Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1525 lines
40 KiB

/*++
Copyright (c) 1991-1999, Microsoft Corporation All rights reserved.
Module Name:
alloc.c
Abstract:
This file contains functions that will allocate the necessary memory
blocks.
External Routines in this file:
AllocateMB
AllocateGlyph
AllocateTopDBCS
AllocateDBCS
AllocateWCTable
Allocate8
Insert844
Insert844Map
AllocateTemp844
AllocateCTMap
AllocateGrid
AllocateLangException
AllocateLangExceptionNodes
AllocateSortDefault
AllocateReverseDW
AllocateDoubleCompression
AllocateIdeographLcid
AllocateExpansion
AllocateCompression
AllocateCompression2Nodes
AllocateCompression3Nodes
AllocateException
AllocateExceptionNodes
AllocateMultipleWeights
AllocateIdeographExceptions
Free844
FreeCTMap
Revision History:
07-30-91 JulieB Created.
03-10-00 lguindon Add explicit typecast to remove build errors
--*/
//
// Include Files.
//
#include "nlstrans.h"
//
// Forward Declarations.
//
CT_MAP_VALUE
MapTrioToByte(
PCT_MAP pMap,
WORD Value1,
WORD Value2,
WORD Value3);
//-------------------------------------------------------------------------//
// EXTERNAL ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// AllocateMB
//
// This routine allocates all structures needed for the MB table.
// If an error is encountered while allocating, an error is returned.
//
// 07-30-91 JulieB Created.
// 12-10-91 JulieB Modified for new table format.
////////////////////////////////////////////////////////////////////////////
int AllocateMB(
PCODEPAGE pCP)
{
//
// Allocate MB Table buffer.
// Set all entries in MB Table to zero.
//
if ((pCP->pMB = (PMB_TBL)malloc(MB_TABLE_SIZE * sizeof(WORD))) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(pCP->pMB, 0, MB_TABLE_SIZE * sizeof(WORD));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateGlyph
//
// This routine allocates all structures needed for the Glyph table.
// If an error is encountered while allocating, an error is returned.
// All entries in the glyph table are set equal to the entries in the
// MB table. If the MB table has not been read in yet, then an error
// is returned.
//
// 06-02-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateGlyph(
PCODEPAGE pCP)
{
int ctr; // loop counter
//
// Allocate Glyph Table buffer.
//
if ((pCP->pGlyph = (PGLYPH_TBL)malloc( GLYPH_TABLE_SIZE *
sizeof(WORD) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
//
// Make sure the MB table has already been read in at this point.
//
if ((!(pCP->WriteFlags & F_MB)) || (pCP->pMB == NULL))
{
printf("Parse Error: MBTABLE must be BEFORE GLYPHTABLE in file.\n");
return (1);
}
//
// Set all entries in the Glyph Table to the MB Table entries.
// All new glyph values will overwrite the appropriate MB entries
// in the glyph table.
//
for (ctr = 0; ((ctr < GLYPH_TABLE_SIZE) && (ctr < MB_TABLE_SIZE)); ctr++)
{
(pCP->pGlyph)[ctr] = (pCP->pMB)[ctr];
}
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateTopDBCS
//
// This routine allocates the initial DBCS array structure. If an error
// is encountered while allocating, an error is returned.
//
// 07-30-91 JulieB Created.
// 12-10-91 JulieB Modified for new table format.
////////////////////////////////////////////////////////////////////////////
int AllocateTopDBCS(
PCODEPAGE pCP,
int Size)
{
//
// Allocate initial DBCS array structure.
//
if ((pCP->pDBCS = (PDBCS_ARRAY)malloc( Size *
sizeof(PDBCS_RANGE) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(pCP->pDBCS, 0, Size * sizeof(PDBCS_RANGE));
//
// Allocate offset area.
//
if ((pCP->pDBCSOff = (PDBCS_OFFSETS)malloc( DBCS_OFFSET_SIZE *
sizeof(WORD) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(pCP->pDBCSOff, 0, DBCS_OFFSET_SIZE * sizeof(WORD));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateDBCS
//
// This routine allocates all structures needed for the DBCS tables and
// ranges. If an error is encountered while allocating, an error is
// returned.
