) case.
// In the latter case, we will break out of the loop, and want
// szCur advanced past the end of the string.
//
if(*(++szCur) != '"') {
break;
}
}
if(!BytesLeftInValueBuffer) {
SZ szSave = szValue;
if(szValue = SRealloc(szValue,ValueBufferSize+ItemSizeIncr)) {
szAddPoint = (SZ)((PUCHAR)szValue + ValueBufferSize - 1);
BytesLeftInValueBuffer = ItemSizeIncr;
ValueBufferSize += ItemSizeIncr;
} else {
SFree(szSave);
rgsz[cItems] = (SZ)NULL;
FFreeRgsz(rgsz);
return((RGSZ)NULL);
}
}
BytesLeftInValueBuffer--;
*szAddPoint++ = *szCur++;
}
*szAddPoint = 0;
if((szAddPoint = SzDupl(szValue)) == NULL) {
SFree(szValue);
rgsz[cItems] = (SZ)NULL;
FFreeRgsz(rgsz);
return((RGSZ)NULL);
}
SFree(szValue);
if (*szCur == ',') {
szCur++;
}
rgsz[cItems++] = szAddPoint;
}
rgsz[cItems] = (SZ)NULL;
if((*szCur != '}') || (cItems >= cListItemsMax)) {
FFreeRgsz(rgsz);
return((RGSZ)NULL);
}
if (cItems < cListItemsMax) {
rgsz = (RGSZ)SRealloc(
(PB)rgsz,
(CB)((cItems + 1) * sizeof(SZ))
);
}
return(rgsz);
}
#define cbListMax (CB)0x2000
VOID
GrowValueBuffer( SZ *pszBuffer, PDWORD pSize, PDWORD pLeft, DWORD dwWanted, SZ *pszPointer );
#define VERIFY_SIZE(s) \
if ( dwSizeLeft < (s) ) { \
GrowValueBuffer( &szValue, &dwValueSize, &dwSizeLeft, (s), &szAddPoint ); \
}
/*
** Purpose:
** Converts an RGSZ into a list value.
** Arguments:
** rgsz: non-NULL, NULL-terminated array of zero-terminated strings to
** be converted.
** Returns:
** NULL if an error occurred.
** Non-NULL SZ if the conversion was successful.
**
**************************************************************************/
SZ APIENTRY SzListValueFromRgsz(rgsz)
RGSZ rgsz;
{
SZ szValue;
SZ szAddPoint;
SZ szItem;
BOOL fFirstItem = fTrue;
DWORD dwValueSize;
DWORD dwSizeLeft;
UINT rgszIndex = 0;
ChkArg(rgsz != (RGSZ)NULL, 1, (SZ)NULL);
if ((szAddPoint = szValue = (SZ)SAlloc(cbListMax)) == (SZ)NULL) {
return((SZ)NULL);
}
dwValueSize = dwSizeLeft = cbListMax;
*szAddPoint++ = '{';
dwSizeLeft--;
while(szItem = rgsz[rgszIndex]) {
VERIFY_SIZE(2);
if (fFirstItem) {
fFirstItem = fFalse;
} else {
*szAddPoint++ = ',';
dwSizeLeft--;
}
*szAddPoint++ = '"';
dwSizeLeft--;
while (*szItem) {
VERIFY_SIZE(1);
dwSizeLeft--;
if((*szAddPoint++ = *szItem++) == '"') {
VERIFY_SIZE(1);
dwSizeLeft--;
*szAddPoint++ = '"';
}
}
VERIFY_SIZE(1);
*szAddPoint++ = '"';
dwSizeLeft--;
rgszIndex++;
}
VERIFY_SIZE(2);
*szAddPoint++ = '}';
*szAddPoint = '\0';
dwSizeLeft -= 2;
// AssertRet(strlen(szValue) < dwValueSize, (SZ)NULL);
szItem = SzDupl(szValue);
SFree(szValue);
return(szItem);
}
VOID
GrowValueBuffer( SZ *pszBuffer, PDWORD pSize, PDWORD pLeft, DWORD dwWanted, SZ *pszPointer )
{
if ( *pLeft < dwWanted ) {
DWORD_PTR Offset = *pszPointer - *pszBuffer;
*pszBuffer = SRealloc( *pszBuffer, *pSize + cbListMax );
EvalAssert( *pszBuffer );
*pSize += cbListMax;
*pLeft += cbListMax;
*pszPointer = *pszBuffer + Offset;
}
}
static BOOL APIENTRY FSymbol(SZ sz)
{
ChkArg(sz != (SZ)NULL, 1, fFalse);
if (*sz++ != '$' ||
*sz++ != '(' ||
FWhiteSpaceChp(*sz) ||
*sz == ')')
return(fFalse);
while (*sz != ')' &&
*sz != '\0')
sz = SzNextChar(sz);
return(*sz == ')');