//
// 07-30-91 JulieB Created.
// 12-10-91 JulieB Modified for new table format.
////////////////////////////////////////////////////////////////////////////
int AllocateDBCS(
PCODEPAGE pCP,
int Low,
int High,
int Index)
{
PDBCS_RANGE pRange; // ptr to DBCS range
PDBCS_TBL_ARRAY pTblArray; // ptr to DBCS table array
int Ctr, Ctr2; // loop counters
int NumTables = High - Low + 1; // number of tables for range
WORD *pWordPtr; // ptr to dbcs buffer
//
// Allocate Range Structure.
//
if ((pRange = (PDBCS_RANGE)malloc(sizeof(DBCS_RANGE))) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(pRange, 0, sizeof(DBCS_RANGE));
//
// Allocate Table Array.
//
if ((pTblArray = (PDBCS_TBL_ARRAY)malloc( NumTables *
sizeof(PDBCS_TBL) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(pTblArray, 0, NumTables * sizeof(PDBCS_TBL));
//
// Allocate All Tables.
//
for (Ctr = 0; Ctr < NumTables; Ctr++)
{
//
// Allocate table.
//
if ((pTblArray[Ctr] = (PDBCS_TBL)malloc( DBCS_TABLE_SIZE *
sizeof(WORD) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
//
// Set all entries to the Unicode default character.
//
pWordPtr = (WORD *)(pTblArray[Ctr]);
for (Ctr2 = 0; Ctr2 < DBCS_TABLE_SIZE; Ctr2++)
{
pWordPtr[Ctr2] = (WORD)(pCP->UniDefaultChar);
}
}
//
// Attach the tables to each other.
//
pRange->pDBCSTbls = pTblArray;
(pCP->pDBCS)[Index] = pRange;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateWCTable
//
// This routine allocates the buffer for the Unicode to ANSI translation
// table. The buffer is (64K // Size) bytes in length.
//
// 05-28-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateWCTable(
PCODEPAGE pCP,
int Size)
{
int Ctr; // loop counter
WORD *pWordPtr; // ptr to wide character buffer
//
// Allocate translation table buffer.
//
if ((pCP->pWC = (PWC_ARRAY)malloc(WC_TABLE_SIZE * Size)) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
//
// Set all entries to the default character.
//
if (Size == sizeof(BYTE))
{
memset(pCP->pWC, (BYTE)(pCP->DefaultChar), WC_TABLE_SIZE);
}
else if (Size == sizeof(WORD))
{
pWordPtr = pCP->pWC;
for (Ctr = 0; Ctr < WC_TABLE_SIZE; Ctr++)
{
pWordPtr[Ctr] = pCP->DefaultChar;
}
}
else
{
printf("Code Error: Bad 'Size' parameter for AllocateWCTable.\n");
return (1);
}
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// Allocate8
//
// This routine allocates the top buffer for the 8:4:4 table.
//
// 07-30-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int Allocate8(
P844_ARRAY *pArr)
{
//
// Allocate top buffer for 8:4:4 table - 256 pointers.
//
if ((*pArr = (P844_ARRAY)malloc( TABLE_SIZE_8 *
sizeof(P844_ARRAY) )) == NULL)
{
printf("Error: Can't allocate top 8:4:4 buffer.\n");
return (1);
}
memset(*pArr, 0, TABLE_SIZE_8 * sizeof(P844_ARRAY));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// Insert844
//
// This routine inserts a WORD or DWORD value into an 8:4:4 table based on
// the Size parameter. It does so by allocating the appropriate buffers
// and filling in the third buffers with the appropriate WORD or DWORD value.
//
// 07-30-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int Insert844(
P844_ARRAY pArr,
WORD WChar,
DWORD Value,
int *cbBuf2,
int *cbBuf3,
int Size)
{
register int Index; // index into array
P844_ARRAY pTbl2; // pointer to second array
P844_ARRAY pTbl3; // pointer to third array
//
// Use the "8" index to get to the second table.
// Allocate it if necessary.
//
Index = GET8(WChar);
if ((pTbl2 = (P844_ARRAY)(pArr[Index])) == NULL)
{
//
// Allocate second table - 16 pointers.
//
if ((pTbl2 = (P844_ARRAY)malloc( TABLE_SIZE_4 *
sizeof(P844_ARRAY) )) == NULL)
{
printf("Error: Can't allocate second 8:4:4 buffer.\n");
return (1);
}
memset(pTbl2, 0, TABLE_SIZE_4 * sizeof(P844_ARRAY));
pArr[Index] = pTbl2;
//
// Keep track of how many "second buffer" allocations were made.
//
(*cbBuf2)++;
}
//
// Use the "high 4" index to get to the third table.
// Allocate it if necessary.
//
Index = GETHI4(WChar);
if ((pTbl3 = pTbl2[Index]) == NULL)
{
//
// Allocate third table - 16 words.
//
if ((pTbl3 = (P844_ARRAY)malloc(TABLE_SIZE_4 * Size)) == NULL)
{
printf("Error: Can't allocate third 8:4:4 buffer.\n");
return (1);
}
memset(pTbl3, 0, TABLE_SIZE_4 * Size);
pTbl2[Index] = pTbl3;
//
// Keep track of how many "third buffer" allocations were made.
//
(*cbBuf3)++;
}
//
// Use the "low 4" value to index into the third table.
// Save the value at this spot.
//
Index = GETLO4(WChar);
if (Size == sizeof(WORD))
{
((WORD *)pTbl3)[Index] = (WORD)Value;
}
else if (Size == sizeof(DWORD))
{
((DWORD *)pTbl3)[Index] = (DWORD)Value;
}
else
{
printf("Code Error: Bad 'Size' parameter for Insert844 Table.\n");
return (1);
}
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// Insert844Map
//
// This routine inserts 3 WORD values into an 8:4:4 table. It does so by
// allocating the appropriate buffers and filling in the third buffers
// with a 1 BYTE value that is the mapping of the given 3 WORD trio.
//
// 10-29-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int Insert844Map(
P844_ARRAY pArr,
PCT_MAP pMap,
WORD WChar,
WORD Value1,
WORD Value2,
WORD Value3,
int *cbBuf2,
int *cbBuf3)
{
register int Index; // index into array
P844_ARRAY pTbl2; // pointer to second array
PCT_MAP_VALUE pTbl3; // pointer to third array
//
// Use the "8" index to get to the second table.
// Allocate it if necessary.
//
Index = GET8(WChar);
if ((pTbl2 = (P844_ARRAY)(pArr[Index])) == NULL)
{
//
// Allocate second table - 16 pointers + 1 word.
// The additional 1 word will be used when writing this table
// to avoid duplicates of the same table.
//
if ((pTbl2 = (P844_ARRAY)malloc( (TABLE_SIZE_4 + 1) *
sizeof(P844_ARRAY) )) == NULL)
{
printf("Error: Can't allocate second 8:4:4 buffer.\n");
return (1);
}
memset(pTbl2, 0, (TABLE_SIZE_4 + 1) * sizeof(P844_ARRAY));
pArr[Index] = pTbl2;
//
// Keep track of how many "second buffer" allocations were made.
//
(*cbBuf2)++;
}
//
// Use the "high 4" index to get to the third table.
// Allocate it if necessary.
//
Index = GETHI4(WChar);
if ((pTbl3 = pTbl2[Index]) == NULL)
{
//
// Allocate third table - 16 + 2 bytes.
// The 2 extra bytes will be used when writing the table.
//
if ((pTbl3 = (PCT_MAP_VALUE)malloc( (TABLE_SIZE_4 + 2) *
(sizeof(CT_MAP_VALUE)) )) == NULL)
{
printf("Error: Can't allocate third 8:4:4 buffer.\n");
return (1);
}
//
// The last field of the third table is used when writing to the
// data file to ensure that each table is written only ONCE
// (with muliple pointers to it). This field takes 1 WORD
// (2 bytes) and is initialized to 0.