}
/*
** Purpose:
** Substitutes values from the Symbol Table for symbols of the form
** '$( <symbol> )' in the source string.
** Arguments:
** szSrc: non-NULL string in which to substitute symbol values.
** Notes:
** Requires that the Symbol Table was initialized with a successful
** call to FInitSymTab().
** A successful return value must be freed by the caller.
** Returns:
** NULL if any of the alloc operations fail or if the substituted
** string is larger than 8KB bytes (cchpFieldMax).
** non-NULL string with values substituted for symbols if all of the
** alloc operations succeed.
**
**************************************************************************/
SZ APIENTRY SzGetSubstitutedValue(SZ szSrc)
{
SZ szDest;
PCHP pchpDestCur;
CCHP cchpDest = (CCHP)0;
AssertDataSeg();
PreCondSymTabInit(NULL);
ChkArg(szSrc != (SZ)NULL, 1, (SZ)NULL);
if ((szDest = pchpDestCur = (SZ)SAlloc((CB)cchpFieldMax)) == (SZ)NULL)
return((SZ)NULL);
while (*szSrc != '\0')
{
if (FSymbol(szSrc))
{
SZ szSymEnd;
SZ szValue;
Assert(*szSrc == '$');
szSrc++;
Assert(*szSrc == '(');
szSymEnd = ++szSrc;
Assert(*szSrc != '\0' && *szSrc != ')');
while (*szSymEnd != ')')
{
Assert(*szSymEnd != '\0');
szSymEnd = SzNextChar(szSymEnd);
}
Assert(*szSymEnd == ')');
*szSymEnd = '\0';
szValue = SzFindSymbolValueInSymTab(szSrc);
*szSymEnd = ')';
szSrc = SzNextChar(szSymEnd);
if (szValue == (SZ)NULL)
continue;
if (cchpDest + strlen(szValue) >= cchpFieldMax ||
strcpy(pchpDestCur, szValue) != pchpDestCur)
{
SFree(szDest);
return((SZ)NULL);
}
pchpDestCur += strlen(szValue);
Assert(*pchpDestCur == '\0');
cchpDest += strlen(szValue);
Assert(cchpDest < cchpFieldMax);
}
else
{
SZ szNext = SzNextChar(szSrc);
while (szSrc < szNext)
{
*pchpDestCur++ = *szSrc++;
if (++cchpDest >= cchpFieldMax)
{
SFree(szDest);
return((SZ)NULL);
}
}
}
}
Assert(cchpDest < cchpFieldMax);
*(szDest + cchpDest++) = '\0';
if (cchpDest < cchpFieldMax)
szDest = SRealloc(szDest,cchpFieldMax);
return(szDest);
}
//
// Routines exported from the legacy setup dll to allow
// direct manipulation of the inf symtab table.
//
PCSTR
LegacyInfLookUpSymbol(
IN PCSTR SymbolName
)
{
return(SzFindSymbolValueInSymTab((SZ)SymbolName));
}
BOOL
LegacyInfSetSymbolValue(
IN PCSTR SymbolName,
IN PCSTR SymbolValue
)
{
return(FAddSymbolValueToSymTab((SZ)SymbolName,(SZ)SymbolValue));
}
BOOL
LegacyInfRemoveInfSymbol(
IN PCSTR SymbolName
)
{
return(FRemoveSymbolFromSymTab((SZ)SymbolName));
}