//
memset(pTbl3, 0, (TABLE_SIZE_4 + 2) * (sizeof(CT_MAP_VALUE)));
pTbl2[Index] = pTbl3;
//
// Keep track of how many "third buffer" allocations were made.
//
(*cbBuf3)++;
}
//
// Use the "low 4" value to index into the third table.
// Save the values at this spot.
//
Index = GETLO4(WChar);
//
// Map 3 WORD CType trio to 1 BYTE value.
//
pTbl3[Index] = MapTrioToByte( pMap,
Value1,
Value2,
Value3 );
//
// Make sure the number of entries in the mapping table is
// not greater than MAX_CT_MAP_TBL_SIZE.
//
if (pMap->Length >= MAX_CT_MAP_TBL_SIZE)
{
printf("Error: CTYPE Mapping Table Too Large.\n");
return (1);
}
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateTemp844
//
// This routine allocates the temporary storage buffer for the 8:4:4
// table. This temporary buffer is used when writing to the output file.
// The size of the buffer is (TblSize * Size) bytes in length.
//
// 07-30-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateTemp844(
PVOID *ppArr,
int TblSize,
int Size)
{
//
// Allocate buffer of size TblSize.
//
if ((*ppArr = (PVOID)malloc(TblSize * Size)) == NULL)
{
printf("Error: Can't allocate temp 8:4:4 buffer.\n");
return (1);
}
memset(*ppArr, 0, TblSize * Size);
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateCTMap
//
// This routine allocates all structures needed for the ctype mapping table.
// If an error is encountered while allocating, an error is returned.
//
////////////////////////////////////////////////////////////////////////////
int AllocateCTMap(
PCT_MAP *pMap)
{
//
// Allocate buffer mapping table.
//
if ((*pMap = (PCT_MAP)malloc(sizeof(CT_MAP))) == NULL)
{
printf("Error: Can't allocate buffer for CType Mapping table.\n");
return (1);
}
memset(*pMap, 0, sizeof(CT_MAP));
//
// Allocate mapping table entries.
//
if (((*pMap)->pCTValues = (PCT_VALUES)malloc( MAX_CT_MAP_TBL_SIZE *
sizeof(CT_VALUES) )) == NULL)
{
printf("Error: Can't allocate CType mapping table with %d entries.\n",
MAX_CT_MAP_TBL_SIZE);
return (1);
}
//
// Set the first entry to 0 so that any third level table that maps
// to 0 will be C1 = 0, C2 = 0, and C3 = 0.
//
memset((*pMap)->pCTValues, 0, sizeof(CT_VALUES));
(*pMap)->Length = 1;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateGrid
//
// This routine allocates the 2D grid for the composite table.
// The size passed in is the number of precomposed entries that need to
// go into the table. Since the exact size of the array is not known yet,
// the maximum possible size is allocated (size squared).
//
// 07-30-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateGrid(
PCOMP_GRID *pCompGrid,
int TblSize)
{
//
// Allocate 2D grid.
// The size of the grid is the TblSize squared plus one to save the
// size of the grid.
//
if ((*pCompGrid = (PCOMP_GRID)malloc( (TblSize * TblSize + 1) *
sizeof(WORD) )) == NULL)
{
printf("Error: Can't allocate buffer.\n");
return (1);
}
memset(*pCompGrid, 0, (TblSize * TblSize + 1) * sizeof(WORD));
//
// Save the size of the grid in the first spot.
//
(*pCompGrid)[0] = (WORD)TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateLangException
//
// This routine allocates the exception header and the exception table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the header and the table are stored in the language
// structure.
//
// 08-30-95 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateLangException(
PLANG_EXCEPT pLangExcept,
int TblSize)
{
//
// Set the number of Exception entries in table.
//
pLangExcept->NumException = TblSize;
//
// Allocate buffer of size TblSize for Exception header.
//
if ((pLangExcept->pExceptHdr =
(PL_EXCEPT_HDR)malloc(TblSize * sizeof(L_EXCEPT_HDR))) == NULL)
{
printf("Error: Can't allocate buffer for Exception Header.\n");
return (1);
}
memset(pLangExcept->pExceptHdr, 0, TblSize * sizeof(L_EXCEPT_HDR));
//
// Allocate buffer of size TblSize for Exception table.
//
if ((pLangExcept->pExceptTbl =
(PL_EXCEPT_TBL)malloc(TblSize * sizeof(PL_EXCEPT_NODE))) == NULL)
{
printf("Error: Can't allocate buffer for Exception table.\n");
return (1);
}
memset(pLangExcept->pExceptTbl, 0, TblSize * sizeof(PL_EXCEPT_NODE));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateLangExceptionNodes
//
// This routine allocates the exception nodes for the exception table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the nodes is stored in the exception table at the Index
// given.
//
// 08-30-95 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateLangExceptionNodes(
PLANG_EXCEPT pLangExcept,
int TblSize,
int Index)
{
PL_EXCEPT_NODE pExcNode; // ptr to exception node
//
// Allocate buffer of size TblSize for Exception nodes.
//
if ((pExcNode = (PL_EXCEPT_NODE)malloc( TblSize *
sizeof(L_EXCEPT_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Exception Nodes.\n");
return (1);
}
memset(pExcNode, 0, TblSize * sizeof(L_EXCEPT_NODE));
//
// Set pointer in exception table.
//
(pLangExcept->pExceptTbl)[Index] = pExcNode;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateSortDefault
//
// This routine allocates the sort default table - 64K DWORDS. The pointer
// to the new table is stored in the sortkey structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateSortDefault(
PSORTKEY pSKey)
{
//
// Allocate buffer of size 64K DWORDS for sort default table.
//
if ((pSKey->pDefault = (PSKEY)malloc( SKEY_TBL_SIZE *
sizeof(SKEY) )) == NULL)
{
printf("Error: Can't allocate buffer for sortkey default table.\n");
return (1);
}
memset(pSKey->pDefault, 0, SKEY_TBL_SIZE * sizeof(SKEY));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateReverseDW
//
// This routine allocates the reverse diacritic weight table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the sorttables structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateReverseDW(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Allocate buffer of size TblSize for RevrseDW table.
//
if ((pSTbl->pReverseDW = (PREV_DW)malloc( TblSize *
sizeof(REV_DW) )) == NULL)
{
printf("Error: Can't allocate buffer for Reverse DW table.\n");
return (1);
}
memset(pSTbl->pReverseDW, 0, TblSize * sizeof(REV_DW));
//
// Set the number of ReverseDW entries in table.
//
pSTbl->NumReverseDW = TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateDoubleCompression
//
// This routine allocates the double compression table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the sorttables structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateDoubleCompression(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Allocate buffer of size TblSize for Double Compression table.
//
if ((pSTbl->pDblCompression =
(PDBL_COMPRESS)malloc(TblSize * sizeof(DBL_COMPRESS))) == NULL)
{
printf("Error: Can't allocate buffer for Double Compression table.\n");
return (1);
}
memset(pSTbl->pDblCompression, 0, TblSize * sizeof(DBL_COMPRESS));
//
// Set the number of Double Compression entries in table.
//
pSTbl->NumDblCompression = TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateIdeographLcid
//
// This routine allocates the ideograph lcid table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the sorttables structure.
//
// 09-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateIdeographLcid(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Allocate buffer of size TblSize for IdeographLcid table.
//
if ((pSTbl->pIdeographLcid =
(PIDEOGRAPH_LCID)malloc(TblSize * sizeof(IDEOGRAPH_LCID))) == NULL)
{
printf("Error: Can't allocate buffer for Ideograph Lcid table.\n");
return (1);
}
memset(pSTbl->pIdeographLcid, 0, TblSize * sizeof(IDEOGRAPH_LCID));
//
// Set the number of Ideograph Lcid entries in table.
//
pSTbl->NumIdeographLcid = TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateExpansion
//
// This routine allocates the expansion table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the sorttables structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateExpansion(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Allocate buffer of size TblSize for Expansion table.
//
if ((pSTbl->pExpansion = (PEXPAND)malloc( TblSize *
sizeof(EXPAND) )) == NULL)
{
printf("Error: Can't allocate buffer for Expansion table.\n");
return (1);
}
memset(pSTbl->pExpansion, 0, TblSize * sizeof(EXPAND));
//
// Set the number of Expansion entries in table.
//
pSTbl->NumExpansion = TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateCompression
//
// This routine allocates the compression header and the compression table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the header and the table are stored in the sorttables
// structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateCompression(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Set the number of Compression entries in table.
//
pSTbl->NumCompression = TblSize;
//
// Allocate buffer of size TblSize for Compression header.
//
if ((pSTbl->pCompressHdr =
(PCOMPRESS_HDR)malloc(TblSize * sizeof(COMPRESS_HDR))) == NULL)
{
printf("Error: Can't allocate buffer for Compression Header.\n");
return (1);
}
memset(pSTbl->pCompressHdr, 0, TblSize * sizeof(COMPRESS_HDR));
//
// Allocate buffer of size TblSize for Compression 2 table.
//
if ((pSTbl->pCompress2Tbl =
(PCOMPRESS_2_TBL)malloc( TblSize *
sizeof(PCOMPRESS_2_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Compression 2 table.\n");
return (1);
}
memset(pSTbl->pCompress2Tbl, 0, TblSize * sizeof(PCOMPRESS_2_NODE));
//
// Allocate buffer of size TblSize for Compression 3 table.
//
if ((pSTbl->pCompress3Tbl =
(PCOMPRESS_3_TBL)malloc( TblSize *
sizeof(PCOMPRESS_3_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Compression 3 table.\n");
return (1);
}
memset(pSTbl->pCompress3Tbl, 0, TblSize * sizeof(PCOMPRESS_3_NODE));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateCompression2Nodes
//
// This routine allocates the compression 2 nodes for the compression table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the nodes is stored in the compression table at the Index
// given.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateCompression2Nodes(
PSORT_TABLES pSTbl,
int TblSize,
int Index)
{
PCOMPRESS_2_NODE pCompNode; // ptr to compression 2 node
//
// Allocate buffer of size TblSize for Compression nodes.
//
if ((pCompNode =
(PCOMPRESS_2_NODE)malloc( TblSize *
sizeof(COMPRESS_2_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Compression 2 Nodes.\n");
return (1);
}
memset(pCompNode, 0, TblSize * sizeof(COMPRESS_2_NODE));
//
// Set pointer in compression 2 table.
//
(pSTbl->pCompress2Tbl)[Index] = pCompNode;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateCompression3Nodes
//
// This routine allocates the compression 3 nodes for the compression table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the nodes is stored in the compression table at the Index
// given.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateCompression3Nodes(
PSORT_TABLES pSTbl,
int TblSize,
int Index)
{
PCOMPRESS_3_NODE pCompNode; // ptr to compression 3 node
//
// Allocate buffer of size TblSize for Compression nodes.
//
if ((pCompNode =
(PCOMPRESS_3_NODE)malloc( TblSize *
sizeof(COMPRESS_3_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Compression 3 Nodes.\n");
return (1);
}
memset(pCompNode, 0, TblSize * sizeof(COMPRESS_3_NODE));
//
// Set pointer in compression 3 table.
//
(pSTbl->pCompress3Tbl)[Index] = pCompNode;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateException
//
// This routine allocates the exception header and the exception table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the header and the table are stored in the sorttables
// structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateException(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Set the number of Exception entries in table.
//
pSTbl->NumException = TblSize;
//
// Allocate buffer of size TblSize for Exception header.
//
if ((pSTbl->pExceptHdr =
(PEXCEPT_HDR)malloc(TblSize * sizeof(EXCEPT_HDR))) == NULL)
{
printf("Error: Can't allocate buffer for Exception Header.\n");
return (1);
}
memset(pSTbl->pExceptHdr, 0, TblSize * sizeof(EXCEPT_HDR));
//
// Allocate buffer of size TblSize for Exception table.
//
if ((pSTbl->pExceptTbl =
(PEXCEPT_TBL)malloc(TblSize * sizeof(PEXCEPT_NODE))) == NULL)
{
printf("Error: Can't allocate buffer for Exception table.\n");
return (1);
}
memset(pSTbl->pExceptTbl, 0, TblSize * sizeof(PEXCEPT_NODE));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateException
//
// This routine allocates the Jamo Table and Jamo Composition table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the tables are stored in the sorttables
// structure.
//
// 06-26-2000 YSLin Created.
////////////////////////////////////////////////////////////////////////////
int AllocateJamoTables(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Set the number of Jamo Index entries in table
//
pSTbl->NumJamoIndex = JAMO_INDEX_SIZE;
//
// Allocate buffer for Jamo Index table.
//
if ((pSTbl->pJamoIndexTbl =
(PJAMO_TABLE)malloc(JAMO_INDEX_SIZE * sizeof(JAMO_TABLE))) == NULL)
{
printf("Error: Can't allocate buffer for Jamo Index.\n");
return (1);
}
memset(pSTbl->pJamoIndexTbl, 0, JAMO_INDEX_SIZE * sizeof(WORD));
//
// Set the number of Jamo Composition entries in table.
// Add one for the dummy entry.
//
pSTbl->NumJamoComposition = TblSize - JAMO_INDEX_SIZE + 1;
//
// Allocate buffer for Jamo Composition table.
//
if ((pSTbl->pJamoComposeTbl =
(PJAMO_COMPOSE_STATE)malloc(pSTbl->NumJamoComposition * sizeof(JAMO_COMPOSE_STATE))) == NULL)
{
printf("Error: Can't allocate buffer for Jamo Composition.\n");
return (1);
}
memset(pSTbl->pJamoComposeTbl, 0, pSTbl->NumJamoComposition * sizeof(JAMO_COMPOSE_STATE));
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateExceptionNodes
//
// This routine allocates the exception nodes for the exception table.
// The size of the table is determined by the TblSize parameter. The
// pointer to the nodes is stored in the exception table at the Index
// given.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateExceptionNodes(
PSORT_TABLES pSTbl,
int TblSize,
int Index)
{
PEXCEPT_NODE pExcNode; // ptr to exception node
//
// Allocate buffer of size TblSize for Exception nodes.
//
if ((pExcNode = (PEXCEPT_NODE)malloc( TblSize *
sizeof(EXCEPT_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Exception Nodes.\n");
return (1);
}
memset(pExcNode, 0, TblSize * sizeof(EXCEPT_NODE));
//
// Set pointer in exception table.
//
(pSTbl->pExceptTbl)[Index] = pExcNode;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateMultipleWeights
//
// This routine allocates the multiple weights table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the sorttables structure.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateMultipleWeights(
PSORT_TABLES pSTbl,
int TblSize)
{
//
// Allocate buffer of size TblSize for Multiple Weights table.
//
if ((pSTbl->pMultiWeight = (PMULTI_WT)malloc( TblSize *
sizeof(MULTI_WT) )) == NULL)
{
printf("Error: Can't allocate buffer for Multiple Weight table.\n");
return (1);
}
memset(pSTbl->pMultiWeight, 0, TblSize * sizeof(MULTI_WT));
//
// Set the number of Multiple Weight entries in table.
//
pSTbl->NumMultiWeight = TblSize;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// AllocateIdeographExceptions
//
// This routine allocates the ideograph exception table. The size of
// the table is determined by the TblSize parameter. The pointer to the
// new table is stored in the ideograph exception structure.
//
// 09-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int AllocateIdeographExceptions(
PIDEOGRAPH_EXCEPT pIdeograph,
int TblSize,
int NumColumns)
{
//
// Allocate buffer of size TblSize for Ideograph Exception table.
//
if (NumColumns == 2)
{
if ((pIdeograph->pExcept =
(PIDEOGRAPH_NODE)malloc( TblSize *
sizeof(IDEOGRAPH_NODE) )) == NULL)
{
printf("Error: Can't allocate buffer for Ideograph Exception table.\n");
return (1);
}
memset(pIdeograph->pExcept, 0, TblSize * sizeof(IDEOGRAPH_NODE));
pIdeograph->pExceptEx = NULL;
}
else if (NumColumns == 4)
{
if ((pIdeograph->pExceptEx =
(PIDEOGRAPH_NODE_EX)malloc( TblSize *
sizeof(IDEOGRAPH_NODE_EX) )) == NULL)
{
printf("Error: Can't allocate buffer for Ideograph Exception table.\n");
return (1);
}
memset(pIdeograph->pExceptEx, 0, TblSize * sizeof(IDEOGRAPH_NODE_EX));
pIdeograph->pExcept = NULL;
}
else
{
printf("Parse Error: The Number of Columns must be either 2 or 4.\n");
return (1);
}
//
// Set the number of ideograph exception entries in table.
//
pIdeograph->NumEntries = TblSize;
pIdeograph->NumColumns = NumColumns;
//
// Return success.
//
return (0);
}
////////////////////////////////////////////////////////////////////////////
//
// Free844
//
// This routine frees the memory used by an 8:4:4 table pointed to by pArr.
//
// 07-30-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
void Free844(
P844_ARRAY pArr)
{
int Ctr1, Ctr2; // loop counters
P844_ARRAY pArr2; // ptr to second arrays
if (pArr != NULL)
{
for (Ctr1 = 0; Ctr1 < TABLE_SIZE_8; Ctr1++)
{
if ((pArr2 = (P844_ARRAY)(pArr[Ctr1])) != NULL)
{
for (Ctr2 = 0; Ctr2 < TABLE_SIZE_4; Ctr2++)
{
if (pArr2[Ctr2] != NULL)
{
free(pArr2[Ctr2]);
}
}
free(pArr2);
}
}
free(pArr);
}
}
////////////////////////////////////////////////////////////////////////////
//
// FreeCTMap
//
// This routine frees the memory used by the ctype mapping table pointed
// to by pMap.
//
////////////////////////////////////////////////////////////////////////////
void FreeCTMap(
PCT_MAP pMap)
{
if (pMap != NULL)
{
free(pMap->pCTValues);
free(pMap);
}
}
//-------------------------------------------------------------------------//
// INTERNAL ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// MapTrioToByte
//
// This routine searches through the mapping table for the given CType trio.
// If it already exists, the entry value is returned. Otherwise, it adds
// the new trio to the mapping table and returns the new entry value.
//
////////////////////////////////////////////////////////////////////////////
CT_MAP_VALUE MapTrioToByte(
PCT_MAP pMap,
WORD Value1,
WORD Value2,
WORD Value3)
{
PCT_VALUES pEntry; // ptr to entry
CT_MAP_VALUE EntryNum; // entry number
int Ctr; // loop counter
//
// Search through the current entries to see if the ctype trio
// already exists.
//
for (Ctr = 0; Ctr < pMap->Length; Ctr++)
{
//
// Check the entry.
//
if ( ((pMap->pCTValues[Ctr]).CType1 == Value1) &&
((pMap->pCTValues[Ctr]).CType2 == Value2) &&
((pMap->pCTValues[Ctr]).CType3 == Value3) )
{
//
// Entry already exists. Return the entry number.
//
if (Verbose)
printf("Mapping Entry %d:\tCT1 = %x\tCT2 = %x\tCT3 = %x\n",
Ctr, Value1, Value2, Value3);
return ((BYTE)Ctr);
}
}
//
// The given CType trio does not yet exist in the table.
// Add the new trio entry to the table and increment the
// total number of entries.
//
pEntry = &(pMap->pCTValues[pMap->Length]);
pEntry->CType1 = Value1;
pEntry->CType2 = Value2;
pEntry->CType3 = Value3;
EntryNum = (CT_MAP_VALUE)(pMap->Length);
pMap->Length++;
if (Verbose)
printf("Mapping New Entry %d:\tCT1 = %x\tCT2 = %x\tCT3 = %x\n",
EntryNum, Value1, Value2, Value3);
//
// Return the new entry number.
//
return (EntryNum);
}